首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that very low density lipoproteins (VLDL) from patients with Tangier disease are less effective as a substrate for human milk lipoprotein lipase (LPL) than VLDL from normal controls as assessed by measuring the first order rate constant (k1) of triglyceride hydrolysis. Tangier VLDL also has a higher content of apolipoprotein (apo) A-II than normal VLDL. To explore the possible relationship between the relatively high concentration of apoA-II in VLDL and low k1 values, Tangier VLDL were fractionated on an anti-apoA-II immunosorber. The retained fraction contained a newly identified triglyceride-rich lipoprotein characterized by the presence of apolipoproteins A-II, B, C-I, C-II, C-III, D, and E (LP-A-II:B:C:D:E or LP-A-II:B complex), whereas the unretained fraction consisted of previously identified triglyceride-rich apoB-containing lipoproteins free of apoA-II. In VLDL from patients with Tangier disease or type V hyperlipoproteinemia, the LP-A-II:B complex accounted for 70-90% and 25-70% of the total apoB content, respectively. The LP-A-II:B complexes had similar lipid and apolipoprotein composition; they were poor substrates for LPL as indicated by their low k1 values (0.014-0.016 min-1). In contrast, the apoA-II-free lipoproteins present in unretained fractions were effective substrates for LPL with k1 values equal to or greater than 0.0313 min-1. These results indicate that triglyceride-rich lipoproteins consist of several apoB-containing lipoproteins, including the LP-A-II:B complex, and that lipoprotein particles of similar size and density but distinct apolipoprotein composition also possess distinct metabolic properties.  相似文献   

2.
Hydrolysis by endothelial lipases of triacylglycerol-rich lipoproteins of diabetic origin were compared to lipoproteins of non-diabetic origin. The plasma lipoprotein fraction of density < 1.006 g/ml, including chylomicrons and VLDL, were incubated in vitro with post-heparin plasma (PHP) lipases. The lipoproteins of diabetic origin were hydrolysed at a significantly slower rate than lipoproteins from normal rats by the lipoprotein lipase component of PHP. However, if rats were fasted for 16 h prior to lipoprotein recovery, no differences in rates of VLDL hydrolysis were observed. Slower hydrolysis of lipoproteins of diabetic origin reflected a decrease in the apolipoprotein CII/CIII ratio and other changes in the apolipoprotein profile. To assess whether diabetic rats were less able to clear triacylglycerol independent of changes in the nature of the lipoproteins, we monitored the clearance of chylomicron-like lipid emulsions in hepatectomized rats. In vivo, emulsion triacylglycerol hydrolysis was not slowed due to diabetes. However, control and diabetic rats, which had been fasted for 16 h, cleared triacylglycerol at about twice the rate of fed rats. Triacylglycerol secretion rates in diabetic and control rats were similar, whether fed or fasted. We conclude that in streptozocin diabetic rats, hypertriglyceridemia was not due to overproduction of chylomicron- or VLDL-triacylglycerol, nor to decreased endothelial lipase activities. Rather, in fed diabetic rats, the triacylglycerol-rich lipoproteins are poorer substrates for lipoprotein lipase. This may lead to slower formation of remnants which would exacerbate slow remnant removal. VLDL of diabetic origin were hydrolysed as efficiently as VLDL from control donors, suggesting that in the fed state the lipolytic defect may be specific for chylomicrons.  相似文献   

3.
In order to explore the in vivo function of hepatic lipase, rats were injected with goat anti-rat hepatic lipase serum which produced a complete and specific inhibition of heparin-releasable hepatic lipase. In the fasting rats, protein, phospholipid and free cholesterol expressed as either mass or percent weight increased significantly in low-density lipoprotein (LDL) and high-density lipoprotein 2 (HDL-2) fractions. These three constituents were not affected in the VLDL and HDL-3 lipoproteins. In the fat-loaded (1 ml corn oil) rat, 6 h post inhibition of hepatic lipase triacylglycerol, phospholipid and free cholesterol concentrations in the d less than 1.006 fraction were 2.5-fold higher in the inhibited animals than in the control rats. The composition of the d less than 1.006 fraction was also affected. Expressed as percent mass, protein was lower (5.2 +/- 1.2 vs. 10.3 +/- 1.5, P less than 0.001) as was cholesteryl ester (1.7 +/- 0.7 vs. 2.6 +/- 0.4, P less than 0.01); triacylglycerol was elevated (77.2 +/- 4.0 vs. 72.6 +/- 2.4, P less than 0.025), as was free cholesterol (3.0 +/- 0.6 vs. 2.4 +/- 0.2, P less than 0.025). Overall, inhibition lowered the ratio of surface-to-core constituents suggesting a larger mean particle diameter. SDS-polyacrylamide gel electrophoresis showed the intermediate- and low-density lipoprotein from treated rats to be significantly enriched in apolipoprotein B-48. In the LDL fraction, apolipoprotein B-48 accounted for 62 +/- 14% of the total apolipoprotein B in the inhibited rats, vs. 12 +/- 2% in the control rats. The above results support the previously described in vivo function of hepatic lipase as a phospholipase. In addition, the results demonstrate a role of hepatic lipase in the catabolism of chylomicrons. Since removal of apolipoprotein B-48-containing lipoproteins is dependent upon apolipoprotein E, their appearance in the LDL fraction implies a masking of apolipoprotein E-binding determinants.  相似文献   

