首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
A mathematical treatment is presented for the dependence of enzyme activity loss on the numbers and reactivities of the groups essential for catalytic function, when enzyme protein modification is carried out by the use of concentrations of protein reactive groups well in excess of that of modifying agent. Experimentally obtained data on the modification of rhodanese (thiosulphate sulphurtransferase, EC 2.8.1.1) by 2,4,6-trinitrobenzenesulphonic acid are presented, and it is shown that, at pH9.00, the fractional concentration of rhodanese groups, or of rhodanese group reactivities, essential for enzyme catalytic function is 0.88; this value is found to decrease with decreasing pH of the reaction medium. The possibility that rhodanese inactivation by 2,4,6-trinitrobenzenesulphonic acid is brought about by modification of groups other than amino groups is ruled out by a comparison of the enzyme-inactivation and protein-modification stoichiometries, for putative reaction models for enzyme and modifying agent.  相似文献   

2.
Bovine liver rhodanese (thiosulphate sulphurtransferase, EC 2.8.1.1) is modified by 2,4,6-trinitrobenzenesulphonic acid, by the use of modifying agent concentrations in large excess over enzyme protein concentration. The end-point of the reaction, viz., the number, n, per enzyme protein molecule, of modifiable amino groups was determined graphically by the Kézdy-Swinbourne procedure. It was found that the value for n depends on the pH of the reaction medium, and ranges from 2, at pH 7.00, to 10.66, at pH 9.00. Again, the value for n increases with an increase in the concentration of 2,4,6-trinitrobenzenesulphonic acid used, with values ranging from 3.52, at 0.10 mM modifying agent, to 8.96, at 2 mM modifying agent. Rhodanese primary amino groups modification by 2,4,6-trinitrobenzenesulphonic acid is described by a summation of exponential functions of reaction time at pH values of 8.00 or higher, while at lower pH values it is described by a single exponential function of reaction time. However, the log of the first derivative, at initial reaction conditions, of the equation describing protein modification, is found to be linearly dependent on the pH of the reaction. An identical linear dependence is also found when the log of the first derivative, at the start of the reaction, of the equation describing modification-induced enzyme inactivation is plotted against the pH values of the medium used. In consequence, the fractional concentration of rhodanese modifiable amino groups essential for enzyme catalytic function is equal to unity at all reaction pH values tested. It is accordingly concluded that, when concentrations of 2,4,6-trinitrobenzenesulphonic acid in excess of protein concentration are used, all rhodanese modifiable amino groups are essential for enzyme activity. A number of approaches were used in order to establish a mechanism for the modification-induced enzyme inactivation observed. These approaches, all of which proved to be negative, include the possible modification of enzyme sulfhydryl groups, disulphide bond formation, enzyme inactivation due to sulphite released during modification, modification-induced enzyme protein polymerization, syncatalytic enzyme modification and hydrogen peroxide-mediated enzyme inactivation.  相似文献   

3.
1. Modification with 2,4,6-trinitrobenzenesulphonic acid was studied for its effect on the structure, activity and response to regulatory effectors of ox liver glutamate dehydrogenase. 2. The modification affected amino groups only, and the relative reactivities of the amino groups of the enzyme are described. 3. A biphasic inactivation of the enzyme was observed and analysis of the course of inactivation and of modification showed that the rapid reaction of one amino group/subunit leads to loss of 80% of the enzymic activity. 4. NADH retarded the inactivation by 2,4,6-trinitrobenzenesulphonic acid, the protection increasing with NADH concentration. This, together with the previous observation, suggests that the rapidly reacting group is essential for the activity of the enzyme. 5. The effects of modification on the optical-rotatory-dispersion and sedimentation behaviour of the enzyme were studied. 6. The enzyme's response to the allosteric effector GTP was rapidly lost on modification, whereas its response to ADP was unaffected. Comparison of the inactivation and desensitization suggests that the reactive amino group is essential for both activity and GTP response, and that only a completely unmodified enzyme oligomer responds fully to GTP. 7. The merits of chemical-modification studies of large enzymes are discussed critically in connexion with the interpretation of these results.  相似文献   

