首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The development of tight junctions in fetal rat thyroid from the sixteenth to the twentieth days of gestation was examined with conventional ultrastructural methods and freeze-fracture preparations. These results were compared with those obtained using lanthanum hydroxide and horseradish peroxidase (HRP) tracers. Tight junctions appear to arise on the plasma membranes of fetal thyroid cells by the aggregation and fusion of linear particle chains which appear at several discrete sites on the plasma membrane of developing follicular cells. Tracer studies show that they are effective barriers to the passage of HRP from the outset, are freely penetrated by La3+ at the sixteenth and seventeenth days of gestation, but progressively lose permeability to La3+ from the seventeenth to twentieth days of gestation. However, freeze-fracture observations suggest that La3+ must penetrate into the follicular lumen through the tight junction elements, for the follicular lumen, when it appears, is always completely surrounded by a continuous though sometimes rudimentary meshwork of tight junction elements. The results suggest that the tight junction forms an effective barrier to the passage of large macromolecules, e.g. thyroglobulin, from very early stages in its development. The La3+ results suggest that decreased resistance of the intercellular pathway, possibly related to the development of transepithelial potentials, may occur during this period in development.  相似文献   

2.
Channels in epithelial cell membranes and junctions.   总被引:3,自引:0,他引:3  
Epithelia may be classified as "tight" or "leaky," depending on whether there is a significant pathway for transepithelial ion permeation via the junctions and bypassing the cells. The resistance of this paracellular channel may depend partly on structures visible in the electron microscope, partly on wall charge. Permeability determinations in the leaky junctions of gallbladder epithelium, using many different organic cations, suggest that the critical barriers barriers to ion permeation are 5--8 A in radius and bind cations by up to four strongly proton-accepting oxygens. The apical cell membrane of tight epithelia contains a Na+-selective channel that is blocked by amiloride and Ca2+, subject to negative feedback control by the Na+ pump in the basolateral membrane, and somehow promoted by aldosterone. To determine the permeabilities of these two channels (the junctional channel of leaky epithelia, and the Na+ channel of tight epithelia) to water and nonelectrolytes remains a major unsolved problem.  相似文献   

3.
An important function of the tight junction is to act as a selective barrier to ions and small molecules, although no molecule responsible for the barrier function has been identified. Here we report evidence that the localization of the 7H6 tight junction-associated antigen identified in our laboratory at tight junctions correlates with the barrier function of MDCK cells. MDCK cells in a confluent monolayer possessed a polarized morphology, having an apical plasma membrane and a basolateral membrane, which is separated from the former by tight junctions. MDCK cells expressed both ZO-1 and 7H6 antigen at tight junctions, which maintain a tight barrier as determined by resistance to lanthanum permeation and high transepithelial electrical resistance (TER, 1500 ohm-cm2). The 7H6 antigen disappeared as tight junctions became permeable to lanthanum with a decrease in TER (below 100 ohm-cm2) due to treatment with metabolic inhibitors (10 μm antimycin A and 10 mM 2-deoxyglucose) for 30 min, while leaving ZO-1 at the cell border. The 7H6 antigen appeared at tight junctions again as TER recovered to a high level (1500 ohm-cm2) within 3 h after withdrawal of metabolic inhibitors. In addition, we found that 7H6 antigen is a phosphorylated protein and that phosphorylation is closely related to the localization of 7H6 antigen in the area of tight junctions.  相似文献   

4.
Fracture faces of zonulae occludentes from "tight" and "leaky" epithelia   总被引:56,自引:36,他引:20       下载免费PDF全文
Epithelia vary with respect to transepithelial permeability. In those that are considered "leaky", a large fraction of the passive transepithelial flux appears to follow the paracellular route, passing across the zonulae occludentes and moving down the intercellular clefts. In "tight" epithelia, the resistance of the paracellular pathway to passive flux is greatly increased. To see whether differences in the morphology of the zonula occludens could contribute to this variability in leakiness among epithelia, replicas of zonulae occludentes in freeze-fractured material from a variety of tight and leaky epithelia were examined. The junctions appear as a branching and anastomosing network of strands or grooves on the A and B membrane fracture faces, respectively. It was found that the zonula occludens from a "very leaky" epithelium, the proximal convoluted tubule of the mouse kidney, is extremely shallow in the apical-basal direction, consisting in most places of only one junctional strand. In contrast, the "very tight" frog urinary bladder exhibits a zonula occludens that is relatively deep (>0.5 µm) in the apical-basal direction, and consists of five or more interconnected junctional strands interposed between luminal and lateral membrane surfaces. Epithelia of intermediate permeabilities exhibited junctions with intermediate or variable morphology. Toad urinary bladder, mouse stomach, jejunum, and distal tubule, rabbit gallbladder, and Necturus kidney and gallbladder were also examined, and the morphological data from these epithelia were compared to physiological data from the literature.  相似文献   