4.
We have studied the cholesteryl ester transfer between HDL and VLDL in cyclophosphamide-treated rabbits, in order to explain the abnormal cholesteryl ester partition between these two lipoprotein classes. The hypertriglyceridemia caused by treatment with the drug was associated with cholesteryl ester- and triacylglycerol-rich VLDL and with HDL poor in esterified cholesterol but relatively enriched in triacylglycerol. These two lipoprotein classes were characterized by their chemical composition and by gel filtration chromatography. VLDL particles were slightly larger in size, compared with controls. Different transfer combinations were envisaged between these abnormal lipoproteins and control ones. The transfer study involved the plasma fraction of d greater than 1.21 g/ml containing the cholesteryl ester transfer protein (CETP). It appeared that the chemical composition of lipoproteins was responsible for the level of cholesteryl ester transfer between lipoproteins. Actually, when the cholesteryl ester acceptor lipoproteins (VLDL) were enriched in triacylglycerol, the transfer was enhanced. Therefore, the effect of lipolysis on the transfer has also been explored. Lipoprotein lipase seemed to enhance the transfer of cholesteryl ester from HDL to VLDL when these lipoproteins were normal, but an important decline was obtained when triacylglycerol-rich VLDL were lipolyzed. This study defines the relationship between lipoprotein chemical composition and transfer activity of cholesteryl ester from HDL to VLDL.  相似文献   

5.
Very low-density lipoprotein (VLDL) is the main plasma carrier of triacylglycerol that is elevated in pathological conditions such as diabetes, metabolic syndrome, obesity and dyslipidemia. How variations in triacylglycerol levels influence structural stability and remodeling of VLDL and its metabolic product, low-density lipoproteins (LDL), is unknown. We applied a biochemical and biophysical approach using lipoprotein remodeling by lipoprotein lipase and cholesterol ester transfer protein, along with thermal denaturation that mimics key aspects of lipoprotein remodeling in vivo. The results revealed that increasing the triacylglycerol content in VLDL promotes changes in the lipoprotein size and release of the exchangeable apolipoproteins. Similarly, increased triacylglycerol content in LDL promotes lipoprotein remodeling and fusion. These effects were observed in single-donor lipoproteins from healthy subjects enriched in exogenous triolein, in single-donor lipoproteins from healthy subjects with naturally occurring differences in endogenous triacylglycerol, and in LDL and VLDL from pooled plasma of diabetic and normolipidemic patients. Consequently, triacylglycerol-induced destabilization is a general property of plasma lipoproteins. This destabilization reflects a direct effect of triacylglycerol on lipoproteins. Moreover, we show that TG can act indirectly by increasing lipoprotein susceptibility to oxidation and lipolysis and thereby promoting the generation of free fatty acids that augment fusion. These in vitro findings are relevant to lipoprotein remodeling and fusion in vivo. In fact, fusion of LDL and VLDL enhances their retention in the arterial wall and, according to the response-to-retention hypothesis, triggers atherosclerosis. Therefore, enhanced fusion of triacylglycerol-rich lipoproteins suggests a new causative link between elevated plasma triacylglycerol and atherosclerosis.  相似文献   

