首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, two DNA polymerases (ScA and ScB) were isolated and characterized from Spiroplasma citri. We now have found a third DNA polymerase (ScC) not only in S. citri but also in the serologically related honeybee spiroplasma BC3 and the unrelated flower spiroplasma BNR1. Enzyme ScC is N-ethylmaleimide (NEM) sensitive. The three DNA polymerases from the honeybee spiroplasma seem to be similar to the respective enzymes of S. citri. However, whereas the NEM-resistant enzyme ScA from S. citri and that from the BC3 honeybee spiroplasma are retained on DEAE-cellulose and require 0.09 M KCl for elution, the NEM-resistant enzyme A from the flower spiroplasma BNR1 is not retained.  相似文献   

2.
Human cytomegalovirus. III. Virus-induced DNA polymerase.   总被引:47,自引:25,他引:22       下载免费PDF全文
Infection of WI-38 human fibroblasts with human cytomegalovirus (CMV) led to the stimulation of host cell DNA polymerase synthesis and induction of a novel virus-specific DNA polymerase. This cytomegalovirus-induced DNA polymerase was purified and separated from host cell enzymes by DEAE-cellulose and phosphocellulose column chromatographies. It can be distinguished from host cell enzymes by chromatographic behavior, template primer specificity, sedimentation property, and the requirement of salt for maximal activity. This virus-induced enzyme has a sedimentation coefficient of 9.2S and is found in both the nuclei and cytoplasm of virus-infected cells, but not in uninfected cells. This enzyme could efficiently use activated calf-thymus DNA, oly(dA)-oligo(dT)12-18, and poly(dC)-oligo(dG)12-18 as template primers, especially poly(dA)-oligo(dT)12-18, but it could not use poly(rA)-oligo(dT)12-18, poly(rC)-oligo(dG)12-18, or oligo(dT)12-18. The enzyme requires Mg2+ for maximal activity, is sensitive to p-hydroxymercuribenzoate, and is not a zinc metalloenzyme. In addition, the cytomegalovirus-induced DNA polymerase activity can be enhanced by adding 0.06 to 0.12 M NaCl or 0.03 to 0.06 M (NH4)2SO4 to the reaction mixture.  相似文献   

3.
DNA polymerase was purified from Drosophila melanogaster embryos by a combination of phosphocellulose adsorption, Sepharose 6B gel filtration, and DEAE-cellulose chromatography. Three enzyme forms, designated enzymes I, II, and III, were separated by differential elution from DEAE-cellulose and were further purified by glycerol gradient centrifugation. Purification was monitored with two synthetic primer-templates, poly(dA) . (dT)-16 and poly(rA) . (dT)-16. At the final step of purification, enzymes I, II, and III were purified approximately 1700-fold, 2000-fold and 1000-fold, respectively, on the basis of their activities with poly(dA) . (dT)-16. The DNA polymerase eluted heterogeneously as anomalously high-molecular-weight molecules from Sepharose 6B gel filtration columns. On DEAE-cellulose chromatography enzymes I and II eluted as distinct peaks and enzyme III eluted heterogeneously. On glycerol velocity gradients enzyme I sedimented at 5.5-7.3 S, enzyme II sedimented at 7.3-8.3 S, and enzyme III sedimented at 7.3-9.0 S. All enzymes were active with both synthetic primer-templates, except the 9.0 S component of enzyme III, which was inactive with poly(rA) . (dT)-16. Non-denaturing polyacrylamide gel electrophoresis did not separate poly(dA) . (dT)-16 activity from poly(rA) . (dT)-16 activity. The DNA polymerase preferred poly(dA) . (dT)-16 (with Mg2+) as a primer-template, although it was also active with poly(rA) . (dT)-16 (with Mn2+), and it preferred activated calf thymus DNA to native or heat-denatured calf thymus DNA. All three primer-template activities were inhibited by N-ethylmaleimide. Enzyme activity with activated DNA and poly(dA) . (dT)-16 was inhibited by K+ and activity with poly(rA) . (dT)-16 was stimulated by K+ and by spermidine. The optimum pH for enzyme activity with the synthetic primer-templates was 8.5. The DNA polymerases did not exhibit deoxyribonuclease or ATPase activities. The results of this study suggest that the forms of DNA polymerase from Drosophila embryos have physical properties similar to those of DNA polymerase-alpha and enzymatic properties similar to those of all three vertebrate DNA polymerases.  相似文献   