5.
Summary Two major cell types, goblet and absorptive cells, dominate the epithelial lining of small intestinal villi. We used freezefracture replicas of rat ileal mucosa to examine the possibility that tight junction structure, known to relate to transepithelial resistance, might vary with cell type. Tight junctions between absorptive cells were uniform in structure while those associated with villus goblet cells displayed structural variability. In 23% of villus goblet cell tight junctions the strand count was less than 4 and in 30% the depth was less than 200 nm. In contrast, only 4% of absorptive cell tight junctions had less than 4 strands and only 9% had depth measurements less than 200 nm. Other structural features commonly associated with villus goblet cell tight junctions but less commonly with absorptive cell tight junctions were: deficient strand cross-linking, free-ending abluminal strands, and highly fragmented strands. Bothin vivo ileal segments and everted loops were exposed to ionic lanthanum. Dense lanthanum precipitates in tight junctions and paracellular spaces were restricted to a subpopulation of villus goblet cells and were not found between villus absorptive cells. After exposure of prefixed ileal loops to lanthanum for 1 hour, faint precipitates of lanthanum were found in 14% of tight junctions and paracellular spaces between absorptive cells compared to 42% of tight junctions and paracellular spaces adjacent to villus goblet cells. When tested in Ussing chambers, the methods used for lanthanum exposure did not lower transepithelial resistance. Everted loops exposed to ionic barium and examined by light microscopy showed dense barium precipitates in the junctional zone and region of the paracellular space of villus goblet cells but not in these regions between absorptive cells. However, the macromolecular tracers, microperoxidase, cytochromec and horseradish peroxidase, were excluded from both villus goblet cell and absorptive cell paracellular spaces inin vivo segments. These findings suggest that a subpopulation of villus goblet cells may serve as focal sites of high ionic permeability and contribute to the relatively low resistance to ionic flow which characterizes the small intestinal epithelium.  相似文献   

6.
The transepithelial shunt pathway of newt proximal tubule was examined with glass micro-electrode and electron microscopic methods. The input resistance of the peritubular (basal) membrane and tubular wall were found to be 4.2 ± 0.1 · 106 (mean ± S.E., n = 16) and 11.4 ± 0.2 · 104 (n = 11), respectively. The input resistance of the peritubular membrane was approximately 40-times larger than that of the tubular wall. When the kidneys were perfused in a lanthanum solution, the lanthanum ions were then observed in the junctional complexes and in the intercellular spaces on both the basal and apical sides. The results indicate that the electrical shunt pathway corresponds to the apical junctional complexes and the intercellular spaces, and that the tight junctions are not truly ‘tight’ for the transepithelial movement of small ions in the proximal tubule of the newt kidney.  相似文献   

7.
The perineurial junctional complexes in the nerve cord of Periplaneta americana have been shown to consist of septate desmosomes, extensive gap junctions and relatively limited regions of tight junctions. Microperoxidase (M.W. 1,900) undergoes limited intercellular penetration into the septate desmosomes. Lanthanum penetrates both the septate desmosomes and gap junctions. It is concluded that the restricted access of these substances to the underlying extracellular spaces results from the presence of the perineurial tight junctions. These results contrast with those for small peripheral nerves, which lack equivalent junctional complexes, and in which the extracellular spaces are found to be accessible to externally applied lanthanum. The results are discussed in relation to current concepts of the insect blood-brain barrier.  相似文献   

