首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Myosin from carp white muscle contains two mol of "DTNB" light chain (mol. wt 17 500 daltons) and two mol of "alkali" light chains (mol. wt 25 000 and 16 400 daltons). The three light chains have been isolated in pure state and characterized by electrofocusing, ultraviolet absorption, amino acid analysis and tryptic peptide mapping. Our results show a great homology between the two carp alkali light chains whereas LC2 seems chemically more different. But the homology of LC1 and LC3 is not so extensive as in the case of the higher vertebrate myosin.  相似文献   

2.
The turnover of myosin and actin in both muscle and non-muscle cells in culture was investigated. By the double-label criterion, myosin and actin were coordinately synthesized and degraded in replicating, mononucleated fibroblasts, chondrocytes, BUdR-suppressed myogenic cells, and in post-mitotic, multinucleated myotubes. Myosin and actin were among the most stable proteins in each cell type. In single label ‘pulse-chase’ experiments, the half-lives of myosin and actin in all replicating, mononucleated cells were 2.5–3 days; in myotubes, however, they were approx. 6 days. Myosin and actin labelled in replicating presumptive myoblasts and chased until the cells ceased replicating and fused into multinucleated myotubes retained the degradation rate of 3 days; this differed from Jhe rate of 6 days shown for myosin and actin newly-synthesized in post-mitotic myotubes. The type of myosin synthesized in the mother presumptive myoblast, then, is transmitted to the postmitotic daughters. This myosin, however, is more rapidly degraded than the definitive myosin that is synthesized in the myotube.  相似文献   

3.
Myosin from rabbit white skeletal muscle was treated with 10 mM EDTA in 150 mM phosphate buffer. After precipitation of myosin by dialysis against a 14-fold volume of water, EDTA-treated myosin, myosin before treatment and the supernatant from the treatment of myosin with EDTA were examined on sodium dodecyl sulphate-polyacrylamide gels by electrophoresis. It has been found that the quantity of LC2 light chains diminished after treatment with EDTA, and the supernatant contained the LC2 light chains. Treatment of myosin with EDTA in the presence of Mg2+ does not change the stoichiometry of the LC2 light chain and the supernatant is free from LC2 light chains. The treatment of myosin with p-chloromercuri-benzoate leads to dissociation of the same amount of LC2 light chains. It is suggested that divalent cations and thiol groups are engaged in the attachment of LC2 light chain to the myosin molecule.  相似文献   

4.
Changes in myosin and myosin light chain kinase during myogenesis   总被引:1,自引:0,他引:1  
Myosins and myosin light chain kinases have been isolated from a cloned line of myoblasts (L5/A10) as this cell line undergoes differentiation toward adult muscle. At least three myosin isozymes were obtained during this developmental process. Initially a nonmuscle type of myosin was found in the myoblasts. The molecular weights of the myoblast light chains were 20 000 and 15 000. Myosin isolated from early myotubes had light chains with molecular weights of 20 000 and 19 500. Myosin isolated from myotubes which contained sarcomeres had light chains with molecular weights of 23 000, 18 500, and 16 000. This last myosin was similar in light chain complement to adult rat thigh muscle. Two forms of the myosin light chain kinase activity were detected: a calcium-independent kinase in the myoblasts and a calcium-dependent kinase in the myotubes with sarcomeres. No myosin light chain kinase activity was detected in the early myotubes.  相似文献   

5.
The myosin light chains of cultured muscle cells and embryonic muscle tissue have been examined by two-dimensional gel electrophoresis. Myosin purified from primary cultures of rat muscle cells or the myogenic cell line L6 contain not only the light chains corresponding to those of fast twitch muscle but also another protein, differing slightly in molecular weight and isoelectric point from the adult LC1 protein. By a number of criteria this additional protein is shown to be a myosin light chain: (1) it is found in highly purified myosin preparations; (2) in L6 myosin it replaces the other LC1-type light chains in stoichiometric amounts; (3) it is part of the subfragment-1 complex of myosin produced by chymotrypsin. as expected for an LC1-type light chain. Total extracts of fused cultured muscle cells, when analyzed by two-dimensional electrophoresis, contain substantial amounts of this additional LC1-type protein, strongly suggesting that it is not a proteolytic fragment produced during myosin isolation. Unfused cultures do not synthesize detectable amounts of the adult light chains or the additional LC1-type light chain. This additional LC1 protein can be detected in embryonic or newborn muscle tissue but it is not present in adult myosin or myofibrils. These results indicate that a novel form of myosin light chain, referred to as an embryonic LC1 or LC1emb, is characteristic of the early stages of muscle development.  相似文献   