6.
In cynomolgus monkeys (Macaca fascicularis) fed an atherogenic diet, large, cholesterol ester-rich LDL (Mr greater than 3.5.10(6] are found at the same time that the plasma triacylglycerol levels are low. We studied whether the presence of higher concentrations of triacylglycerol-rich lipoproteins (VLDL) during in vitro incubations would allows depletion from LDL of cholesterol ester and a decreased LDL molecular weight. Three high Mr LDL (Mr = (3.7-4.8).10(6)), rich in cholesterol ester (50 +/- 1.4% by weight), were isolated from three animals by zonal ultracentrifugation, and were then incubated with human VLDL at 37 degrees C for 18 h in lipoprotein-deficient human plasma containing neutral lipid transfer activity. After incubation, modified LDL (M-LDL) was isolated by zonal ultracentrifugation. M-LDL was triacylglycerol-rich (36 +/- 5% by weight) and cholesterol ester-poor (20 +/- 3%), and cholesterol ester had transferred into VLDL. Purified lipoprotein lipase was added to the M-LDL, and triacylglycerol was hydrolyzed. The size of the post-lipolysis M-LDL (Mp-LDL) particles became smaller (mean diameters of 253 A and 228 A for two native LDLs and 215 A and 193 A for Mp-LDL, respectively). Both analytical and zonal ultracentrifugation showed Mp-LDL to be more dense than native LDL. Estimated molecular weights for Mp-LDL were 40%-50% less than that of the original LDL, and fell within the molecular weight range for normal human and monkey LDL. Lipid exchanges, but not apoprotein transfers, were responsible for LDL remodelling, as supported by three separate methods of analysis. Cholesterol ester losses accounted for about two-thirds of the molecular weight decrease. These in vitro results suggest that cholesterol ester enrichment of apoprotein B lipoprotein particles can be reversed by providing adequate levels of VLDL in the presence of neutral lipid transfer processes and lipolytic activity.  相似文献   

7.
To determine whether an apolipoprotein-free artificial triacylglycerol emulsion can substitute for VLDL in studying cholesterol ester-triacylglycerol exchange processes between triacylglycerol-rich lipoproteins and cholesterol ester-rich lipoproteins, we used Intralipid to modify human plasma LDL. Intralipid was incubated with LDL in the presence of lipoprotein-poor plasma (d greater than 1.21 g/ml) at 37 degrees C. Intralipid served as an acceptor for cholesterol ester and as a donor of triacylglycerol, modifying the low-density lipoproteins so that triacylglycerol became the major core lipid in the particle - the contribution of cholesterol ester to LDL mass decreased from 38% to 18%, while that of triacylglycerol increased from 4.9% to 26%. On lipolysis most added LDL triacylglycerol (59-72%) was hydrolyzed, resulting in a smaller particle than the "native' LDL particle with net loss of cholesterol ester. Incubation of LDL with the original Intralipid emulsion resulted in modified LDL with a high relative weight of phospholipid (27.7%). On removal of excess phospholipid from Intralipid and incubation of the resultant "washed' Intralipid with LDL, the relative weight of phospholipid in modified LDL decreased to 20%, which was similar to that observed after incubation of LDL with VLDL. We demonstrate that artificial triacylglycerol emulsion can indeed substitute for VLDL in neutral lipid exchange processes, and further confirm that transfer of core cholesterol ester and triacylglycerol occurs independently of the apolipoproteins present in triacylglycerol-rich lipoproteins and LDL.  相似文献   

8.
The capacity of human plasma triacylglycerol-rich lipoproteins to be metabolized by rat macrophages was studied with plasma triacylglycerol-rich lipoproteins obtained from subjects with fasting chylomicronemia or from normal subjects after a fat meal. Triacylglycerol-rich lipoproteins were separated by chromatography into two fractions designated TRL1 and TRL2; from their composition and changing concentration during alimentary lipemia, TRL1 contained a higher proportion of chylomicron remnants than TRL2. Degradation of 125I-labeled TRL1 was greater than that of 125I-labeled TRL2. In competition studies with 125I-labeled beta-VLDL from cholesterol-fed rabbits, unlabeled TRL1 displaced beta-VLDL as completely as did unlabeled beta-VLDL, being slightly more potent than TRL2, which contained less apolipoprotein E than TRL1. This reflected common interaction at receptors that probably included both beta-VLDL and B/E receptors, since: (1) in fresh macrophages, VLDL from hypertriglyceridemic subjects partially displaced beta-VLDL; (2) in B/E receptor-repressed macrophages, TRL1 maintained capacity to totally displace beta-VLDL. This was confirmed in experiments with J774 murine macrophages in which triacylglycerol-rich lipoproteins and beta-VLDL displaced each other equally, whereas LDL was ineffective in displacing beta-VLDL. Furthermore, monoclonal antibodies raised against apolipoprotein B48 and reacting strongly with LDL, failed to inhibit the binding of triacylglycerol-rich lipoprotein to the macrophages. This indicates an interaction through apolipoprotein E which is present in high concentration in triacylglycerol-rich lipoprotein as well as in beta-VLDL. It applies to triacylglycerol-rich particles derived from either the intestine (chylomicron remnants) or the liver (VLDL remnants from hypertriglyceridemic subjects).  相似文献   