8.
Summary Protamine is a naturally occurring basic protein (pI; 9.7 to 12.0). We have recently reported that protamine dissolved in the mucosal bath (2 to 20 m), induces about a twofold increase in transepithelial resistance inNecturus gallbladder within 10 min. Conductance decreased concomitantly with cation selectivity.In this leaky epithelium, where >90% of an applied current passes between cells, an increment in resistance of this magnitude suggests a paracellular actiona priori. To confirm this, ionic conductance across the apical cell membrane was studied with microelectrodes. Protamine increased transepithelial resistance without changing apical cell membrane voltage or fractional membrane resistance. Variation in extracellular K concentration (6 to 50mm) caused changes in apical membrane voltage not different from control.To determine if protamine-induced resistance changes were associated with structural alteration of tight junctions, gallbladders were fixedin situ at peak response and analyzed by freeze-fracture electron microscopy. According to a morphometrical analysis, the tight junctional intramembranous domain expands vertically due to incorporation of new strands (fibrils) into the main compact fibrillar meshwork.Since morphologic changes are complete within 10 min, strands are probably recycled into and out of the tight junctional membrane domain possibly by the cytoskeleton either from cytoplasmic vesicles or from intramembranous precursors. Regulation of tight junctional permeability by protamine and other perturbations may constitute a common mechanism by which leaky epithelia regulate transport, and protamine, in concentrations employed in this study, seems reasonably specific for the tight junction.  相似文献   

9.
Summary 2,4,6 Triaminopyrimidine (TAP) has been previously shown to inhibit the passive tight junctional cation permeation pathway in various leaky epithelia. Amiloride has been shown to be an effective inhibitor of the cation cellular entry pathway in tight epithelia. In this paper we demonstrate that TAP and amiloride at appropriate concentrations are able to block either of these epithelial cation permeation pathways. TAP was found to block the Na entry pathway in frog skin with the following characteristics: it (1) inhibits from the external solution only, (2) is completely reversible, (3) increases the transepithelial resistance, (4) is active in the monoprotonated form, (5) is noncompetitive with Na, (6) displays saturation kinetics which obey a simple kinetic model (K I=1×10–3 m), (7) is independent of external calcium, (8) is dependent on external buffering capacity, and (9) is competitive with amiloride. Amiloride inhibition of the junctional permeation in gallbladder had the following characteristics: it (1) increases the transepithelial resistance, (2) decreases cation conductance without affecting the anion conductance, (3) displays saturation kinetics which obey a simple kinetic model (K I=1×10–3 m), and (4) possesses inhibitory activity in both its protonated and unprotonated form. These results not only indicate that a similar inhibitory site may exist in both of these cation permeation pathways, but also provide information on the chemical nature and possible location of these inhibitory sites.  相似文献   

10.
It is well known, that in mammalian small intestine, cAMP increases Cl permeability of the apical membrane of enterocytes as part of its secretory action. Paradoxically, this is usually accompanied by an increase of the transepithelial resistance. In the present study we report that in the presence of bumetanide (to block basolateral Cl uptake) cAMP always decreased the transepithelial resistance. We examined whether this decrease in resistance was due to a cAMP-dependent increase of the paracellular electrolyte permeability in addition to the increase of the Cl permeability of the apical cell membrane. We used diffusion potentials induced by serosal replacement of NaCl, and transepithelial current passage to evoke transport number effects. The results revealed that cAMP (but not carbachol) could increase the Cl permeability of the tight junctions in rat ileum. Moreover, we observed a variation in transepithelial resistance of individual tissue preparations, inversely related to the cation selectivity of the tissue, suggesting that Na+ permeability of the tight junctions can vary between preparations. Received: 7 September 1996/Revised: 5 November 1996  相似文献   

11.
In this study, we examine the effect of Hymenolepis diminuta on ion transport in the ileum and on tight junctions in the ileum and colon of rats. We also evaluate the effect of H. diminuta on C-fiber endings in the ileum, the direct habitat of H. diminuta, before and after mechanical stimulation and pharmacological modification by capsaicin (C-fiber irritant).Wistar rats were orally infected with five cysticercoids of H. diminuta. Using a modified Ussing chamber, electrophysiological parameters of the ileum were measured (transepithelial electrical potential difference and transepithelial electrical resistance) as well as the deposition of occludin (a tight junction protein) in the ileum and colon of the rats 8, 16, 25, 35, 40 and 60 days post infection.We observed a significant reduction in transepithelial electrical potential difference in the ileum of rats infected with H. diminuta. In both the ileum and colon of rats infected with H. diminuta we also observed a decrease in occludin deposition, which indicates leakage of tight junctions, correlating with the decrease in transepithelial electrical resistance of these tissues. The application of capsaicin confirmed the hypothesis that H. diminuta in rats affects the C-fiber sensory receptors, causing changes in ion transport in the ileum.The results of the performed electrophysiological and immunohistochemical examinations indicate hymenolepidosis-related changes in the active transport of ions and the passive movement of ions.  相似文献   