6.
The control of gene expression during terminal myogenesis was explored in heterokaryons between differentiated and undifferentiated myogenic cells by analyzing the formation of species specific myosin light chains of chick and rat skeletal muscle. Dividing L6 rat myoblasts served as the biochemically undifferentiated parent. The differentiated parental cells were mononucleated muscle cells (myocytes) that were obtained from primary cultures of embryonic chick thigh muscle by blocking myotube formation with EGTA and later incubating the postimitotic cells in cytochalasin B. Heterokaryons were isolated by the selective rescue of fusion products between cells previously treated with lethal doses of different cell poisons. 95-99% pure populations of heterokaryons formed between undifferentiated rat myoblasts and differentiated chick myocytes were obtained. The cells were labeled with [35S]methionine, and whole cell extracts were analyzed on two-dimensional polyacrylamide gels. These heterokaryons synthesize the light chain of chick myosin and both embryonic and adult light chains of rat skeletal myosin. Control homokaryons formed by fusing undifferentiated cells to themselves did not synthesize skeletal myosin light chains. Control heterokaryons formed between undifferentiated rat myoblasts and chick fibroblasts also failed to synthesize myosin light chains. These results indicate that differentiated chick muscle cells provide some factor that induces L6 myoblasts to synthesize rat myosin light chains. This system provides a model for investigating the processes by which differentiated cell functions are induced.  相似文献   

7.
《The Journal of cell biology》1985,101(5):1643-1650
We prepared monoclonal antibodies specific for fast or slow classes of myosin heavy chain isoforms in the chicken and used them to probe myosin expression in cultures of myotubes derived from embryonic chicken myoblasts. Myosin heavy chain expression was assayed by gel electrophoresis and immunoblotting of extracted myosin and by immunostaining of cultures of myotubes. Myotubes that formed from embryonic day 5-6 pectoral myoblasts synthesized both a fast and a slow class of myosin heavy chain, which were electrophoretically and immunologically distinct, but only the fast class of myosin heavy chain was synthesized by myotubes that formed in cultures of embryonic day 8 or older myoblasts. Furthermore, three types of myotubes formed in cultures of embryonic day 5-6 myoblasts: one that contained only a fast myosin heavy chain, a second that contained only a slow myosin heavy chain, and a third that contained both a fast and a slow heavy chain. Myotubes that formed in cultures of embryonic day 8 or older myoblasts, however, were of a single type that synthesized only a fast class of myosin heavy chain. Regardless of whether myoblasts from embryonic day 6 pectoral muscle were cultured alone or mixed with an equal number of myoblasts from embryonic day 12 muscle, the number of myotubes that formed and contained a slow class of myosin was the same. These results demonstrate that the slow class of myosin heavy chain can be synthesized by myotubes formed in cell culture, and that three types of myotubes form in culture from pectoral muscle myoblasts that are isolated early in development, but only one type of myotube forms from older myoblasts; and they suggest that muscle fiber formation probably depends upon different populations of myoblasts that co-exist and remain distinct during myogenesis.  相似文献   