9.
The catabolism of human and rat 125I-labelled very low density lipoproteins (VLDL) was compared by perfusing the lipoproteins through beating rat hearts. Triacylglycerol was removed from the VLDL to a greater extent than the protein moiety, leaving remnants containing relatively more apo-B and less apo-C. The change in apo-C content of the remnants correlated with the loss of triacylglycerol. The extent of removal of triacylglycerol from the rat and human VLDL was similar and in most cases appeared to saturate the heart lipoprotein lipase. The remnants were slightly smaller in size than the VLDL, and included particles which appeared to be partially emptied. In addition to remnants of d less than 1.019 g/ml, iodinated lipoproteins derived from rat and human VLDL were recovered at d 1.019-1.063 and 1.063-1.21 g/ml. The former contained largely cholesterol and cholesteryl esters, while phospholipids were the dominant lipid in the latter. An average of 40% of the 125I-labelled apoprotein lost from the VLDL was associated with the perfused hearts. Very little d 1.019-1.063 g/ml lipoprotein was produced from low (physiological) concentrations of rat VLDL, most of the lipoprotein being removed by the heart. However, lipoproteins of density 1.019-1.063 g/ml were formed from human VLDL at all concentrations in the perfusate, as well as from higher concentrations of the rat VLDL. Agarose gel filtration of lipoproteins following heart perfusion with human VLDL revealed large aggregates containing particles which resemble low density lipoproteins (LDL) in electron microscopic appearance and apoprotein composition, since they contain largely apo-B. These data suggest that at normal concentrations rat VLDL are almost completely catabolised and taken up by the heart without the formation of LDL, while LDL is produced from human VLDL at all concentrations.  相似文献   

10.
The rabbit as an animal model of hepatic lipase deficiency   总被引:3,自引:0,他引:3  
A natural deficiency of hepatic lipase in rabbits has been exploited to gain insights into the physiological role of this enzyme in the metabolism of plasma lipoproteins. A comparison of human and rabbit lipoproteins revealed obvious species differences in both low-density lipoproteins (LDL) and high-density lipoproteins (HDL), with the rabbit lipoproteins being relatively enlarged, enriched in triacylglycerol and depleted of cholesteryl ester. To test whether these differences related to the low level of hepatic lipase in rabbits, whole plasma or the total lipoprotein fraction from rabbits was either kept at 4 degrees C or incubated at 37 degrees C for 7 h in (i) the absence of lipase, (ii) the presence of hepatic lipase and (iii) the presence of lipoprotein lipase. Following incubation, the lipoproteins were recovered and subjected to gel permeation chromatography to determine the distribution of lipoprotein components across the entire lipoprotein spectrum. An aliquot of the lipoproteins was subjected also to gradient gel electrophoresis to determine the particle size distribution of the LDL and HDL. Both hepatic lipase and lipoprotein lipase hydrolysed lipoprotein triacylglycerol and to a much lesser extent, also phospholipid. There were, however, obvious differences between the enzymes in terms of substrate specificity. In incubations containing hepatic lipase, there was a preferential hydrolysis of HDL triacylglycerol and a lesser hydrolysis of VLDL triacylglycerol. By contrast, lipoprotein lipase acted primarily on VLDL triacylglycerol. When more enzyme was added, both lipases also acted on LDL triacylglycerol, but in no experiment did lipoprotein lipase hydrolyse the triacylglycerol in HDL. Coincident with the hepatic lipase-induced hydrolysis of LDL and HDL triacylglycerol, there were marked reductions in the particle size of both lipoprotein fractions, which were now comparable to those of human LDL and HDL3, respectively.  相似文献   

