首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Programmed cell death constitutes a common fundamental incident occurring during oogenesis in a variety of different organisms. In Drosophila melanogaster, it plays a significant role in the maturation process of the egg chamber. In the present study, we have used an in vitro development system for studying the effects of inducers and inhibitors of programmed cell death during the late stages of oogenesis. Treatment of the developing egg chambers with two widely used inducers of cell death, etoposide and staurosporine, blocks further development and induces chromatin condensation but not DNA fragmentation in nurse and follicle cells, as revealed by propidium iodide staining and terminal transferase-mediated dUTP nick-end labeling assay. Moreover, incubation of the developing egg chambers with the caspase-3 inhibitor Z-DEVD-FMK significantly delays development, prevents DNA fragmentation, but does not affect chromatin condensation. The above results demonstrate, for the first time, that chromatin condensation in Drosophila ovarian nurse and follicle cells is a caspase-3-like independent process and is regulated independently from DNA fragmentation.  相似文献   

2.
Chromatin condensation and oligonucleosomal DNA fragmentation are the nuclear hallmarks of apoptosis. A proteolytic fragment of the apoptotic chromatin condensation inducer in the nucleus (Acinus), which is generated by caspase cleavage, has been implicated in mediating apoptotic chromatin condensation prior to DNA fragmentation. Acinus is also involved in mRNA splicing and a component of the apoptosis and splicing-associated protein (ASAP) complex. To study the role of Acinus for apoptotic nuclear alterations, we generated stable cell lines in which Acinus isoforms were knocked down by inducible and reversible RNA interference. We show that Acinus is not required for nuclear localization and interaction of the other ASAP subunits SAP18 and RNPS1; however, knockdown of Acinus leads to a reduction in cell growth. Most strikingly, down-regulation of Acinus did not inhibit apoptotic chromatin condensation either in intact cells or in a cell-free system. In contrast, although apoptosis proceeds rapidly, analysis of nuclear DNA from apoptotic Acinus knockdown cells shows inhibition of oligonucleosomal DNA fragmentation. Our results therefore suggest that Acinus is not involved in DNA condensation but rather point to a contribution of Acinus in internucleosomal DNA cleavage during programmed cell death.  相似文献   

3.
Batracian Rana esculenta erythrocytes cell death induced by either calcium influx, or staurosporine, involves typical apoptotic phenotype. Our data reveal: (i) a drastic modification of the cell morphology with loss of the ellipsoidal form as assessed by phase contrast microscopy and scanning electron microscopy; (ii) an exposure of the phosphatidylserine residues in the outer leaflet of the cell membrane; (iii) a caspase-3-like activity; (iv) a mitochondrial membrane potential (Delta Psi m) loss; and (v) a chromatin condensation and fragmentation. Erythrocyte chromatin condensation and fragmentation are prevented by caspase and calpain peptide inhibitors. These inhibitors also prevent Delta Psi m loss supporting the idea that mitochondria is a central sensor for Rana erythrocytes cell death. Our observations highlight the conservation of the programmed cell death machinery in erythrocytes across kingdom.  相似文献   

4.
The role of proteinases of the histiophagous ciliate Philasterides dicentrarchi, purified by affinity chromatography in bacitracin-Sepharose, on apoptosis (programmed cell death) of turbot pronephric leucocytes (PL) was investigated. The results showed that more than 90% of proteinases purified by bacitracin-Sepharose were cysteine proteinases, which lacked significant caspase-3-like activity and generated three main gelatinolytic bands of molecular weights 36, 45 and 77 kDa as determined by gelatine-SDS-PAGE and immunoblot. Viability of PL cells after 24 h stimulation with P. dicentrarchi cysteine proteinases did not differ from that of non-stimulated cells. Apoptosis was confirmed by: (i) caspase activity, (ii) DNA fragmentation, and (iii) nucleus fragmentation. The caspase-3-like activity in PL incubated for 4h in the presence of 125, 250 and 500 microg/ml of proteinases increased in a dose-dependent fashion. The PL DNA was fragmented following 24-h exposure to P. dicentrarchi cysteine proteinases and characteristic DNA ladders consisting of multimers of approximately 180-200 pb were produced. Morphological changes, such as chromatin condensation and nucleus fragmentation, were observed under fluorescence microscopy after DAPI staining of the PL cells incubated with cysteine proteinase-incubated for 24 h. The results suggest that the pathogenic scuticociliate P. dicentrarchi may induce host leucocyte programmed cell death via the production of cysteine proteinases, as a mechanism of pathogenesis and evasion of the turbot innate immune response.  相似文献   