12.
Abe S  Takeda J 《Plant physiology》1988,87(2):389-394
When dielectrophoresis and electrofusion of barley (Hordeum vulgare var Moor) leaf protoplasts were assayed in the presence of 0.1 to 1 millimolar lanthanum ion (La3+) in the basal medium (0.7 molar mannitol, 1 millimolar piperazine-N, N-bis[2-ethanesulfonic acid]-Na [pH 6.7], 0.1 millimolar CaCl2), dielectrophoresis and induction of electrofusion were strongly inhibited. The latter remained inhibited and the former recovered by about 60% after washing the La3+ -treated protoplasts without EDTA. These inhibitions were almost completely abolished by washing the La3+ -treated protoplasts with 1 millimolar EDTA. Inductively coupled plasma atomic emission spectroscopic analysis revealed that protoplasts retained a considerable amount of La3+ after washing without EDTA and released most of the bound La3+ by washing with 1 millimolar EDTA. This tightly bound La3+ seemed responsible for the inhibition of electrofusion and dielectrophoresis that was observed in the La3+ -treated protoplasts after washing. ζ-potentials of protoplasts were -39.0±3.2 millivolts, -16.7 ± 2.6 millivolts, and virtually zero in media containing 0, 0.1, and 0.3 millimolar La3+ (I = 7.2 millimolar), respectively, and had a positive value (+ 14.2 ± 2.2 millivolts) in the presence of 1 millimolar La3+. These effects of La3+ on ζ-potentials were easily abolished by washing without EDTA. This indicates that charged species located at the surface of plasma membrane of protoplasts cannot account for the sites at which La3+ exerts its inhibition of dielectrophoresis and electrofusion. In contrast, the promotion of spherical fusion and the reduction of broken fusion products observed in the presence of La3+ were almost completely abolished by washing without EDTA. Our results also indicate that the initial induction and development of electrofusion can be studied independently.  相似文献   

13.
Claudin-16 is involved in the paracellular reabsorption of Mg2+ in the thick ascending limb of Henle. Little is known about the mechanism regulating the tight junctional localization of claudin-16. Here, we examined the effect of Mg2+ deprivation on the distribution and function of claudin-16 using Madin-Darby canine kidney (MDCK) cells expressing FLAG-tagged claudin-16. Mg2+ deprivation inhibited the localization of claudin-16 at tight junctions, but did not affect the localization of other claudins. Re-addition of Mg2+ induced the tight junctional localization of claudin-16, which was inhibited by U0126, a MEK inhibitor. Transepithelial permeability to Mg2+ was also inhibited by U0126. The phosphorylation of ERK was reduced by Mg2+ deprivation, and recovered by re-addition of Mg2+. These results suggest that the MEK/ERK-dependent phosphorylation of claudin-16 affects the tight junctional localization and function of claudin-16. Mg2+ deprivation decreased the phosphothreonine levels of claudin-16. The phosphothreonine levels of T225A and T233A claudin-16 were decreased in the presence of Mg2+ and these mutants were widely distributed in the plasma membrane. Furthermore, TER and transepithelial Mg2+ permeability were decreased in the mutants. We suggest that the tight junctional localization of claudin-16 requires a physiological Mg2+ concentration and the phosphorylation of threonine residues via a MEK/ERK-dependent pathway.  相似文献   