4.
The measurement of amino groups in proteins and peptides   总被引:10,自引:3,他引:7  
A technique is examined for determining amino groups with 2,4,6-trinitrobenzenesulphonic acid, in which the extinction at 420nm of sulphite complexes of the trinitrophenylated amino groups is measured. The sensitivity of the method is 5-200nmol of amino group. The method is especially suitable for checking the extent of blocking or unblocking of amino groups in proteins and peptides, owing to the short time required for reaction (5min at room temperature). The reaction of the reagent with thiol groups has been studied and was found to proceed 30-50 times faster than with in-amino groups of model compounds. The in(420) of a trinitrophenylated thiol group was found to be 2250m(-1).cm(-1). The reaction with several amino acids, peptides and proteins is presented. The in(420) of a typical alpha-amino group was found to be 22000m(-1).cm(-1) and that of an in-amino group, 19200m(-1).cm(-1). Difficulties inherent in the analysis of constituent amino group reactions in proteins are discussed.  相似文献   

5.
Human serum albumin has been modified with 2,4,6-trinitrobenzenesulphonic acid and picryl chloride in low ratios of reagents/albumin. The derivatives have been investigated by spectrophotometry and by thin layer chromatography of the hydrolysates in order to assess the specificity of the reagents. The same reaction conditions were used to modify albumin previously complexed with bilirubin in the ratio of 1:1. The affinity of bilirubin to the modified albumins was estimated by an improved perozidase method. It is concluded that TNBS and picryl chloride react almost quantity with epsilon-amino groups of lysine on the albumin molecule. The results also suggest that at least on TNBS reactive amino group and at least one picryl chloride reactive amino group are located in or near the high-affinity bilirubin binding site.  相似文献   

6.
Pigeon liver fatty acid synthetase was inactivated irreversibly by 2,4,6-trinitrobenzenesulphonic acid (TNBS). Biphasic inactivation of the enzyme was observed with the inhibitor. NADPH provided protection to the enzyme against inactivation by TNBS and the extent of protection increased with NADPH concentration indicating that the essential lysine residues are present at the NADPH binding site. The stoichiometric results with TNBS showed that 4 mol of lysine residues are modified per mole of fatty acid synthetase upon complete inactivation. The rapid reaction of two amino groups per enzyme molecule led to the loss of 60% of the enzyme activity. These approaches suggested that two lysine residues present at the active site are essential for the enzymatic activity of fatty acid synthetase.  相似文献   

7.
1. A particulate Na(+)+K(+)-stimulated adenosine triphosphatase preparation obtained by treatment of bovine cerebral microsomes with a sodium iodide reagent has been further treated with acid anhydrides likely to convert amino groups into acidic derivatives. 2. The extent of acylation of amino groups was determined by reaction of the remaining amino groups with 2,4,6-trinitrobenzenesulphonic acid. The unmodified preparation contains about 1.2 muequiv. of amino groups/mg of protein of which only about 0.5 muequiv. are accounted for by protein amino groups. Kinetics of the trinitrobenzenesulphonic acid reaction with the unmodified preparation are complex and are altered by ATP or ouabain. 3. The compounds examined cause loss of Na(+)+K(+)-stimulated adenosine triphosphatase activity when relatively few amino groups are modified but ATP was found to afford partial protection against inactivation by methylmaleic anhydride. Na(+)+K(+)-stimulated adenosine triphosphatase activity is partly restored to the dimethylmaleylated preparation by hydrolysis of the dimethylmaleyl-amide bonds but not if more than about 20% of the amino groups have been acylated. 4. Supernatants obtained by high-speed centrifugation of the dimethylmaleylated preparation contained up to 45% of the total protein with less than 10% of the total phospholipid. Methylmaleyl and benzenetricarboxylyl derivatives of the enzyme preparation behaved similarly but tetrafluorosuccinylated material was almost entirely deposited by centrifugation.  相似文献   

8.
Two NH2-reactive probes (2,4,6-trinitrobenzesulphonic acid and 1-fluoro-2,4-dinitrobenzene) were used to study the vectorial orientation of the membrane-associated free NH2 groups across pig gastric microsomal vesicles. Unlike 1-fluoro-2,4-dinitrobenzene, 2,4,6-trinitrobenzenesulphonic acid is ordinarily an impermeant probe that becomes permeant in the presence of K+ and valinomycin. Although 2,4,6-trinitrobenzenesulphonic acid alone reacts with about 28% of the total microsomal phosphatidylethanolamine, 2,4,6-trinitrobenzenesulphonic acid in the presence of valinomycin plus K+ or 1-fluoro-2,4-dinitrobenzene alone reacted with 75% of the phosphatidyl- ethanolamine. Under similar conditions the free NH2 groups associated with the microsomal proteins also exhibited an asymmetric labeling pattern, the intra- and extravesicular orientation being 74 and 26% respectively.  相似文献   

