首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sustained swimming performance of juvenile sprat, S. sprattus (29–48 mm s.l.), and herring, C. harengus (46–58 mm) was measured in a laboratory flume over a range of salinities from 18 to 33%0 at water temperatures of 16–19°C. Critical swimming speeds (CSS) of both species, relative to body length, were similar, averaging 10–12 body lengths per second (bl s−1). There was no apparent relationship with salinity.
These swimming speeds are higher than values generally quoted in the literature for sustained swimming of sprat and herring (2–7 bl s−1) and it is concluded that the better performance found in this study was a function of improved fish handling techniques, and of the size of fish used since most other studies have dealt with larger, commercial sized fish.  相似文献   

2.
The prolonged swimming speed and metabolic rate of 0+ year Arctic grayling Thymallus articus were examined with respect to current velocity, water temperature and fish size, and compared to conditions fish occupy in the river. Oxygen consumption (mg O2 h−1) increased with fish mass and temperature (6–23° C), with a steep increase in metabolic rate between 12 and 16° C. Absolute prolonged swimming speed (cm s−1) increased rapidly with fish size (total length, L T, and mass), however, fish in the natural stream habitat occupied current velocities between 15 and 25 cm s−1 or 4  L T s−1, approximately half their potential prolonged swimming speed (10  L T s−1).  相似文献   

3.
Sustained swimming of bluefin tuna was analysed from video recordings made of a captive patrolling fish school [lengths (L) 1.7–3.3 m, body mass (M) 54–433 kg]. Speeds ranged from 0.6 to 1.2 L s−1 (86–260 km day−1) while stride length during steady speed swimming varied between 0.54 and 0.93 L. Maximum swimming speed was estimated by measuring twitch contraction of the anaerobic swimming muscle in pithed fish 5 min after death. Muscle contraction time increased from the shortest just behind the head (30–50 ms at 20% L) to the longest at the tail peduncle (80–90 ms at 80% L) (all at 28°C). A fish (L = 2.26 m) with a muscle contraction time of 50 ms at 25% L can have a maximum tail beat frequency of 10 Hz and maximum swimming speed of 15m s−1 (54km h−1) with a stride length of 0.65L. With a stride length of 1 L a speed of 22.6 m s−1 (81.4 km h−1) is possible. Power used at maximum speed was estimated for this fish at between 10 and 40 kW, with corresponding values for the drag coefficient at a Reynolds number of 4.43 × 107 of 0.0007 and 0.0027.  相似文献   

4.
Effect of temperature on swimming performance of sea bass juveniles   总被引:1,自引:0,他引:1  
At four temperatures ( T= 15, 20, 25 and 28° C) swimming performance of Dicentrarchus labrax was significantly correlated with total length (23–43 mm L T); r2=0.623–0.829). The relative critical swimming speed ( RU crit= U crit L T−1), where U crit is the critical swimming speed, was constant throughout the L T range studied. The significant effect of temperature on the relative critical swimming speed was described binomially: RU crit=−0.0323T2+ 1.578 T −10.588 (r2=1). The estimated maximum RU crit (8.69 L T s−1) was achieved at 24.4° C, and the 90% performance level was estimated between 19.3 and 29.6° C.  相似文献   

5.
The endurance of threespine sticklebacks, Gasterosteus aculeatus , swimming with pectoral fin locomotion at 20° C in a laboratory flume was measured. Each trial lasted a maximum of 480 min. At a speed of 4 body lengths per sec (L s−1) all fish were still swimming at the end of the trial, but endurance decreased at higher speeds. At speeds of 5 or 6 L s−1 (20–30 cm s−1) a few fish still maintained labriform locomotion for the 480 min. However, at a speed of 7 L s−1 all fish furled their pectoral fins and used body and caudal fin propulsion but fatigued rapidly. During sustained swimming, fish could cover distances of 6 km or more. No significant differences between males and females were found.  相似文献   

6.
When swimming at low speeds, steelhead trout and bluegill sunfish tilted the body at an angle to the mean swimming direction. Trout swam using continuous body/caudal fin undulation, with a positive (head-up) tilt angle ( 0 , degrees) that decreased with swimming speed ( u , cm s−1) according to: 0 =(164±96).u(−1.14±0.41) (regression coefficients; mean±2 s.e. ). Bluegill swimming gaits were more diverse and negative (head down) tilt angles were usual. Tilt angle was −3·0 ± 0.9° in pectoral fin swimming at speeds of approximately 0.2–1.7 body length s−1 (Ls−1; 3–24 cm s−1), −4.5 ±2.6° during pectoral fin plus body/caudal fin swimming at 1·2–1·7 L s−1 (17–24cm s−1), and −5.0± 1.0° during continuous body/caudal fin swimming at 1.6 and 2.5 L s−1 (22 and 35cm s−1). At higher speeds, bluegill used burst-and-coast swimming for which the tilt angle was 0.1±0.6°. These observations suggest that tilting is a general phenomenon of low speed swimming at which stabilizers lose their effectiveness. Tilting is interpreted as an active compensatory mechanism associated with increased drag and concomitant increased propulsor velocities to provide better stabilizing forces. Increased drag associated with trimming also explains the well-known observation that the relationship between tail-beat frequency and swimming speed does not pass through the origin. Energy dissipated because of the drag increases at low swimming speeds is presumably smaller than that which would occur with unstable swimming.  相似文献   