5.
《Autophagy》2013,9(3):298-302
Autophagy is a physiological and evolutionarily conserved process maintaining homeostatic functions, such as protein degradation and organelle turnover. Accumulating data provide evidence that autophagy also contributes to cell death under certain circumstances, but how this is achieved is not well known. Herein, we report that autophagy occurs during developmentally-induced cell death in the female germline, observed in the germarium and during middle developmental stages of oogenesis in Drosophila melanogaster. Degenerating germline cells exhibit caspase activation, chromatin condensation, DNA fragmentation and punctate staining of mCherry-DrAtg8a, a novel marker for monitoring autophagy in Drosophila. Genetic inhibition of autophagy, by removing atg1 or atg7 function, results in significant reduction of DNA fragmentation, suggesting that autophagy acts genetically upstream of DNA fragmentation in this tissue. This study provides new insights into the mechanisms that regulate cell death in vivo during development.  相似文献   

6.
Embryonic root is the primary site of salinity perception in germinating seeds. To understand better the NaCl stress response of lupine embryo axes, ultrastructural approach combined with analysis of DNA degradation was used. In this study lupine embryo axes were cultured in vitro on the medium supplemented with two salt concentrations 250 and 500 mM to differ the reaction. To assess the rate of DNA damage, alkaline electrophoresis of isolated nuclei and DNA fragmentation analysis were performed. Results of these studies suggest programmed cell death induction under salinity stress. Moreover, ultrastructure observations revealed other characteristic features of programmed cell death like endoplasmic reticulum reorganization, increased level of vacuolization, chromatin condensation and starch grains degradation. Our comparative analysis of ultrastructure changes and DNA fragmentation speak in favour of programmed cell death in lupine (Lupinus luteus L. ‘Mister’) embryo axes treated for 12 h with 250 and 500 mM NaCl.  相似文献   

7.
Different cell death pathways were investigated during bleaching in the sea anemone Aiptasia sp. in response to hyperthermic treatment. Using a suite of techniques, (haematoxylin and eosin staining of paraffin wax-embedded tissue sections, in-situ end labelling (ISEL) of fragmented DNA, agarose gel electrophoresis electron microscopy) both necrotic and programmed cell death (PCD) activity were indicated. After a treatment period of 4 days, the host endoderm tissues underwent necrotic cell death. This was indicated by widespread cellular degradation, dilation of cell cytoplasm and organelles, cell swelling and rupture, irregular pyknotic condensation of nuclear chromatin, and abundant cell debris. Host cell necrosis was associated with the release of zooxanthellae with a normal, healthy appearance into the coelenteron. Longer periods of hyperthermic treatment (7 days) were correlated with further animal cell degradation and the in-situ degradation of zooxanthellae remaining within the degraded endoderm. Within the same degraded endoderm tissue, the degradation of zooxanthellae resulted from two forms of cell death occurring simultaneously, which were identified as programmed cell death and cell necrosis. Programmed cell death of zooxanthellae was characterised by condensation of the cytoplasm and organelles, cell shrinkage, formation of accumulation bodies at the periphery of the cell wall, and DNA fragmentation. Cell necrosis of zooxanthellae was characterised by dilation of the cytoplasm and organelles, cell swelling and lysis, dispersion of cell component debris, and DNA fragmentation. The existence of a programmed cell death pathway within zooxanthellae is important to the understanding of coral bleaching events, raising interesting questions regarding the evolution of this process and the activation of the cellular trigger mechanisms involved.  相似文献   

8.

Key message

An increase in Ca 2+ concentration in the nucleus may activate the PCD of secretory cavity cells, and further Ca 2+ accumulation contributes to the regulation of nuclear DNA degradation.