4.
5.
6.
Class III DNA-dependent RNA polymerase (EC 2.7.7.6) was highly purified from cauliflower (Brassica oleracea, var. bortytis) by using polyethyleneimine precipitation. The specific activity of the enzyme was comparable to that reported for mammalian enzymes. Glycerol gradient sedimentation analysis indicated that the sedimantation coefficient (23 S) was slightly higher than that of enzyme II from cauliflower. The class III enzyme was inhibited by alpha-amanitin at high concentrations (50% inhibition at 200 microgram/ml). The Km value for nucleoside triphosphate was determined. Template specificities for single synthetic polymers showed that the enzyme read pyrimidine homopolymers as templates and preferred poly(dT) to poly(dC). The enzyme transcribed both strands of homopolymer pairs of poly(dI). poly(dC) and poly(dA).poly(dT). The synthetic polyribonucleotides were not effectively read. Competition experiments with these synthetic polymers indicated that the enzyme had different binding specificities which were not the same as their template specificities. The different binding affinities and template specificites for synthetic templates of the three classes of enzyme suggest that the enzyme can discriminate among different template sequences.  相似文献   

7.
Characterization of an Epstein-Barr virus-induced DNA polymerase.   总被引:11,自引:6,他引:5       下载免费PDF全文
  相似文献   

8.
DNA polymerase epsilon was purified to near homogeneity from human placenta. The enzyme has one subunit (170 kDa, sedimentation coefficient 8.2S), intrinsic 3'-5'-exonuclease activity, it is independent on PCNA and high processivity on poly(dA)-oligo(dT) template-primer without PCNA. It was shown, that the enzyme incorporates 3'-amino-2',3'-dideoxythymidine 5'-triphosphate in DNA, after that synthesis is stopped. Simultaneously DNA polymerase alpha was purified.  相似文献   

9.
The mitochondrial DNA polymerase has been purified to near-homogeneity from early embryos of Drosophila melanogaster. Sodium dodecyl sulfate gel electrophoresis of the highly purified enzyme reveals two polypeptides with molecular masses of 125,000 and 35,000 daltons, in a ratio of 1:1. The enzyme has a sedimentation coefficient of 7.6 S and a Stokes radius of 51 A. Taken together, the data suggest that the D. melanogaster DNA polymerase gamma is a heterodimer. DNA polymerase activity gel analysis has allowed the assignment of the DNA polymerization function to the large subunit. The DNA polymerase exhibits a remarkable ability to utilize efficiently a variety of template-primers including gapped DNA, poly(rA).oligo(dT) and singly primed phi X174 DNA. Both the crude and the highly purified enzymes are stimulated by KCl, and inhibited by dideoxythymidine triphosphate and by N-ethylmaleimide. Thus, the catalytic properties of the near-homogeneous Drosophila enzyme are consistent with those of DNA polymerase gamma as partially purified from several vertebrates.  相似文献   

10.
Approximately 2,500-fold purifications of DNA polymerase-beta from the nuclear fraction of blastulae of the sea urchin, Hemicentrotus pulcherrimus, was performed. The enzyme preparation, which was devoid of DNase and terminal deoxynucleotidyl transferase as contaminants, showed a sedimentation constant of 3.0 S in a sucrose density gradient, a molecular weight of 50,000 by gel filtration, and an isoelectric point of pH 8.1. The enzyme activity was resistant to sulfhydryl group inhibitors. Its optimal pH was 9.0-9.5 in Tris-maleate buffer and 10.0 in glycine buffer. The optimal NaCl concentration for the activity was 30-60 mM and about half of the activity remained at 0.4 M NaCl. As a template-primer, the enzyme preferred synthetic homopolymers to activated DNA. The order of this preference was as follows; poly (dA)-oligo (dT)12-18 greater than poly (rA)-oligo (dT)12-18 greater than activated DNA. The above results indicate that the enzyme corresponds to DNA polymerase-beta from vertebrate cells.  相似文献   

11.
The heterogeneity of calf thymus DNA polymerase-alpha has been further investigated. In particular, an enzyme (enzyme D) which exhibits higher activity on poly(dA) . (dT)10 (A:T = 20:1) compared with that on activated DNA, has been further purified and its properties compared with two other activities of the DNA polymerase-alpha fraction (enzymes A1 and C) which do not show a preference for poly(dA) . (dT)10 over activated DNA. As with A1 and C, enzyme D was shown to have many of the characteristic properties of DNA polymerase-alpha in that it is an acidic protein as judged by its binding to DEAE-cellulose, has a molecular weight of about 140000, does not use a poly (A) . (dT)10 template-initiator complex and is inhibited by N-ethylmaleimide. It exhibits anomalous gel filtration behaviour on Sepharose 6B and it binds relatively weakly to DNA-cellulose compared with DNA polymerase-beta. The extreme sensitivity of enzyme D to inhibtion by N-ethylmaleimide distinguishes it from A1 and C, as does its elution position from a DEAE-cellulose column. On the other hand enzymes C and D are readily inactivated by heating at 45 degrees C unlike enzyme A1. The possible interrelationships of the multiple activities of calf thymus DNA polymerase-alpha are discussed.  相似文献   