8.
Mononucleated myoblasts and multinucleated myotubes were obtained by culturing embryonic chicken skeletal muscle cells. Comparison of total polysomes isolated from these mononucleated and multinucleated cell cultures by density gradient centrifugation and electron microscopy revealed that mononucleated myoblasts contain polysomes similar to those contained by multinucleated myotubes and large enough to synthesize the 200,000-dalton subunit of myosin. When placed in an in vitro protein-synthesizing assay containing [3H]leucine, total polysomes from both mononucleated and multinucleated myogenic cultures were active in synthesizing polypeptides indistinguishable from myosin heavy chains as detected by measurement of radioactivity in slices through the myosin band on sodium dodecyl sulfate (SDS)-polyacrylamide gels. Fractionation of total polysomes on sucrose density gradients showed that myosin-synthesizing polysomes from mononucleated myoblasts may be slightly smaller than myosin-synthesizing polysomes from myotubes. Multinucleated myotubes contain approximately two times more myosin-synthesizing polysomes per unit of DNA than mononucleated myoblasts, and the proportion of total polysomes constituted by myosin polysomes is only 1.2 times higher in multinucleated myotubes than it is in mononucleated myoblasts. The results of this study suggest that mononucleated myoblasts contain significant amounts of myosin messenger RNA before the burst of myosin synthesis that accompanies muscle differentiation and that a portion of this messenger RNA is associated with ribosomes to form polysomes that will actively translate myosin heavy chains in an in vitro protein-synthesizing assay.  相似文献   

9.
Development of chicken breast muscle is characterized by the sequential appearance of six electrophoretically distinct myosin heavy chain (HC) isoforms. Cultured secondary myotubes, derived from 12-day embryonic chick breast muscle, mainly express the early embryonic HC isoform HCemb/e, normally present in 8-day embryonic breast muscle, and the two fast light chain isoforms LC1f and LC2f. Direct low-frequency (2.5 Hz) stimulation of these myotubes via platinum electrodes leads to a shift in myosin HC expression with increases in the late embryonic HC isoform HCemb/l amounting to 35% of total HC in 19-day-stimulated cultures. Measurements of 35S-methionine incorporation and immunohistochemical analyses demonstrate increases in LC3f. This increase is also seen at the mRNA level. These results indicate that induced contractile activity promotes myotube maturation in vitro. The observation that chronic stimulation enhances the expression of the slow isoform LC2s at the RNA, as well as the protein level, suggests an additional effect consisting of a fast-to-slow change in phenotype expression. In view of the fact that muscle maturation and phenotype expression is under neural control during development in vivo, our results on directly stimulated, aneural myotubes indicate that neurally transmitted contractile activity may be an important factor in modulating phenotype expression of secondary myotubes.  相似文献   

10.
Myosin has been purified from the principal pancreatic islet of catfish, hog salivary gland, and hog pituitary. Use of the protease inhibitor Trasylol (FBA Pharmaceuticals, New York) was essential in the isolation of pituitary myosin. Secretory tissue myosins were very similar to smooth muscle myosin, having a heavy chain of 200,000 daltons and light chains of 14,000 and 19,000 daltons. Salivary gland myosin cross-reacted with antibodies directed toward both smooth muscle myosin and fibroblast myosin, but not with antiskeletal muscel myosin serum. The specific myosin ATPase activity measured in 0.6 M KCl was present. Tissues associated with secretion of hormone granules contained substantial amounts of this ATPase, rat pancreatic islets having 4.5 times that of rat liver. Activation of low ionic strength myosin ATPase by actin could not be demonstrated despite adequate binding of the myosin to muscle actin and elution by MgATP. The myosins were located primarily in the cytoplasm as determined by cell fractionation and were quite soluble in buffers of low ionic strength.  相似文献   