14.
Claudins form paracellular pores at the tight junction in epithelial cells. Profound depletion of extracellular calcium is well known to cause loosening of the tight junction with loss of transepithelial resistance. However, moderate variations in calcium concentrations within the physiological range can also regulate transepithelial permeability. To investigate the underlying molecular mechanisms, we studied the effects of calcium on the permeability of claudin-2, expressed in an inducible MDCK I cell line. We found that in the physiological range, calcium acts as a reversible inhibitor of the total conductance and Na+ permeability of claudin-2, without causing changes in tight junction structure. The effect of calcium is enhanced at low Na+ concentrations, consistent with a competitive effect. Furthermore, mutation of an intrapore negatively charged binding site, Asp-65, to asparagine partially abrogated the inhibitory effect of calcium. This suggests that calcium competes with Na+ for binding to Asp-65. Other polyvalent cations had similar effects, including La3+, which caused severe and irreversible inhibition of conductance. Brownian dynamics simulations demonstrated that such inhibition can be explained if Asp-65 has a relatively high charge density, thus favoring binding of Ca2+ over that of Na+, reducing Ca2+ permeation by inhibiting its dissociation from this site, and decreasing Na+ conductance through repulsive electrostatic interaction with Ca2+. These findings may explain why hypercalcemia inhibits Na+ reabsorption in the proximal tubule of the kidney.  相似文献   

15.
The effects of lanthanum and calcium ions on electron transport, dichlorephenol indophenol (DCIP) photoreduction, and oxygen evolution activities in chloroplast from cucumber (Cucumis satives L.) were determined. The lanthanum inhibited the whole electron chain-transport activity of chloroplast. DCIP photoreduction and oxygen evolution activities of the photosystem I (PSII) also decrease after treatment with La3+. But the diminished activities of PSII and chloroplast caused by La3+ could be reversed by Ca2+ and even became higher than the control level. The concentration analysis of related protein complexes to photoelectron transport in chloroplast included that La3+ induced the concentration of chlorophyll protein complexes increasing but caused some nonchlorophyll protein complexes to decompose partially. This increasing effect of La3+ on chlorophyll protein complexes results in the improvement of chlorophyll content, which will improve the absorption of photoelectron and energy transport in the process of photosynthesis.  相似文献   

16.
Exogenous chemicals having low taste thresholds elicit particulartastes when injected into the bloodstream. This phenomenon iscalled intravascular taste. To explore the origins of intravasculartaste we investigated the permeability properties of the paracellularpathways (tight junctions) between taste cells and between epithelialcells in canine fungiform papillae. This was achieved by showingthat the transepithelial resistance (TER), which is a measureof the paracellular pathway resistance, increases upon the additionof LaCl3. Thin-section electron microscopy of the same epitheliaused for the TER measurements showed that lanthanum depositsare found exclusively in the extracellular spaces. In the epithelium,LaCl3 added to either the mucosal or serosal solutions did notdiffuse past the tight junctions at the interface between thestrata cornea and granulosa. The blockage of epithelial tightjunctions by lanthanum is responsible for the increase in TER.LaCl3 added to the serosal solution was observed throughoutthe extracellular spaces between taste cells including the extracellularspace beyond the tight junctions in the taste pore. Thus, tightjunctions of taste cells and epithelial cells differ in theirpermeability to LaCl3. From these observations we conclude thatthe tight junctions between taste cells are more permeable tomolecules of small molecular weight than are the tight junctionsbetween epithelial cells. Therefore, small molecules that leavethe bloodstream can diffuse into the taste pore and interactwith receptors in the microvilli of taste cells resulting inintravascular taste.  相似文献   

17.
《Life sciences》1993,53(20):PL337-PL342
Recent studies have shown that ionic cadmium (Cd2+) can selectively damage the tight junctions between LLC-PK1 cells. The objective of the present studies was to determine if cadmium that is bound to metallothionein (Cd-Mt) can also damage the junctions between these cells. Cells on Falcon Cell Culture Inserts were exposed to Cd2+ or Cd-Mt from the apical and basolateral compartments. The integrity of cell junctions was assessed by monitoring the transepithelial electrical resistance, and cell viability was evaluated by monitoring the release of lactate dehydrogenase into the medium. Exposure to Cd2+ for 1–4 hours caused a pronounced decrease in the transepithelial resistance without affecting cell viability. By contrast, exposure to Cd-Mt had little effect on the electrical resistance until the cells began to die, which did not occur until 24–48 hours of exposure. Additional results showed that the cells accumulated Cd2+ more rapidly than Cd-Mt. These results indicate that Cd-Mt does not damage the junctions between LLC-PK1 cells, but that it can kill the cells after prolonged exposure.  相似文献   