9.
Glyoxalase I ((R)-S-lactoylglutathione methylglyoxal-lyase (isomerizing), EC 4.4.1.5) from monkey intestinal mucosa was purified to homogeneity. The purified enzyme had a molecular weight of 48,000, composed of two apparently identical subunits. Active-site modification was carried out on the purified enzyme in presence and absence of S-hexylglutathione, a reversible competitive inhibitor of glyoxalase I. Modification by tetranitromethane and N-acetylimidazole caused inactivation of the enzyme. Inactivation by N-acetylimidazole was reversible with hydroxylamine treatment, suggesting the importance of tyrosine residues for the activity of the enzyme. The enzyme was inactivated by 2-hydroxy-5-nitrobenzyl bromide, N-bromosuccinimide, 2,4,6-trinitrobenzenesulphonic acid, pyridoxal phosphate and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, indicating the importance of tryptophan, lysine and glutamic acid/aspartic acid residues for the activity of the enzyme. The enzyme was inactivated by diethyl pyrocarbonate and the activity was not restored by hydroxylamine treatment, suggesting that histidine residues may not be important for activity. Modification by N-ethylmaleimide and p-hydroxymercuribenzoate did not affect its activity, indicating that sulphydryl groups may not be important for activity. These studies indicated that the amino acids present in the active site of glyoxalase I from intestinal mucosa which may be important for activity are tyrosine, tryptophan, lysine and glutamic acid/aspartic acid residues.  相似文献   

10.
Pigeon liver fatty acid synthetase (FAS) was inactivated irreversibly by stoichiometric concentration of o-phthalaldehyde exhibiting a bimolecular kinetic process. FAS-o-phthalaldehyde adduct gave a characteristic absorption maxima at 337 nm. Moreover this derivative showed fluorescence emission maxima at 412 nm when excited at 337 nm. These results were consistent with isoindole ring formation in which the -SH group of cysteine and epsilon-NH2 group of lysine participate in the reaction. The inactivation is caused by the reaction of the phosphopantetheine -SH group since it is protected by either acetyl- or malonyl-CoA. The enzyme incubated with iodoacetamide followed by o-phthalaldehyde showed no change in fluorescence intensity but decrease in intensity was found in the treatment of 2,4,6-trinitrobenzenesulphonic acid (TNBS), a lysine specific reagent with the enzyme prior to o-phthalaldehyde addition. As o-phthalaldehyde did not inhibit enoyl-CoA reductase activity, so nonessential lysine is involved in the o-phthalaldehyde reaction. Double inhibition experiments showed that 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), a thiol specific reagent, binds to the same cysteine which is also involved in the o-phthalaldehyde reaction. Stoichiometric results indicated that 2 moles of o-phthalaldehyde were incorporated per mole of enzyme molecule upon complete inactivation.  相似文献   

11.
A rapid micro-test using 2,4,6-trinitrobenzenesulphonic acid has been developed to detect incomplete coupling reactions in solid phase peptide synthesis. This new test will detect 3 nmol of free amino groups per milligram of resin.  相似文献   

12.
The enzymatic hydrolysis of polyamide fibres yields amino and carboxylic groups. These groups can be found in solution treatments as polyamide monomers and soluble oligomers. The amino groups can also be found at the surface of the fibres as end group chains. In this paper we report two methods to quantify the formation of these groups as a result of the enzymatic action. Soluble amino groups can be quantified with 2,4,6-trinitrobenzenesulfonic acid (TNBS), which yields a coloured complex which can be determined spectrophotometrically. The amino groups on the fibre surface can be quantified by reaction with a wool reactive dye and determination of colour intensities after a dyeing procedure below the glass transition temperature of polyamide.  相似文献   

13.
Sphericanl macroporous reactive carriers capable of forming covalent bonds with amino acids and proteins were prepared by the suspension copolymerization of 2-hydroxyethyl methacrylate, ethylene dimethacrylate and p-nitrophenyl esters of methacrylic acid and methacryloyl derivatives of glycine, beta-alanine and epsilon-aminocaproic acid. The effect of the spacer length, pH and the type of the buffer used, concentration of reactive groups in the copolymer, concentration of the ligand and the participation of the hydrolytic and aminolytic reaction of p-nitrophenyl functional groups in the attachment of glycine, D,L-phenylalanine and serumalbumin was studied. Macroporous copolymers containing reactive functional groups can be used as active enzyme carriers, if their activity is not blocked by the presence of p-nitrophenol split off in the attachment reaction.  相似文献   