Abstract

Calcium plays an important role in plant programmed cell death (PCD). Previously, we confirmed that PCD was involved in the degradation of secretory cavity cells in Citrus sinensis (L.) Osbeck fruits. To further explore the function of calcium in the PCD of secretory cavity cells, we used potassium pyroantimonate precipitation to detect and locate calcium dynamics. At the precursor cell stage of the secretory cavity, Ca2+ was only distributed in the cell walls. At the early stage of secretory cavity initial cells, Ca2+ in the cell walls was gradually transported into the cytoplasm via pinocytotic vesicles. Although a small amount of Ca2+ was present in the nucleus, the TUNEL signal was scarcely observed. At the middle stage of initial cells, a large number of pinocytotic vesicles were transferred to the nucleus, where the vesicle membrane fused with the nuclear membrane to release calcium into the nucleoplasm. In addition, abundant Ca2+ aggregated in the condensed chromatin and nucleolus, where the TUNEL signal appeared the strongest. At the late stage of initial cells, the chromatin and nucleolus gradually degraded and disappeared, and the nucleus appeared broken-like, as Ca2+ in the cell wall had nearly completely disappeared, and Ca2+ in the nucleus was also rapidly reduced. Furthermore, the TUNEL signal also disappeared. These phenomena indicated that an increase in Ca2+ concentration in the nucleus might activate the PCD of secretory cavity cells, and further Ca2+ accumulation contributed to the regulation of nuclear DNA degradation.  相似文献   

9.
Fluorescence staining with acridine orange (AO) and ethidium bromide (EB) showed that nuclei of cortex root cells of 1-aminocyclopropane-1-carboxylic acid (ACC)-treated Vicia faba ssp. minor seedlings differed in color. Measurement of resultant fluorescence intensity (RFI) showed that it increased when the color of nuclear chromatin was changed from green to red, indicating that EB moved to the nuclei via the cell membrane which lost its integrity and stained nuclei red. AO/EB staining showed that changes in color of the nuclear chromatin were accompanied by DNA condensation, nuclei fragmentation, and chromatin degradation which were also shown after 4,6-diamidino-2-phenylindol staining. These results indicate that ACC induced programmed cell death. The increasing values of RFI together with the corresponding morphological changes of nuclear chromatin were the basis to prepare the standard curve; cells with green unchanged nuclear chromatin were alive while those with dark orange and bright red nuclei were dead. The cells with nuclei with green–yellow, yellow–orange, and bright orange chromatin with or without their condensation and fragmentation chromatin were dying. The prepared curve has became the basis to draw up the digital method for detection and determination of the number of living, dying, and dead cells in an in planta system and revealed that ACC induced death in about 20% of root cortex cells. This process was accompanied by increase in ion leakage, shortening of cells and whole roots, as well as by increase in weight and width of the apical part of roots and appearance of few aerenchymatic spaces while not by internucleosomal DNA degradation.  相似文献   

10.
Fusaric acid (FA) is a nonhost-selective toxin mainly produced by Fusarium oxysporum, the causal agent of plant wilt diseases. We demonstrate that FA can induce programmed cell death (PCD) in tobacco suspension cells and the FA-induced PCD is modulated by nitric oxide (NO) signalling. Cells undergoing cell death induced by FA treatment exhibited typical characteristics of PCD including cytoplasmic shrinkage, chromatin condensation, DNA fragmentation, membrane plasmolysis, and formation of small cytoplasmic vacuoles. In addition, caspase-3-like activity was activated upon the FA treatment. The process of FA-induced PCD was accompanied by a rapid accumulation of NO in a FA dose-dependent manner. Pre-treatment of cells with NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) or NO synthase inhibitor N G-monomethyl-arginine monoacetate (L-NMMA) significantly reduced the rate of FA-induced cell death. Furthermore, the caspase-3-like activity and the expression of PAL and Hsr203J genes were alleviated by application of cPTIO or L-NMMA to FA-treated tobacco cells. This indicates that NO is an important factor involved in the FA-induced PCD. Our results also show that pre-treatment of tobacco cells with a caspase-3-specific inhibitor, Ac-DEVD-CHO, can reduce the rate of FA-induced cell death. These results demonstrate that the FA-induced cell death is a PCD and is modulated by NO signalling through caspase-3-like activation.  相似文献   