11.
Plasma lipoprotein concentration, composition, and size were evaluated in two common familial forms of hypertriglyceridemia and compared with those in normal subjects. The very low density lipoproteins (VLDL) were triglyceride-enriched in familial hypertriglyceridemia (triglyceride/apoprotein B ratio: 25.7 +/- 8.9) as compared to normal (9.6 +/- 12.2, P < 0.001) or familial combined hyperlipidemia (9.7 +/- 3.3, P < 0.001). The diameter of VLDL was larger in familial hypertriglyceridemia (3.27 +/- 0.28 pm) than in familial combined hyperlipidemia (2.87 +/- 0.16 pm, P < 0.02). Although in familial hypertriglyceridemia VLDL tended to be larger, and in familial combined hyperlipidemia VLDL tended to be smaller than normal (3.08 +/- 0.48 pm), neither of these differences were significant. While VLDL was normally distributed in the control population, the size was skewed to larger particles in familial hypertriglyceridemia with fewer small particles (P < 0.05) and skewed to smaller particles in familial combined hyperlipidemia with fewer large particles (P < 0.05). VLDL was reciprocally related to low density lipoproteins (LDL) in familial combined hyperlipidemia (r = -0.80 to -0.87) suggesting that the concentrations of these individual lipoprotein groups were somehow interrelated. There was no significant relationship between these two lipoprotein classes in familial hypertriglyceridemia or in normals. In familial combined hyperlipidemia, the apoprotein A-I/A-II ratio was below normal (P < 0.01) suggestive of low HDL(2) levels. This change in apoprotein composition was independent of VLDL or LDL concentration. In familial hypertriglyceridemia, high density lipoprotein (HDL) cholesterol was reduced (33% below mean normal) and HDL triglyceride was increased (by 46%), while the concentration of apoA-I and apoA-II was normal. VLDL triglyceride was inversely related to HDL cholesterol in familial hypertriglyceridemia (r = -0.74, P < 0.005), but not in familial combined hyperlipidemia. The large, triglyceride-enriched VLDL observed in familial hypertriglyceridemia is compatible with the reported increase in VLDL triglyceride synthesis seen in this disorder. The increase in VLDL apoprotein B synthesis previously reported in familial combined hyperlipidemia was associated with VLDL of normal composition. The changes in HDL cholesterol in these two disorders might reflect exchange of triglyceride between VLDL and HDL or could be related to transfer of surface components during the catabolism of VLDL. The reciprocal relationship between various components of VLDL and LDL seen in familial combined hyperlipidemia, but not in familial hypertriglyceridemia or in normal subjects, might provide some insight into the pathological abnormalities in these disorders. The differences between these two common familial forms of hypertriglyceridemia provide further support that they are distinct entities.-Brunzell, J. D., J. J. Albers, A. Chait, S. M. Grundy, E. Groszek, and G. B. McDonald. Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia.  相似文献   

12.
With the advent of nocturnal intragastric feeding which protects against acute metabolic complications and promotes growth, patients with glycogen storage disease type I are attracting less attention. However, several biochemical alterations persist and suggest that the long-term risk of atherosclerotic heart disease remains high. Persisting hypertriglyceridemia and hypercholesterolemia were found in seven glycogen storage disease type I subjects, six of them following 5-6 yr of nocturnal intragastric feeding. When compared to ten age-matched controls, the patients showed significantly (P less than 0.001) higher low density lipoprotein cholesterol (LDL-C) (247.7 +/- 46.8 vs. 115.3 +/- 5.0 mg/dl) and lower high density lipoprotein cholesterol (HDL-C) (26.4 +/- 3.4 vs. 55.8 +/- 2.9 mg/dl). Triglyceride (TG) enrichment with cholesteryl ester depletion characterized the lipoprotein classes. The diameters of very low density lipoproteins (VLDL) and LDL were larger, while that of HDL was smaller and consistent with the predominance of the HDL3 subclass and a lower apoA-I/apoA-II ratio. The raised levels of TG appeared attributable not only to the well-described lipogenesis, but also to impaired catabolism of fat, as evidenced by the significantly (P less than 0.001) decreased activity of both peripheral lipoprotein lipase (3.17 +/- 0.43 vs. 14.15 +/- 0.50 mumol FFA.ml-1.hr-1) and hepatic lipase (1.88 +/- 0.30 vs. 4.83 +/- 0.90). This may well explain the high concentration of intermediate density lipoprotein (IDL) and the impaired conversion of HDL3 to HDL2. Low apoC-II/apoC-III1 could be related to defective lipoprotein lipase activity. These data suggest that glycogen storage disease type I patients on nocturnal intragastric feeding remain at risk for atherosclerosis and its complications.  相似文献   