12.
Infection of WI-38 human fibroblasts with varicella-zoster virus led to the stimulation of host cell DNA polymerase synthesis and induction of a new virus-specific DNA polymerase. This virus-induced DNA polymerase was partially purified and separated from host cell enzymes by DEAE-cellulose and phosphocellulose column chromatographies. This virus-induced enzyme could be distinguished from host cell enzyme by its chromatographic behavior, template specificity, and its requirement of salt for maximal activity. The enzyme could efficiently use poly(dC).oligo(dG)12-18 as well as poly(dA).oligo(dT)12-18 as template-primers. It required Mg2+ for maximal polymerization activity and was sensitive to phosphonoacetic acid, to which host alpha- and beta-DNA polymerase were relatively resistant. In addition, this induced DNA polymerase activity was enhanced by adding 60 mM (NH4)2SO4 to the reaction mixture.  相似文献   

13.
The physical and biochemical properties of two pairs of synthetic DNA template-primers were investigated. The copolymer poly(dA-dU) . poly(dA-dU) and the homopolymer duplex poly(dA). poly(dU) were characterized by a lower Tm and by a higher buoyant density value than the respective thymine polynucleotides poly(dA-dT) . poly(dA-dT) and poly(dA) . poly(dT). The polymerizing and the primer terminus adding reactions of a homogenous E. coli DNA polymerase I preparation, as measured by incorporation of [3H]dAMP into the acid-insoluble fraction, were significantly poorer with uracil-containing template-primers than with thymine templates. Moreover, the uracil-containing polynucleotides inhibited the polymerizing activity of DNA polymerase I to a greater extent than the thymine polynucleotides, when the enzymatic activity was investigated with a dATP/dTTP/dUTP-free incorporation system making use of poly(dI-dC) . poly(dI-dC) as the template-primer.  相似文献   

14.
The activity of a 7.3S-8.3S Drosophila DNA polymerase was characterized in detail using poly dA.p(dT)[unk] and poly rA.p(dT)[unk]. With poly dA.p(dT)[unk], Mg(2+) ion was the preferred divalent cation, and enzyme activity was inhibited by K(+) ion and by spermidine. With poly rA.p(dT)[unk], Mn(2+) ion was the preferred divalent cation and enzyme activity was stimulated by K(+) ion and by spermidine. The dependence of enzyme activity on the concentration of primer-template and on the ratio of primer to template was the same in both reactions. The two enzyme activities were identically inhibited by N-ethylmaleimide. Poly dA was replicated extensively and poly rA was replicated partially. The activation energy for poly dA replication was twice that for poly rA replication. Enzyme activity with poly dA.p(dT)[unk] was more stable to thermal inactivation than was enzyme activity with poly rA.p(dT)[unk]. These studies suggest that the same enzyme responds to both the deoxy- and the ribohomopolymer template but that the mechanisms of replication may be different.  相似文献   

15.
The activity of DNA polymerases and thymidine kinase was compared in the MC-29 leukosis virus-induced transplantable hepatoma and in the livers of rats treated with cyclophosphamide (CP), cytosine-arabinoside (ara-C) and 5-fluoro-uracil (5-FU). The specific activity of DNA polymerase was twenty times greater in the MC-29 leukosis virus-induced hepatoma, while thymidine kinase was only 3–5 times greater than in the liver.All three enzymes showed Michaelis-Menten kinetics in their substrate and template saturation curves. The template utilization of DNA polymerases from hepatoma and from liver was compared. Both had higher activities on a poly(dA) · poly(dT) template at pH 8.0, than on DNA at pH 7.5. After chromatography on a phosphocellulose column two polymerases were separated. The first peak eluted by 0.15 M KCl preferred DNA as template (polymerase α). The second eluted by 0.5 M KCl worked better on poly(dA) · poly(dT) (polymerase β). Thymidine kinase was eluted by 0.25 M KCl. Inhibition by N-ethylmaleimide (NEM) showed the polymerase α to be sensitive and the polymerase β to be resistant to the sulfhydryl blocking agent; similar to the respective enzymes of other eukaryotic cells. The specific acitivity of DNA polymerase decreased after CP treatment at 6 h and 72 h and after ara-C treatment at 72 h. The specific activities of thymidine kinase were not changed significantly in response to the drug administrations.  相似文献   