7.
Negatively-buoyant Atlantic mackerel, Scomber scombrus L., (fork length 30–39 cm) tilt their bodies with the head up while swimming at speeds below 0.8 body length per second (B.L. s−1). This behaviour is quantitatively described by the body attack angle and swimming speed measured from film records. The maximum recorded body attack angle was 27° in a 32 cm-long fish swimming at 0.45 B.L. s−1 while its nose followed a course close to the horizontal. In general, larger body attack angles were shown at lower swimming speeds and were associated with denser bodies at each speed. We consider that this behaviour pattern allows the fish to maintain a chosen swimming depth while its body creates lift by acting as a hydrofoil. Lift from the fins is insufficient at low swimming speeds.  相似文献   

8.
Burst swimming speeds of mackerel, Scomber scombrus L.   总被引:1,自引:0,他引:1  
Burst swimming speeds were measured in mackerel 0.275–0.380 m long by filming newly caught fish, first released into a large shore-sited tank, using a high-speed cine camera and real time TV camera. The highest speed was 5.50 m s−1 or 18 body length per second ( b.l . s−1) in a 0.305 m long mackerel at 12° C. The recorded maximum tail beat frequency of 18 Hz agrees well with 19 Hz predicted from the measured contraction time of 0.026 s for the anterior lateral swimming muscle. The stride length was close to 1 B.L.; the power, calculated from the drag, was 4.53 W, and, calculated from the muscle used, was 5.07 W; all suggesting that the mackerel is swimming close to its physiological limit.  相似文献   

9.
Of 91 sonic-tagged American shad, 78 were tracked upriver to their spawning grounds. The remaining 13 tagged shad dropped back downstream over a dam or moved downstream through the adjacent canal system. Sonic-tagged shad swam upstream individually. 'Apparent' swimming speeds (the time to travel between two points) during daylight hours ranged from 11 to 93 cm s−1 when water temperatures were below 20°C and from 9.8 to 64 cm s−1 when water temperatures exceeded 20°C. Swimming speeds at night ranged from 8 to 53 cm s−1. As the flow rate increased, shad swam faster. A major flood, producing flows reaching 300 cm s−1, flushed all sonic-tagged shad away.  相似文献   

10.
Parasitism with Myxobolus arcticus did not affect smolt size of sockeye salmon or their osmocompetence, but had a deleterious effect ( P <0.001) on the swimming speed of naturally infected smolts. Parasitized fish had a mean swimming speed of 2.89 fork length s−1 (LF s−1) compared with 4.37 L F s−1 for unparasitized fish. The parasite probably impairs swimming ability by affecting the central nervous system, but this effect does not appear severe enough to limit the parasite's usefulness in stock separation.  相似文献   

11.
Critical swimming speed ( U crit) and rate of oxygen consumption of Pacific cod Gadus macrocephalus acclimated to 4 and 11° C were determined to assess the influence of water temperature on performance. The physiological effect of exercise trials on fish held at two temperatures was also assessed by comparing haematocrit and plasma concentrations of cortisol, metabolites and ions collected from fish before and after testing. The U crit of fish acclimated and exercised at 4° C did not differ from those acclimated and exercised at 11° C [1·07 body lengths (total length) s−1]. While the standard metabolic rate of 11° C acclimated fish was 28% higher than that of 4° C fish, no significant difference was observed between fish acclimated at the two temperatures. Plasma concentrations of cortisol, glucose and lactate increased significantly from pre- to post-swim in both groups, yet only concentrations of cortisol differed significantly between temperature treatments. Higher concentrations of cortisol in association with greater osmoregulatory disturbance in animals acclimated at the lower temperature indicate that the lower water temperature acted as an environmental stressor. Lack of significant differences in U crit between temperature treatments, however, suggests that Pacific cod have robust physiological resilience with respect to swimming performance within temperature changes from 4 to 11° C.  相似文献   