11.
The megagametophyte of the Araucaria bidwillii seed is a storage tissue that surrounds and feeds the embryo. When all its reserves are mobilized, the megagametophyte degenerates as a no longer needed tissue. In this work we present a biochemical and a cytological characterization of the megagametophyte cell death. The TUNEL assay showed progressive DNA fragmentation throughout the post-germinative stages, while DNA electrophoretic analysis highlighted a smear as the predominant pattern of DNA degradation and internucleosomal DNA cleavage only for a minority of cells at late post-germinative stages. Cytological investigations at these stages detected profound changes in the size and morphology of the megagametophyte nuclei. By using in vitro assays, we were able to show a substantial increase in proteolytic activities, including caspase-like protease activities during the megagametophyte degeneration. Among the caspase-like enzymes, caspase 6- and 1-like proteases appeared to be the most active in the megagametophyte with a preference for acidic pH. On the basis of our results, we propose that the major pathway of cell death in the Araucaria bidwillii megagametophyte is necrosis; however, we do not exclude that some cells undergo developmental programmed cell death.  相似文献   

12.
The effects of waterlogging on amyloplasts and programmed cell death (PCD) in endosperm cells in Chinese wheat (Triticum aestivum L.; cv: Hua mai 8) are here discussed. Four water treatments were established from anthesis to maturity: they were 3 days of waterlogging treatment (DWT), 7 DWT, 12 DWT, and moderate water supply (the control). Lugol staining and scanning electron microscopy showed decreases in the number of amyloplasts and partially filled circular cavities under the waterlogging treatments. These resulted in serious deformities in the endosperm cells. Evans blue staining analysis and terminal deoxynucleotidyl transferase-mediated fluorescein deoxyuridine triphosphate nick-end labeling assays indicated that the PCD progression of endosperm cells occurred earlier under waterlogging treatments than in the control, so did the internucleosomal DNA fragmentation, which accompanies PCD in endosperm cells. Electron transmission microscopy analysis showed similar results. Under waterlogging treatments, the following PCD characteristics appeared earlier and were more pronounced than in normal endosperm cells: chromatin condensation, degradation of the nuclear envelope, swelling, and degradation of the mitochondrial cristae. Our study concluded that under waterlogging conditions, the number of amyloplasts tended to decrease and PCD was likely to appear ahead of time.  相似文献   

13.
Autophagy is a major pathway for the degradation of long-lived proteins and cytoplasmic organelles and an essential part of programmed cell death, as well. Our findings indicate that programmed cell death of the ovarian follicle cells in the higher Diptera species Bactrocera oleae and Ceratitis capitata manifests features of autophagic cell death. The follicle cells during the developmental stage 14 contain autophagic vacuoles and they do not exhibit caspase activity in any area of the egg chamber. Their nuclei are characterized by condensed chromatin, accompanied with high-but not low-molecular weight DNA fragmentation events exclusively detected in distinct cells of the anterior pole. The above results are likely associated with the abundant phagocytosis observed at the entry of the lateral oviducts, where numerous cell bodies are massively engulfed by epithelial cells. The similarity of the cell death process among B. oleae, C. capitata and Drosophila melanogaster species strongly suggests that autophagy-mediated cell death is conserved in higher Diptera species.  相似文献   

14.
When the gastric mucosa is exposed to various irritants, apoptosis and subsequent gastric mucosal lesion can result in vivo. We here show that gastric irritants induced apoptosis in gastric mucosal cells in primary culture and examined its molecular mechanism. Ethanol, hydrogen peroxide, and hydrochloric acid all induced, in a dose-dependent manner, cell death, apoptotic DNA fragmentation, and chromatin condensation, suggesting that each of these gastric irritants induced apoptosis in vitro. Since each of these irritants decreased the mitochondrial membrane potential and stimulated the release of cytochrome c from mitochondria, gastric irritant-induced apoptosis seems to be mediated by mitochondrial dysfunction. Caspase-3, caspase-8, and caspase-9-like activities were all activated simultaneously by each of these irritants and the activation was concomitantly with cell death and apoptotic DNA fragmentation. Furthermore, pre-treatment of gastric mucosal cells with an inhibitor of caspase-8 suppressed the onset of cell death as well as the stimulation of caspase-3- and caspase-9-like activities caused by each of these gastric irritants. Based on these results, we consider that caspase-8, an initiator caspase, plays an important role in gastric irritant-induced apoptosis.  相似文献   