11.
The expression of myosin isoforms and their subunit composition in the white skeletal body musculature of Arctic charr (Salvelinus alpinus) of different ages (from 77-day embryos until about 5 years old) was studied at the protein level by means of electrophoretic techniques. Myosin from the white muscle displayed three types of light chain during all the developmental stages examined: two myosin light chains type 1 (LC1F) differing in both apparent molecular mass and pI, one myosin light chain type 2 (LC2F) and one myosin light chain type 3 (LC3F). The fastest-migrating form of LC1F seemed to be predominant during the embryonic and eleutheroembryonic periods. The slowest-migrating form of LC1F was predominant in the 5-year-old fish. Between 1 year and 4 years, both types of LC1F were present in similar amounts. Cardiac as well as red muscle myosin from 3-year-old fish had two types of light chain. The myosin light chains from atria and ventriculi were indistinguishable by two-dimensional electrophoresis, but were different from the myosin light chains from red muscle. Neither the light chains from cardiac nor red muscle were coexpressed with the myosin light chains of white muscle at any of the developmental stages examined. Two myosin heavy chain bands were resolved by SDS/glycerol/polyacrylamide gel electrophoresis of the extract from embryos. One of the bands was present in minor amounts. The other, and most abundant, band comigrated with the only band found in the extracts of white muscle myosin from older fish. One-dimensional Staphylococcus aureus V8 protease peptide mapping of these bands revealed some differences during development of the white muscle tentatively interpreted as follows. The myosin heavy chain band present in minor amounts in the embryos may represent an early embryonic form that is replaced by a late embryonic or foetal form in the eleutheroembryos. The foetal myosin heavy chain appears to be present until the resorption of the yolk sack and beginning of the free-swimming stage. A new form of myosin heavy chain, termed neonatal and probably expressed around hatching, is present until about 1 year of age.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
1. Myosin from the thin-filament regulated flexor muscle of lobster contains 2 moles of each of 2 light chains. 2. The Lb 1 light chain of 19,000 daltons which can be removed by DTNB is heavier than the DTNB light chain of chicken. The Lb 2 light chain of 17,000 daltons can be removed with urea. 3. On electrophoresis in 8 M urea (pH 8.7) the Lb 2 light chain migrates with a mobility similar to that of chicken A2, but the Lb 1 migrates significantly faster than any of the chicken light chains. 4. In lobster, the DTNB treatment destroys the Ca and K-EDTA ATPase activity of lobster myosin.  相似文献   

13.
IGF-1 induces human myotube hypertrophy by increasing cell recruitment   总被引:1,自引:0,他引:1  
Insulin-like growth factor-1 (IGF-1) has been shown in rodents (i) in vivo to induce muscle fiber hypertrophy and to prevent muscle mass decline with age and (ii) in vitro to enhance the proliferative life span of myoblasts and to induce myotube hypertrophy. In this study, performed on human primary cultures, we have shown that IGF-1 has very little effect on the proliferative life span of human myoblasts but does delay replicative senescence. IGF-1 also induces hypertrophy of human myotubes in vitro, as characterized by an increase in the mean number of nuclei per myotube, an increase in the fusion index, and an increase in myosin heavy chain (MyHC) content. In addition, muscle hypertrophy can be triggered in the absence of proliferation by recruiting more mononucleated cells. We propose that IGF-1-induced hypertrophy can involve the recruitment of reserve cells in human skeletal muscle.  相似文献   

14.
Myosin purified from the abdominal flexor muscle of the lobster, Homarus americanus, has a number average length of 1559 +/- 218 A, a rod like tail 1335 A long and a globular head 225 X 45 A as determined from electron microscopic observations on platinum shadowed preparations. The mass of the molecule was determined to be ca. 486,000 daltons from high speed equilibrium centrifugation studies at neutral and alkaline pH, and by SDS-acrylamide gel electrophoresis. Both sedimentation equilibrium centrifuge studies at alkaline pH and SDS-acrylamide gel electrophoresis experiments, indicate that the molecule contains a heavy chain core (two polypeptide chains weighing ca. 210,000 daltons each) and ca. four light chains of two weight classes (ca. 16,000 and 20,000 daltons). The amino acid composition of the myosin was determined. The specific activities of the Mg2+ -activated, K+/EDTA-activated, and Ca2+ -activated ATPases of the myosin were determined. Kinetic analysis of the digestion of lobster myosin with trypsin suggests that lobster myosin contains three classes of lysine and arginine residues; slowly split (k = 2.07 +/- 0.31 X 10(-2) moles/min2), rapidly split (k = 11.0 +/- 1.83 X 10(-2) moles/min2) and trypsin insensitive. There are 187 +/- 22 slowly split residues, 280 +/- 35 rapidly split residues, and 144 +/- 41 trypsin insensitive bonds per molecule. Comparison of these molecular parameters with those for the vertebrate skeletal muscle myosin indicates that the two myosins are similar in terms of mass, shape and overall polypeptide chain composition but may be considerably different in terms of local polypeptide chain conformation or composition.  相似文献   