14.
N-Hydroxysulfosuccinimide esters are reactive functional groups employed in a variety of protein modification reagents, especially cross-linking reagents. For these compounds, hydrolysis is the most important reaction competing for reaction of the esters with nucleophilic groups in proteins. We have employed model compounds to investigate the rates of hydrolysis of N-hydroxysulfosuccinimide esters and their reactions with the alpha-amino group and the side chains of naturally occurring amino acids, under conditions comparable to those used for protein modification studies. The rats of hydrolysis observed were found to be very low, as compared with their rates of reaction with nitrogen nucleophiles found in proteins. Further, within the ranges investigated, the rate of aminolysis was observed to increase more rapidly than the rate of hydrolysis with increasing pH or with increasing temperature. Four amino acid side chains and the alpha-amino group were found to react measurably with N-hydroxysulfosuccinimide esters. At pH 7.4 and room temperature, the order of reactivity was found to be N alpha-Cbz-histidine greater than N alpha-Cbz-lysine approximately phenylalanine (alpha-amino group) much greater than N-acetylcysteine approximately N-acetyltyrosine; however, the acylimidazole adduct formed with the side chain of histidine was found to be a transient product, subject to hydrolysis or reaction with another nucleophile.  相似文献   

15.
Low-molecular modification of proteolytic enzymes with aldehydes and anhydrides of carboxylic acids as well as with 2,4,6-trinitrobenzene sulphonic acid was studied. Specific activities of the enzymes were found to be dependent on the modification degree of their amino groups. The retaining of high activities in the region of low extents of enzyme modification enabled biocatalysts with activities similar to those of the native enzymes to be prepared.  相似文献   

16.
Summary About 30 per cent of organic soil nitrogen can be hydrolized with HCl to amino acids; about 30 per cent is nonhydrolizable. In contrast to this high content of amino acid nitrogen is the small availability of the nitrogen to micro-organisms. In light of the theory proposing a reaction between the -amino group of amino acids or peptides and quinones formed during oxidation of lignin degradation products or other phenolic compound, different types of phenols were oxidized by phenolases in presence of amino acid compounds.It could be shown that the reaction of binding of nitrogen started at pH values higher than 6.5, and that only such phenols reacted which had no methoxylated hydroxyl groups. The reaction of some phenols during oxidation in presence of amino acids was accompanied by deamination and decarboxylation of the latter.The reaction products of phenols with amino acids were stable against hydrolysis. Using peptides it was found that all amino acids, except the N-terminal which is bound to oxidized phenols, could be hydrolyzed normally.With serum albumin it could be shown that there is a reaction with the amino group of the N-terminal amino acid and also with the -amino group of lysine residues with phenols during oxidation. The reacted protein seemed to be degraded normally with a protease ofBacillus subtilis.Guest Scientist as Fulbright Research Scholar from the Agronomy Department of the Iowa State University, Ames, Iowa, U.S.A.  相似文献   

17.
The use of 2,4,6-trinitrobenzenesulfonic acid (TNBS) as a reagent for determining the concentrations of amines has been widely accepted (1–3) since its introduction in 1960 by Satakeet al. (4). The original procedure has since been modified by Mokrasch (5) to permit the determination of amines, amino acids, and proteins in mixtures. In both procedures the trinitrophenylation reaction is followed by a quenching step, after which the amino content is related to the increase in absorbance at 340 nm (4) or 420 nm (5). We have studied the trinitrophenylation reaction and have found that amino content can be related directly to the absorbance of the trinitrophenylation reaction mixture after a relatively short incubation period (15–30 min). Therefore, it is unnecessary to quench this reaction. We describe herein an extremely convenient procedure for the determination of amines, amino acids, and proteins where the quenching step employed by previous investigators has been eliminated. The proposed method has a greater sensitivity than previously described techniques employing TNBS.  相似文献   