15.
The role of caspase proteases in carbonyl cyanide m-chlorophenylhydrazone (CCCP)-induced apoptosis of human promyelocytic HL-60 cells was examined. Treatment of HL-60 cells with micromolar concentrations of CCCP resulted in cell death, with typical apoptotic features such as chromatin condensation, formation of apoptotic bodies, nucleosomal fragmentation of DNA and a distinct increase in caspase-3 activity. The results, however, indicated that full caspase-3 inhibition by the selective inhibitor N-benzyloxycarbonyl-Asp-Glu-Val-Asp fluoromethyl ketone (Z-DEVD-FMK) did not prevent cell death, nor did it affect the manifestation of apoptotic hallmarks, including apoptotic bodies formation and nucleosomal DNA fragmentation. The only distinct effect that Z-DEVD-FMK exhibited was to retard the disruption of the plasma membrane. We therefore assume that caspase-3 activity itself is not essential for the manifestation of apoptotic features mentioned above. Similarly, the pan-specific caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD-FMK) did not prevent cell death. On the contrary, Z-VAD-FMK completely prevented DNA cleavage and apoptotic body formation, but it failed to completely counteract chromatin condensation. Thus, in the presence of Z-VAD-FMK, application of CCCP concentrations that otherwise induced apoptosis, resulted in the appearance of two morphologically different groups of dead cells with intact DNA. The first group included cells with necrotic-like nuclear morphology, and therefore could be taken as being "truly" necrotic in nature, because they had intact DNA. The cells of the second group formed small single-spherical nuclei with condensed chromatin. In spite of having intact DNA, they could not be taken as "truly" necrotic cells. It is evident that in the experimental system, caspase proteases play an essential role in the formation of apoptotic bodies and in the cleavage of nucleosomal DNA, but not in the condensation of chromatin. Therefore, it is likely that the choice between cell death modalities is not solely a matter of the caspase proteases present.  相似文献   

16.
The DNA fragmentation factor 45 (DFF45) is a subunit of a heterodimeric DNase complex critical for the induction of DNA fragmentation in vitro. To understand the in vivo role of DFF45 in programmed cell death, we measured the expression of DFF45 during mouse development and compared DNA fragmentation and viability of DFF45-deficient cells with wild-type control cells after activation of apoptosis. We found that DFF45 is ubiquitously expressed throughout mouse development. Moreover, DFF45-deficient thymocytes are resistant to DNA fragmentation with in vivo dexamethasone treatment. Furthermore, primary thymocytes from DFF45 mutant mice are also more resistant to apoptosis than wild-type control cells on exposure to several apoptotic stimuli. Dying DFF45-deficient thymocytes exhibit different morphology than wild-type control cells in that they show reduced degree of chromatin condensation, absent nuclear fragmentation, intranuclear cytoplasmic invagination, and striking nuclear chromatin conglutination after release from disintegrating cells. These results indicate that DFF45 is essential during normal apoptosis.  相似文献   

17.
The flavonoid from lemon fruit (Citrus limon BURM. f.) and its metabolites, particularly eriodictyol, 3,4-dihydroxyhydrocinnamic acid, and phloroglucinol had the function of DNA fragmentation in HL-60 cells when analyzed by flow cytometry. An apoptotic DNA ladder and chromatin condensation were observed in HL-60 cells when treated with these compounds. The caspase inhibitor prevented DNA fragmentation. These compounds are anticipated to be useful for medical purposes.  相似文献   

18.