15.
This work aimed to determine whether the heavy chains of myosin from different striated muscle were phosphorylated. Myosin and its heavy chains were prepared from cardiac and skeletal muscles of rats injected in vivo with radioactive phosphates.The results for radioactive phosphate localization indicate the absence of phosphate from pure heavy chains and from any of their purified fragments, whatever the striated muscle used. In addition, phosphates are present in the myosin phosphorylated light chain and in a contaminating protein closely associated to the myosin heavy chain.  相似文献   

16.
Regenerating areas of adult chicken fast muscle (pectoralis major) and slow muscle (anterior latissimus dorsi) were examined in order to determine synthesis patterns of myosin light chains, heavy chains and tropomyosin. In addition, these patterns were also examined in muscle cultures derived from satellite cells of adult fast and slow muscle. One week after cold-injury the regenerating fast muscle showed a pattern of synthesis that was predominately embryonic. These muscles synthesized the embryonic myosin heavy chain, beta-tropomyosin and reduced amounts of myosin fast light chain-3 which are characteristic of embryonic fast muscle but synthesized very little myosin slow light chains. The regenerating slow muscle, however, showed a nearly complete array of embryonic peptides including embryonic myosin heavy chain, fast and slow myosin light chains and both alpha-fast and slow tropomyosins. Peptide map analysis of the embryonic myosin heavy chains synthesized by regenerating fast and slow muscles showed them to be identical. Thus, in both muscles there is a return to embryonic patterns during regeneration but this return appears to be incomplete in the pectoralis major. By 4 weeks postinjury both regenerating fast and slow muscles had stopped synthesizing embryonic isoforms of myosin and tropomyosin and had returned to a normal adult pattern of synthesis. Adult fast and slow muscles yielded a satellite cell population that formed muscle fibers in culture. Fibers derived from either population synthesized the embryonic myosin heavy chain in addition to alpha-fast and beta-tropomyosin. Thus, muscle fibers derived in culture from satellite cells of fast and slow muscles synthesized a predominately embryonic pattern of myosin heavy chains and tropomyosin. In addition, however, the satellite cell-derived myotubes from fast muscle synthesized only fast myosin light chains while the myotubes derived from slow muscle satellite cells synthesized both fast and slow myosin light chains. Thus, while both kinds of satellite cells produced embryonic type myotubes in culture the overall patterns were not identical. Satellite cells of fast and slow muscle appear therefore to have diverged from each other in their commitment during maturation in vivo.  相似文献   

17.
Aorta smooth myosin contains two types of light chain, LC20 and LC17, which fold together with the N-terminal region of each heavy chain to form the globular head region of myosin. We demonstrate an altered conformation of LC20 after its separation from heavy chain by high concentrations of urea, on the basis of the following evidende: 1) A polyclonal antibody against LC20 was not able to recognize this conformationally altered form; 2) Myosin reconstituted from heavy chains and urea-dissociated light chains exhibited extremely low ATPase activity. Circular dichroism unfolding profiles showed that light chains dissociated from heavy chains by SDS appeared to be more stable than those generated by urea dissociation.  相似文献   