13.
The fate and mechanism of removal of apolipoproteins and lipids of human very-low-density lipoproteins were determined in the perfused rat heart. Approx. 50% of the VLDL triacylglycerol was hydrolyzed during a 2 h perfusion. Phospholipid phosphorus, apolipoproteins C-II, C-III and E were quantitatively recovered in the medium. However, there was a loss of unesterified (17 +/- 6%) and esterified (19 +/- 8%) cholesterol from the perfusion medium. Apolipoprotein B was retained by the heart, as determined by the loss of immunoassayable apolipoprotein B (30 +/- 5%) or the uptake of 125I-labelled apolipoprotein of VLDL (9 +/- 2%) from the perfusion medium. The discrepancy in the two methods for estimating apolipoprotein removal was shown to be due to the modification of apolipoprotein B-containing lipoproteins, which was such that they were no longer precipitated with antibodies to apolipoprotein B. The labelled apolipoprotein B, retained by the heart, could be partially released by perfusion of the heart with buffer containing heparin (14 +/- 2%) or trypsin (50 +/- 2%). Labelled apolipoprotein uptake by the heart was reduced by 90% when lipoprotein lipase was first released by heparin or when VLDL was treated with 1,2-cyclohexanedione to modify arginine residues of apolipoproteins. Very little extensive degradation of the apoprotein to low molecular weight material occurred during the 2 h perfusion, since 95% of the tissue label was precipitated by trichloroacetic acid. It is concluded that there is retention of apolipoprotein B, cholesteryl ester and cholesterol by the perfused heart during catabolism of VLDL. The data are consistent with the concept that the retention of apolipoprotein B requires membrane-bound lipoprotein lipase or an interaction with the cell surfaces that is modified by heparin. The overall process also involves arginine residues of apolipoproteins. At least 50% of the labelled apolipoprotein retained in the tissue is associated with lipoprotein lipase and other cell surface sites, while the remainder may be taken up by the cells.  相似文献   

14.
Plasma lipoproteins from 5-week old male chickens were separated over the density range 1.006-1.172 g/ml into 22 subfractions by isopycnic density gradient ultracentrifugation, in order to establish the distribution of these particles and their constituent apolipoproteins as a function of density. Lipoprotein subfractions were characterized by electrophorectic, chemical and morphological analyses, and their protein moieties were defined according to net charge at alkaline pH, molecular weight and isoelectric point. These analyses have permitted us to reevaluate the density limits of the major chicken lipoprotein classes and to determine their main characteristics, which are as follows: (1) very-low-density lipoproteins (VLDL), isolated at d less than 1.016 g/ml, were present at low concentrations (less than 0.1 mg/ml) in fasted birds; their mean diameter determined by gradient gel electrophoresis and by electron microscopy was 20.5 and 31.4 nm respectively; (2) as the the density increased from VLDL to intermediate density lipoproteins (IDL), d 1.016-l.020 g/ml) and low-density lipoproteins (LDL, d 1.020-1.046 g/ml), the lipoprotein particles contained progressively less triacylglycerol and more protein, and their Stokes diameter decreased to 20.0 nm; (3) apolipoprotein B-100 was the major apolipoprotein in lipoproteins of d less than 1.046 g/ml, with an Mr of 350000; small amounts of apolipoprotein B-100 were detectable in HDL subfractions of d less than 1.076 g/ml; urea-soluble apolipoproteins were present in this density range as minor components of Mr 38000-39000, 27000-28000 (corresponding to apolipoprotein A-1) and Mr 11000-12000; (4) high density lipoprotein (HDL, d 1.052-1.130 g/ml) was isolated as a single band, whose protein content increased progressively with increase in density; the chemical composition of HDL resembled that of human HDL2, with apolipoprotein A-1 (M 27000-28000) as the major protein component, and a protein of Mr 11000-12000 as a minor component; (5) heterogeneity was observed in the particle size and apolipoprotein distribution of HDL subfractions: two lipoprotein bands which additional apolipoproteins of Mr 13000 and 15000 were detected. These studies illustrate the inadequacy in the chicken of the density limits applied to fractionate the lipoprotein spectrum, and particularly the inappropriateness of the 1.063 g/ml density limit as the cutoff for LDL and HDL particle populations in the species.  相似文献   

15.
1. The metabolism of apolipoprotein B (apoB) was investigated in pigs injected with [125I]very low density lipoproteins (VLDL) to determine to which extent the two distinct low density lipoprotein subclasses (LDL1 and LDL2) derive from VLDL. 2. The lipoproteins were isolated by density gradient ultracentrifugation and the transfer of radioactivity from VLDL into LDL1 and LDL2 apoB was measured. 3. Only a minor portion of VLDL apoB was converted to LDL1 (7.7 +/- 3.2%) and LDL2 (3.6 +/- 1.5%), respectively. Thus, we conclude that the major portion of LDL, especially LDL2, is synthesized independently from VLDL catabolism.  相似文献   