18.
Stadtman ER  Levine RL 《Amino acids》2003,25(3-4):207-218
Summary. We summarize here results of studies designed to elucidate basic mechanisms of reactive oxygen (ROS)-mediated oxidation of proteins and free amino acids. These studies have shown that oxidation of proteins can lead to hydroxylation of aromatic groups and aliphatic amino acid side chains, nitration of aromatic amino acid residues, nitrosylation of sulfhydryl groups, sulfoxidation of methionine residues, chlorination of aromatic groups and primary amino groups, and to conversion of some amino acid residues to carbonyl derivatives. Oxidation can lead also to cleavage of the polypeptide chain and to formation of cross-linked protein aggregates. Furthermore, functional groups of proteins can react with oxidation products of polyunsaturated fatty acids and with carbohydrate derivatives (glycation/glycoxidation) to produce inactive derivatives. Highly specific methods have been developed for the detection and assay of the various kinds of protein modifications. Because the generation of carbonyl derivatives occurs by many different mechanisms, the level of carbonyl groups in proteins is widely used as a marker of oxidative protein damage. The level of oxidized proteins increases with aging and in a number of age-related diseases. However, the accumulation of oxidized protein is a complex function of the rates of ROS formation, antioxidant levels, and the ability to proteolytically eliminate oxidized forms of proteins. Thus, the accumulation of oxidized proteins is also dependent upon genetic factors and individual life styles. It is noteworthy that surface-exposed methionine and cysteine residues of proteins are particularly sensitive to oxidation by almost all forms of ROS; however, unlike other kinds of oxidation the oxidation of these sulfur-containing amino acid residues is reversible. It is thus evident that the cyclic oxidation and reduction of the sulfur-containing amino acids may serve as an important antioxidant mechanism, and also that these reversible oxidations may provide an important mechanism for the regulation of some enzyme functions.  相似文献   

19.
1. The reaction of phenylglyoxal (PGO), glyoxal (GO), and methylglyoxal (MGO) with amino acids were investigated at mild pH values at 25 degrees. These aldehydes reacted most rapidly with arginine and the rate of reaction increased with increasing pH values. Histidine, cystine, glycine, tryptophan, asparagine, glutamine, and lysine reacted with these aldehydes at significant but various rates, depending on the pH and the kind of the reagent used. The reactions with these amino acids seemed to involve both the alpha-amino groups and the side chain groups, and no significant reaction appeared to occur with the side chain alone except with those of arginine, lysine, and cysteine. These reagents were similarly reactive with the guanidinium group of arginine, but PGO appeared to be much less reactive with the epsilone-amino group of lysine than MGO and GO. The other ordinary amino acids were very much less reactive or did not react at all with these reagents, with the exception of cysteine. 2. Di-PGO-L-arginine was prepared from Nalpha-benzyloxycarbonyl-L-arginine, and di-PGO-methylguanidine from methylguanidine, and the stoichiometry of the reaction of two PGO molecules with one guanidino group was confirmed. A glyoxal derivative of L-arginine (GO-arginine) was prepared by reaction of glyoxal with arginine. GO-arginine was fairly unstable, especially at higher pH values. A similar derivative (MGO-arginine) was also found to be formed by reaction of MGO with L-arginine, and was similarly unstable. These derivatives, however, did not regenerate arginine upon acid hydrolysis.  相似文献   

20.
Abstract: The terminal phosphate group of ATP was transferred to ADP by an enzyme present in the soluble core proteins of adrenal medulla catecholamine storage vesicles. It was purified 10–30-fold by DEAE Sephadex chromatography (Fraction I). The enzyme required divalent metal ions for activation; Mn2+ was almost as effective as Mg2+, but Ca2+ was only a weak activator. Activation by Mg2+ took place over a very narrow concentration range (0.5–3 m m ). The specificity of the enzyme activity to nucleoside triphosphates was broad, to the nucleoside diphosphates narrow, favouring adenosine diphosphate. In dependence on the pH the activity increased from pH 4 to pH 7 and remained constantly high between pH 7 and 9. The Arrhenius plot was linear between 5 and 70°C, with an activation energy of 11.1 kcal/mol. The phosphoryl group transfer reaction depended on the function of thiol groups; p -hydroxymercuribenzoate inhibited 50% of the enzyme activity; dithioerythritol reactivated it completely. Gel electrophoresis revealed that in Fraction I, a protein of molecular weight about 45,000, was enriched compared with the total soluble proteins. The enzyme-enriched Fraction I differed significantly in its relative amino acid composition from that of the total soluble proteins; in general, the acidic amino acids were reduced and the more basic acids enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号