12.
Sixty-four post-larvae of the King George whiting Sillaginodes punctata were tested in swimming chambers, against one of five flow-through velocities (2, 4, 6, 8 or 10 cm s −1) for up to a maximum of 120 min. Fish were determined by regression to have an FV50 (50% fatigue velocity) of 6.0 cm s−1. No fish survived the full 120 min at 10 cm s−1. Sixteen individuals were tested in a swimming chamber against a flow-through velocity of 6 cm s −1 and allowed to swim to exhaustion. Fish swam between 25 and 538 min with a peak at c . 6–8 h. Total swimming time was not correlated with standard length of fish although the size range examined was narrow. Relative to recent studies on the swimming abilities of late-stage larvae of reef fishes, this study indicates that post-larval King George whiting are weak swimmers. The weak swimming ability of post-larval King George whiting is consistent with studies showing passive dispersal and recruitment of this species.  相似文献   

13.
Saithe Pollachius virens , tracked diurnally with a split-beam echosounder, showed no relationship between size and swimming speed. The average and the median swimming speeds were 1·05 m s−1(±0·09 m s−1) and 0·93 m s−1, respectively. However, ping-to-ping speeds up to 3·34 m s−1 were measured for 25–29 cm fish, whose swimming speeds were significantly higher at night (1·08 m s−1) than during the day (0·72 m s−1). The high average swimming speed could be related to the foraging or streaming part of the population and not to potential weakness of the methodology. However, the uncertainty of target location increased with depth and resulted in calculated average swimming speeds of 0·15 m s−1 even for a stationary target. With increasing swimming speed the average error decreased to 0 m s−1 for speeds >0·34 m s−1. Species identity was verified by trawling in a pelagic layer and on the bottom.  相似文献   

14.
Spirogyra Link (1820) is an anabranched filamentous green alga that forms free-floating mats in shallow waters. It occurs widely in static waters such as ponds and ditches, sheltered littoral areas of lakes, and stow-flowing streams. Field observations of its seasonal distribution suggest that the 70-μm-wide filament form of Spirogyra should have a cool temperature and high irradiance optimum for net photosynthesis. Measurements of net photosynthesis and respiration were marie at 58 combinations of tight and temperature in a controlled environment facility. Optimum conditions were 25°C and 1500 μmol photons m−2 s−1, at which net photosynthesis averaged 75.7 mg O2 gdm−1 h−1. Net photosynthesis was positive at temperatures from 5° to 35°C at most irradiances except at combinations of extremely low irradiances and high temperatures (7 and 23 μmol photons m−2 s−1 at 30°C and 7, 23, and 35 μmol photons m−2 s−1 at 35°C). Respiration rates increased with both temperature and prior irradiance. Light-enhanced respiration rates were significantly greater than dark respiration rates following irradiances of 750 μmol photons m−2 s−1 or greater. Polynomials were fitted to the data to generate response surfaces; such response surfaces can be used to represent net photosynthesis and respiration in ecological models. The data indicate that the alga can tolerate the cool water and high irradiances characteristic of early spring but cannot maintain positive net photosynthesis under conditions of high temperature and low light (e.g. when exposed to self-shading ).  相似文献   

15.
At 14° C, standard metabolic rate (75·1 mg O2 h−1 kg−1), routine metabolic rate (108.8 mg O2 h−1 kg−1), active metabolic rate ( c . 380 mg O2 h−1 kg−1), critical swimming speed (Ucrit 1·7 BL s−1), heart rate 47 min−1), dorsal aortic pressure (3·2 kPa) and ventilation frequency (63 min−1) for triploid brown trout Salmo trutta were within the ranges reported for diploid brown trout and other salmonids at the same temperature. During prolonged swimming ( c . 80% U crit), cardiac output increased by 2·3-fold due to increases in heart rate (1·8-fold) and stroke volume (1·2-fold). At 18° C, although standard and routine metabolic rates, as well as resting heart rate and ventilation frequency increased significantly, active metabolic rate and certain cardiorespiratory variables during exercise did not differ from those values for fish acclimated to 14° C. As a result, factorial metabolic scope was reduced (2·93-fold at 18° C v . 5·13-fold at 14° C). Therefore, it is concluded that cardiorespiratory performance in triploid brown trout was not unusual at 18° C, but that reduced factorial metabolic scope may be a contributing factor to the mortality observed in triploid brown trout at temperatures near 18° C.  相似文献   

16.
The swimming performance of Platycephalus bassensis at steady speed was assessed with an emphasis on hydrodynamics. The minimum swimming speed to maintain hydrostatic equilibrium for P. bassensis of 0·271 m total length ( L T) was calculated to be 1·06 L T s−1. At this speed, the required lift to support the mass of the fish was equivalent to 6·6% of the fish mass; 82·7% of which was created by the body as a hydrofoil, and the rest of which was created by the pelvic fins as hydrofoils. The minimum swimming speed decreased with the L T of the fish and ranged from 1·15 L T s−1 for a fish of 0·209 m to 0·89 L T s−1 for a fish of 0·407 m. The forward movement per tail-beat cycle ( i.e. stride length) was described with an equation including quantities of morphological and hydro-mechanical relevance. This equation explained that stride length was increased by the effect of turbulence characterized by the Reynolds number and demonstrated the morphological and hydro-mechanical functional design of the fish for maximizing thrust and minimizing drag. The larger span of the caudal fin and caudal tail-beat amplitude was associated with larger stride length, whereas greater frictional drag was associated with smaller stride length.  相似文献   