16.
The etiology of the hypertriglyceridemia in alloxan-diabetic rabbits was studied by two independent methods. Production and removal rates of VLDL triacylglycerol were measured in diabetic rabbits by injection of [3H]palmitate-labelled VLDL. Similarly, triacylglycerol total removal rates were determined in non-diabetic rabbits which were infused with Intralipid to mimic the plasma triacylglycerol concentrations of diabetic rabbits. Compared to nondiabetic rabbits, triacylglycerol removal rats were decreased in diabetic rabbits, particularly at higher levels of plasma triacylglycerol. During cholesterol and triacylglycerol supplementation of the diet, post-heparin plasma lipoprotein lipase activity of diabetic rabbits with severe hypertriglyceridemia averaged 36% of that of nondiabetics, suggesting an impaired triacylglycerol removal capacity. Furthermore, plasma triacylglycerol was inversely related to post-heparin plasma lipoprotein lipase activity among diabetic rabbits. VLDL triacylglycerol production increased with increasing plasma triacylglycerol concentration among diabetic cholesterol-fed rabbits with moderately severe hypertriglyceridemia, but reached an apparent plateau among rabbits with plasma triacylglycerol concentrations from approx. 2000-9000 mg/dl. Thus, severe hypertriglyceridemia in this model of insulin deficiency can be attributed only partially to VLDL hypersecretion, whereas a removal defect, resulting in saturation of the triacylglycerol removal mechanism, appears to be largely responsible. The impaired removal of plasma triacylglycerol is also related to the presence of cholesterol predominantly in lipoproteins of increased size. The data support the hypothesis that protection against atherosclerosis in cholesterol-fed diabetic rabbits results from exclusion of very large cholesterol-containing lipoproteins from the arterial wall.  相似文献   

17.
Suckling rat plasma contains (in mg/dl): chylomicrons (85 +/- 12); VLDL (50 +/- 6); LDL (200 +/- 23); HDL1 (125 +/- 20); and HDL2 (220 +/- 10), while lymph contains (in mg/dl): chylomicrons (9650 +/- 850) and VLDL (4570 +/- 435) and smaller amounts of LDL and HDL. The lipid composition of plasma and lymph lipoproteins are similar to those reported for adults, except that LDL and HDL1 have a somewhat higher lipid content. The apoprotein compositions of plasma lipoproteins are similar to those of adult lipoproteins except for the LDL fraction, which contains appreciable quantities of apoproteins other than apoB. Although the LDL fraction was homogeneous by analytical ultracentrifugation and electrophoresis, the apoprotein composition suggests the presence of another class of lipoproteins, perhaps a lipid-rich HDL1. The lipoproteins of lymph showed low levels of apoproteins E and C. The triacylglycerols in chylomicrons and VLDL of both lymph and plasma are rich in medium-chain-length fatty acids, whereas those in LDL and HDL have little or none. Phospholipids in all lipoproteins lack medium-chain-length fatty acids. The cholesteryl esters of the high density lipoproteins are enriched in arachidonic acid, whereas those in chylomicrons, VLDL, and LDL are enriched in linoleic acid, suggesting little or no exchange of cholesteryl esters between these classes of lipoproteins. The fatty acid composition of phosphatidylcholine, sphingomyelin, and lysophosphatidylcholine were relatively constant in all lipoprotein fractions, suggesting ready exchange of these phospholipids. However, the fatty acid composition of phosphatidylethanolamine in plasma chylomicrons and VLDL differed from that in plasma LDL, HDL1, and HDL2. LDL, HDL1, and HDL2 were characterized by analytical ultracentrifugation and shown to have properties similar to that reported for adult lipoproteins. The much higher concentration of triacylglycerol-rich lipoproteins in lymph, compared to plasma, suggests rapid clearance of these lipoproteins from the circulation.  相似文献   