18.
Visualization of myosin in living cells   总被引:18,自引:11,他引:7       下载免费PDF全文
Myosin light chains labeled with rhodamine are incorporated into myosin-containing structures when microinjected into live muscle and nonmuscle cells. A mixture of myosin light chains was prepared from chicken skeletal muscle, labeled with the fluorescent dye iodoacetamido rhodamine, and separated into individual labeled light chains, LC-1, LC-2, and LC-3. In isolated rabbit and insect myofibrils, the fluorescent light chains bound in a doublet pattern in the A bands with no binding in the cross-bridge-free region in the center of the A bands. When injected into living embryonic chick myotubes and cardiac myocytes, the fluorescent light chains were also incorporated along the complete length of the A band with the exception of the pseudo-H zone. In young myotubes (3-4 d old), myosin was localized in aperiodic as well as periodic fibers. The doublet A band pattern first appeared in 5-d-old myotubes, which also exhibited the first signs of contractility. In 6-d and older myotubes, A bands became increasingly more aligned, their edges sharper, and the separation between them (I bands) wider. In nonmuscle cells, the microinjected fluorescent light chains were incorporated in a striated pattern in stress fibers and were absent from foci and attachment plaques. When the stress fibers of live injected cells were disrupted with DMSO, fluorescently labeled myosin light chains were present in the cytoplasm but did not enter the nucleus. Removal of the DMSO led to the reformation of banded, fluorescent stress fibers within 45 min. In dividing cells, myosin light chains were concentrated in the cleavage furrow and became reincorporated in stress fibers after cytokinesis. Thus, injected nonmuscle cells can disassemble and reassemble contractile fibers using hybrid myosin molecules that contain muscle light chains and nonmuscle heavy chains. Our experiments demonstrate that fluorescently labeled myosin light chains from muscle can be readily incorporated into muscle and nonmuscle myosins and then used to follow the dynamics of myosin distribution in living cells.  相似文献   

19.
Differentiation of quail myoblasts, isolated from thigh pectoralis and anterior latissimus dorsi muscle, was analyzed in primary cultures and in cultures obtained following repeated subculturing. Our study shows that quail myoblasts can survive many generations without losing their ability to form myotubes. However, during these subcultures the cells progressively express a new phenotype. This phenotype is characterized by a mixture of myosin light chains such that LC1F, LC2F, and LC2S are present in roughly equimolar amounts, each accounting for 25 to 30% of the total light chain synthesis while LC1S accounts for the remaining 10 to 15%, and by a mixture of fast and slow alpha tropomyosin in which alpha S accounts for 10 to 15% of the alpha subunits synthesis. Clonal analysis indicates that all cells in the population express this phenotype which is also characteristic of subcultures obtained from both future fast and slow muscles. Relationships between this phenotype and muscle development are discussed.  相似文献   

20.
Vascular smooth muscle cell contraction and relaxation are directly related to the phosphorylation state of the regulatory myosin light chain. Myosin light chains are dephosphorylated by myosin phosphatase, leading to vascular smooth muscle relaxation. Myosin phosphatase is localized not only at actin-myosin stress fibers where it dephosphorylates myosin light chains, but also in the cytoplasm and at the cell membrane. The mechanisms by which myosin phosphatase is targeted to these loci are incompletely understood. We recently identified myosin phosphatase-Rho interacting protein as a member of the myosin phosphatase complex that directly binds both the myosin binding subunit of myosin phosphatase and RhoA and is localized to actin-myosin stress fibers. We hypothesized that myosin phosphatase-Rho interacting protein targets myosin phosphatase to the contractile apparatus to dephosphorylate myosin light chains. We used RNA interference to silence the expression of myosin phosphatase-Rho interacting protein in human vascular smooth muscle cells. Myosin phosphatase-Rho interacting protein silencing reduced the localization of the myosin binding subunit to stress fibers. This reduction in stress fiber myosin phosphatase-Rho interacting protein and myosin binding subunit increased basal and lysophosphatidic acid-stimulated myosin light chain phosphorylation. Neither cellular myosin phosphatase, myosin light chain kinase, nor RhoA activities were changed by myosin phosphatase-Rho interacting protein silencing. Furthermore, myosin phosphatase-Rho interacting protein silencing resulted in marked phenotypic changes in vascular smooth muscle cells, including increased numbers of stress fibers, increased cell area, and reduced stress fiber inhibition in response to a Rho-kinase inhibitor. These data support the importance of myosin phosphatase-Rho interacting protein-dependent targeting of myosin phosphatase to stress fibers for regulating myosin light chain phosphorylation state and morphology in human vascular smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号