16.
17.
18.
DNA polymerase from BHK-21/C13 cells were separated into two species, DNA polymerase I corresponding to the heterogeneous enzyme with sedimentation coefficient of 6-8S, and DNA polymerase II, corresponding to the enzyme with sedimentation coefficient of 3.3S. DNA polymerase I was purified 114-fold and DNA polymerase II 154-fold by a simple extraction procedure followed by column chromatography on phosphocellulose and gel filtration through Sephadex G-100. The purified enzymes differed markedly in respect of pH optimum, stimulation and inhibition by K+, Km for the deoxyribonucleoside 5'-triphosphates, stability to heating at 45 degrees C, and inhibition by N-ethylmaleimide. The preferred primer-template for both enzymes was "activated" DNA (DNA submitted to limited degradation by pancreatic deoxyribonuclease); native or thermally denatured DNA templates were relatively very poorly copied. When certain synthetic templates were tested, substantial differences were revealed between the two enzymes. Poly[d(A-T)] was poorly used by polymerase I but was superior to "activated" DNA for polymerase II. Poly[d(A)]-oligo[d(pT)10] was used efficiently by polymerase I but not by polymerase II. Poly(A)-oligo[d(pT)10] was not an effective primer-template although polymerase I could use it to a limited extent when Mn2+ replaced Mg2+ in the polymerase reaction and when the temperature of incubation was lowered from 37 degrees to 30 degrees C. When only one or two or three triphosphates were supplied in the reaction mixture, the activity of polymerase I was more severly diminished than that of polymerase II.  相似文献   

19.
For the specific purification of eukaryotic DNA-dependent DNA polymerase alpha, we prepared two novel affinity resins bearing 5-(E)-(4-aminostyryl) araUTP as a ligand. One of them was araUTP-Sepharose 4B which was coupled directly with the ligand and the other was araUTP-Affi-Gel 10 which was coupled with the ligand through a spacer. No DNA polymerase alpha-primase activity from cherry salmon (Oncorhynchus masou) testes was bound on the araUTP-Sepharose 4B in all cases examined. On the other hand, the araUTP-Affi-Gel 10 retains this enzyme activity when poly(dA) or poly(dA)-oligo(dT)12-18 is present. The retained enzyme activity was sharply eluted around 100-mM KCl concentrations as a single peak, and this fraction showed a specific activity of about 170,000 units/mg as alpha-polymerase activity. The highly purified DNA polymerase alpha-primase isolated using the araUTP-Affi-Gel 10 contained only three polypeptides, which showed Mr values of 120,000, 62,000, and 58,000, respectively, as judged using sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

20.
Z F Wang  J Yang  Z Q Nie  M Wu 《Biochemistry》1991,30(4):1127-1131
A crude in vitro system which initiates chloroplast DNA synthesis near the D-loop site mapped by electron microscopy [Wu, M., Lou, J. K., Chang, D. Y., Chang, C. H., & Nie, Z. Q. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 6761-6765] consists of soluble proteins and proteins extracted from purified thylakoid membrane. In this paper, a DNA polymerase activity was purified to near homogeneity from the soluble protein fraction of this in vitro system by sequential chromatographic separations on heparin-agarose, DEAE-cellulose, and single-stranded DNA-agarose columns and sedimentation in a glycerol gradient. In the glycerol gradient, the enzyme activity sedimented at a position corresponding to a 110-kDa protein. Electrophoretic analysis of the highly purified fraction on SDS-polyacrylamide gel revealed a major polypeptide band with an apparent molecular mass of approximately 116 kDa. In situ DNA polymerase activity assay shows that the DNA polymerization function is associated with the 116-kDa band and an 80-kDa band which could be a subunit of the enzyme. Polymerization activity is inhibited by N-ethylmaleimide, ethidium bromide, and dideoxycytosine triphosphate and is relatively resistant to aphidicolin. Poly(dA).(dT)10 and gapped double-stranded DNA are preferred templates. The purified enzyme contains no exonuclease activity and can initiate DNA replication in a supercoiled plasmid DNA template containing the chloroplast DNA replication origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号