18.
The leech photoreceptor forms a unicellular epithelium: every cell surrounds an extracellular “vacuole” that is connected to the remaining extracellular space via narrow clefts containing pleated septate junctions. We analyzed the complete structural layout of all septa within the junctional complex in elastic brightfield stereo electron micrographs of semithin serial sections from photoreceptors infiltrated with colloidal lanthanum. The septa form tortuous interseptal corridors that are spatially continuous, and open ended basally and apically. Individual septa seem to be impermeable to lanthanum; interseptal corridors form the only diffusional pathway for this ion. The junctions form no diffusion barrier for the electron-dense tracer Ba2+, but they hinder the diffusion of various hydrophilic fluorescent dyes as demonstrated by confocal laser scanning microscopy (CLSM) of live cells. Even those dyes that penetrate gap junctions do not diffuse beyond the septate junctions. The aqueous diffusion pathway within the septal corridors is, therefore, less permeable than the gap-junctional pore. Our morphological results combined with published electrophysiological data suggest that the septa themselves are not completely tight for small physiologically relevant ions. We also examined, by CLSM, whether the septate junctions create a permeability barrier for the lateral diffusion of fluorescent lipophilic dyes incorporated into the peripheral membrane domain. AFC16, claimed to remain in the outer membrane leaflet, does not diffuse beyond the junctional region, whereas DiIC16, claimed to flip-flop, does. Thus, pleated septate junctions, like vertebrate tight junctions, contribute to the maintenance of cell polarity.  相似文献   

19.
LOCALIZATION OF PERMEABILITY BARRIERS IN THE FROG SKIN EPITHELIUM   总被引:7,自引:2,他引:5       下载免费PDF全文
Ruthenium red and colloidal lanthanum were used to determine the site of the structural barriers to diffusion within the intercellular spaces of frog skin epithelium. Electron micrographs show that occluding zonules located at the outer border of the stratum corneum and at the outer layer of the stratum granulosum are true tight junctions since they are impermeable to these tracers. Measurement of 140La uptake by the living skin shows that lanthanum moves across the external surface of the skin readily, into and out of a compartment that has a limited capacity and is bounded on its internal side by a barrier impermeable to lanthanum. Examination of these skins with the electron microscope suggests that the compartment is localized between the external membrane of the cells at the outer layer of the s. granulosum and at the outermost surface of the skin. These observations and other findings described in the literature indicate that the site of the external high resistance barrier of the frog skin is localized at the outer border of the s. granulosum.  相似文献   

20.
Summary The thin limbs of short and long loops of Henle of the rabbit kidney were studied by freeze fracture techniques. According to TEM studies of thin sections four segments are discernible: descending thin limbs of short loops, descending thin limbs of long loops, subdivided into an upper and a lower part, and ascending thin limbs (Kaissling and Kriz 1979). This division is supported by findings obtained with the freeze fracture technique and based on differences in the organization of the junctional complexes as well as on differences in the internal morphology of the cell membranes. The descending thin limbs of short loops have junctional complexes established by several closely arranged junctional strands and numerous desmosomes. The upper parts of the long descending thin limbs have tight junctions consisting of a variable number of strands; their outstanding characteristic after freeze fracture is a high density of intramembrane particles in both luminal and baso-lateral membranes. The tight junctions of the lower part of the long descending thin limbs consist of several anastomosing junctional strands, which are, in contrast, loosely arranged; the cell membranes contain only a sparse population of intramembrane particles. The ascending thin limbs are characterized by shallow tight junctions (frequently consisting of only one single junctional strand). Moreover, the epithelial cells of this segment are heavily interdigitated; thereby the tight junctions are correspondingly lengthened.In addition, this study presents further evidence that remarkable species differences occur among thin limb epithelia. The junctional complexes of the long descending thin limbs of the rabbit are organized quite differently from those of small rodents (e.g., rat, Psammomys).The data of this study support the concept that the tight junctions are the main determinant of ionic conductances of the paracellular pathway. However, with reference to recent findings from microperfusion studies, it becomes obvious that a correlation of the junctional morphology with the transepithelial water permeability is lacking, at least for the thin limbs.This investigation was supported by the Deutsche Forschungsgemeinschaft; project Kr 546 Henlesche Schleife  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号