Background

The NAD+-dependent histone deacetylases, known as "sirtuins", participate in a variety of processes critical for single- and multi-cellular life. Recent studies have elucidated the importance of sirtuin activity in development, aging, and disease; yet, underlying mechanistic pathways are not well understood. Specific sirtuins influence chromatin structure and gene expression, but differences in their pathways as they relate to distinct chromatin functions are just beginning to emerge. To further define the range of global chromatin changes dependent on sirtuins, unique biological features of the ciliated protozoan Tetrahymena thermophila can be exploited. This system offers clear spatial and temporal separation of multiple whole genome restructuring events critical for the life cycle.

Results

Inhibition with nicotinamide revealed that sirtuin deacetylase activity in Tetrahymena cells promotes chromatin condensation during meiotic prophase, differentiation of heterochromatin from euchromatin during development, and chromatin condensation/degradation during programmed nuclear death. We identified a class I sirtuin, called Thd14, that resides in mitochondria and nucleoli during vegetative growth, and forms a large sub-nuclear aggregate in response to prolonged cell starvation that may be peripherally associated with nucleoli. During sexual conjugation and development Thd14 selectively concentrates in the parental nucleus prior to its apoptotic-like degradation.

Conclusions

Sirtuin activity is important for several functionally distinct events requiring global chromatin condensation. Our findings suggest a novel role for sirtuins in promoting programmed pycnosis by acting on chromatin destined for degradation. The sirtuin Thd14, which displays physiological-dependent differential localization within the nucleus, is a candidate for a chromatin condensation enzyme that is coupled to nuclear degradation.  相似文献   

19.
Oligonucleosomal fragmentation of nuclear DNA is the late-stage apoptosis hallmark. In apoptotic mammalian cells the fragmentation is catalyzed by DFF40/CAD DNase primarily activated by caspase 3 through the site-specific proteolytic cleavage of DFF45/ICAD. A deletion in the casp3 gene of human breast adenocarcinoma MCF-7 results in lack of procaspase 3 in these cells. The absence of caspase 3 in MCF-7 leads to disability to activate oligonucleosomal DNA fragmentation in TNF-alpha induced cell death. In this study, sodium palmitate was used as an apoptotic stimulus for MCF-7. It has been shown that palmitate but not TNF-alpha induces both apoptotic changes in nuclei and oligonucleosomal DNA fragmentation in casp3-mutated MCF-7. Activation and accumulation of 40-50 kD DFF40-like DNases in nuclei of palmitate-treated apoptotic MCF-7 were detected by SDS-DNA-PAGE assay. Microsomal fraction of apoptotic MCF-7 does not contain any detectable DNases, but activates 40-50 kD nucleases when incubated with human placental chromatin. Furthermore, microsomes of apoptotic MCF-7 induce oligonucleosomal fragmentation of chromatin in a cell-free system. Both the activation of DNases and chromatin fragmentation are suppressed in the presence of the caspase 3/7 inhibitor Ac-DEVD-CHO. Microsome-associated caspase 7 is suggested to play an essential role in the induction of oligonucleosomal DNA fragmentation in casp3-deficient MCF-7 cells.  相似文献   

20.
Androgenesis represents one of the most fascinating examples of cell differentiation in plants. In barley, the conversion of stressed uninucleate microspores into embryo-like structures is highly efficient. One of the bottlenecks in this process is the successful release of embryo-like structures out of the exine wall of microspores. In the present work, morphological and biochemical studies were performed during the transition from multicellular structures to globular embryos. Exine wall rupture and subsequent globular embryo formation were observed only in microspores that divided asymmetrically. Independent divisions of the generative and the vegetative nuclei gave rise to heterogeneous multicellular structures, which were composed of two different cellular domains: small cells with condensed chromatin structure and large cells with normal chromatin structure. During exine wall rupture, the small cells died and their death marked the site of exine wall rupture. Cell death in the small cell domain showed typical features of plant programmed cell death. Chromatin condensation and DNA degradation preceded cell detachment and cytoplasm dismantling, a process that was characterized by the formation of vesicles and vacuoles that contained cytoplasmic material. This morphotype of programmed cell death was accompanied by an increase in the activity of caspase-3-like proteases. The orchestration of such a death program culminated in the elimination of the small generative domain, and further embryogenesis was carried out by the large vegetative domain. To date, this is the first report to show evidence that programmed cell death takes part in the development of microspore-derived embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号