17.
Photosynthetic response of Eragrostis tef to temperature   总被引:1,自引:0,他引:1  
Photosynthetic characteristics of leaves of tef, Eragrostis tef (Zucc.) Trotter, plants, grown at 25/15°C (day/night), were measured at temperatures from 18 to 48°C. The highest carbon exchange rates (CER) occurred between 36 and 42°C. and averaged 27 μmol m−2 s−1. At lower or higher temperatures, CER was reduced, but the availability of CO2 to the mesophyll, measured as internal CO2 concentration, was highest when temperatures were above or below the optimum for CER. In addition, CER and stomatal conductance were not correlated, but residual conductance was highly correlated with CER (r = 0.98). In additional experiments, relative 13C composition for leaf tissue grown at 25, 35 and 45°C averaged -14.4 per mille, confirming that tef is a C4 grass species. Dry matter accumulation was higher at 35 than at 25, and lowest at 45°C. Leaf CER rates increased hyperbolically with increased light when measured from 0 to 2000 μmol m−2 s−1 PPFD. The highest CER, 31.8 μ-mol m-2 s−1, occurred at 35°C and 2000 μmol m−2 s−1 PPFR. At high light, CER at 25 and 35°C were nearly equal because of higher stomatal conductance at 25°C. Residual conductance was, however, clearly highest at 35°C compared to 25 and 45°C treatments. Stomatal conductance and residual conductance were not correlated in either set of experiments, yet residual conductance was always highest when temperatures were between 35 and 42°C across experiments, suggesting that internal leaf photosynthetic potential was highest across that temperature range.  相似文献   

18.
The hypothesis that body size and swimming velocity affect proximate body composition, wet mass and size‐selective mortality of fasted fish was evaluated using small (107 mm mean total length, L T) and medium (168 mm mean L T) juvenile rainbow trout Oncorhynchus mykiss that were sedentary or swimming ( c . 1 or 2 body length s−1) and fasted for 147 days. The initial amount of energy reserves in the bodies of fish varied with L T. Initially having less lipid mass and relatively higher mass‐specific metabolic rates caused small rainbow trout that were sedentary to die of starvation sooner and more frequently than medium‐length fish that were sedentary. Swimming at 2 body length s−1 slightly increased the rate of lipid catabolism relative to 1 body length s−1, but did not increase the occurrence of mortality among medium fish. Death from starvation occurred when fish had <3·2% lipid remaining in their bodies. Juvenile rainbow trout endured long periods without food, but their ability to resist death from starvation was limited by their length and initial lipid reserves.  相似文献   

19.
Critical swimming speeds (mean ± s . e .) for juvenile shortnose sturgeon Acipenser brevirostrum were 34·4 cm s−1± 1·7 (2·18 ± 0·09 body lengths, BL s−1). Swimming challenges at 10, 20 and 30 cm s−1 revealed that juvenile A. brevirostrum are relatively poor swimmers, and that the fish did not significantly modify their swimming behaviour, although they spent more time substratum skimming ( i.e. contact with flume floor) at 30 cm s−1 relative to 10 cm s−1. When present, these behavioural responses are probably related to morphological features, such as flattened rostrum, large pectoral fins, flattened body shape and heterocercal tail, and may be important to reduce the costs of swimming.  相似文献   

20.
Domestication has been shown to have an effect on morphology and behaviour of Atlantic salmon ( Salmo salar ). We compared swimming costs of three groups of juvenile Atlantic salmon subject to different levels of domestication: (1) wild fish; (2) first generation farmed fish origination from wild genitors; and (2) seventh generation farmed fish originating from Norwegian aquaculture stocks. We assessed swimming costs under two types of turbulent flow (one mean flow velocity of 23 cm s−1 and two standard deviations of flow velocity of 5 and 8 cm s−1). Respirometry experiments were conducted with fish in a mass range of 5–15 g wet at a water temperature of 15° C. Our results confirm (1) that net swimming costs are affected by different levels of turbulence such that, for a given mean flow velocity, fish spent 1·5‐times more energy as turbulence increased, (2) that domesticated fish differed in their morphology (having deeper bodies and smaller fins) and in their net swimming costs (being up to 30·3% higher than for wild fish) and (3) that swimming cost models developed for farmed fish may be also be applied to wild fish in turbulent environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号