18.
A monoclonal antibody to apolipoprotein (apo) B-100 (JI-H) with unique binding properties has been used to separate a population of triglyceride-rich lipoproteins from blood plasma of normotriglyceridemic individuals and patients with various forms of hypertriglyceridemia. This antibody fails to recognize an apoE-rich population of very low density lipoproteins (VLDL) containing apoB-100 as well as all triglyceride-rich lipoproteins containing apoB-48, but it binds other VLDL that contain apoE and almost all lipoproteins that contain apoB-100, but no apoE. The unbound triglyceride-rich lipoproteins separated by ultracentrifugation after separation from plasma by immunoaffinity chromatography contained 10-13% of the apoB of triglyceride-rich lipoproteins from three normotriglyceridemic individuals, 10-29% of that from five patients with endogenous hypertriglyceridemia, 40-48% of that from three patients with familial dysbetablipoproteinemia, and 65% of that from a patient with lipoprotein lipase deficiency. In all cases, the unbound triglyceride-rich lipoproteins contained more molecules of apoE and cholesteryl esters per particle than those that were bound to monoclonal antibody JI-H, and they were generally depleted of C apolipoproteins. These properties resemble those described for partially catabolized remnants of chylomicrons and VLDL. The affinity of the unbound lipoproteins for the low density lipoprotein (LDL) receptor varied widely, and closely resembled that of the total triglyceride-rich lipoproteins from individual subjects. Our results demonstrate that remnant-like chylomicrons and a population of remnant-like VLDL can be isolated and quantified in blood plasma obtained in the postabsorptive state from normotriglyceridemic and hypertriglyceridemic individuals alike.  相似文献   

19.
Lipoprotein lipase activity was studied in rat heart cell cultures grown in the presence of 20% fetal calf and horse serum and a medium concentration of triacylglycerol of 0.03 mg/ml. After 6--8 days, when the enzyme activity had reached high levels, the cells were incubated for 24 h in a medium containing 20% serum derived from fasted or fed rats. No change in enzyme activity occurred in the presence of fasted rat serum, but a 50% fall was observed with fed rat serium. When the complete culture medium was supplemented with rat plasma VLDL (0.075--0.75 mg triacylglycerol) a pronounced decrease in lipoprotein lipase activity occurred after 3--5 h of incubation. Similar extent of enzyme fall was observed also in the presence of triacylglycerol-rich lipoproteins isolated from rat plasma after feeding of safflower oil or lard, even though the fatty acid composition of the triacylgylcerol varied markedly. As the addition of VLDL to the culture medium resulted in a lesser fall of heparin releasable than residual activity it seems that there was no direct inhibition of surface bound enzyme activity and that the transport of the enzyme to the cell surface was not affected. These data indicate that addition of VLDL to the culture medium resulted in a fall in enzyme synthesis, while total protein synthesis as determined by incorporation of [3H]leucine, remained unchanged. This inhibition could be reproduced by increasing free fatty acid concentration of the medium, however addition of excess albumin to VLDL-containing medium did not prevent the fall in enzyme activity. The present results obtained with cultured rat hearts cells suggest that in vivo plasma levels of triacylglycerol-rich lipoproteins could modulate the lipoproteins could modulate the lipoprotein lipase activity of the heart.  相似文献   

20.
Rats conditioned to eating fixed-size meals (meals at 7 AM and 7 PM), consuming diets rich in palm oil or sunflower seed oil, were used to study the metabolism of chylomicrons and hepatic very low density lipoproteins (VLDL) as a function of time after meal consumption. Rats fed a palm oil diet had higher serum triacylglycerol levels at 7 AM, before the meal (1.96 +/- 0.25 mM vs. 1.09 +/- 0.09 mM) and reached higher levels postprandially (4.32 +/- 0.48 mM vs. 2.87 +/- 0.18 mM) than sunflower seed oil-fed animals, due to higher levels of hepatic VLDL (at 7 AM) and higher levels of chylomicrons and hepatic VLDL (in the postprandial phase). These differences in serum triacylglycerol concentrations between the diets tested were found not to be due to differences in hepatic VLDL triacylglycerol secretion (similar rate for both dietary groups and not very much affected by meal consumption) or chylomicron triacylglycerol secretion (similar response profiles on both diets), pointing towards differences in plasma triacylglycerol catabolism. Subsequent double-label studies on triacylglycerol catabolism of chylomicrons from palm oil- and sunflower seed oil-fed animals in chow-fed recipients showed that palm oil triacyglycerol is catabolized slower than sunflower seed oil triacylglycerol. Furthermore, activities of postheparin plasma lipoprotein lipase tended to be higher in sunflower seed oil-fed animals. From these data we conclude that the relative hypertriglyceridemia found in palm oil-fed animals is due to less efficient catabolism and not to increased synthesis of plasma triacylglycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号