首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 231 毫秒
1.
We previously identified a conserved multiprotein complex that includes hMre11 and hRad50. In this study, we used immunofluorescence to investigate the role of this complex in DNA double-strand break (DSB) repair. hMre11 and hRad50 form discrete nuclear foci in response to treatment with DSB-inducing agents but not in response to UV irradiation. hMre11 and hRad50 foci colocalize after treatment with ionizing radiation and are distinct from those of the DSB repair protein, hRad51. Our data indicate that an irradiated cell is competent to form either hMre11-hRad50 foci or hRad51 foci, but not both. The multiplicity of hMre11 and hRad50 foci is much higher in the DSB repair-deficient cell line 180BR than in repair-proficient cells. hMre11-hRad50 focus formation is markedly reduced in cells derived from ataxia-telangiectasia patients, whereas hRad51 focus formation is markedly increased. These experiments support genetic evidence from Saccharomyces cerevisiae indicating that Mre11-Rad50 have roles distinct from that of Rad51 in DSB repair. Further, these data indicate that hMre11-hRad50 foci form in response to DNA DSBs and are dependent upon a DNA damage-induced signaling pathway.  相似文献   

2.
Yuan SS  Su JH  Hou MF  Yang FW  Zhao S  Lee EY 《DNA Repair》2002,1(2):137-142
Cancer-prone diseases ataxia-telangiectasia (AT), Nijmegen breakage syndrome (NBS) and ataxia-telangiectasia-like disorder (ATLD) are defective in the repair of DNA double-stranded break (DSB). On the other hand, arsenic (As) has been reported to cause DSB and to be involved in the occurrence of skin, lung and bladder cancers. To dissect the repair mechanism of As-induced DSB, wild type, AT and NBS cells were treated with sodium arsenite to study the complex formation and post-translational modification of Rad50/NBS1/Mre11 repair proteins. Our results showed that Mre11 went through cell cycle-dependent phosphorylation upon sodium arsenite treatment and this post-translational modification required NBS1 but not ATM. Defective As-induced Mre11 phosphorylation was rescued by reconstitution with full length NBS1 in NBS cells. Although As-induced Mre11 phosphorylation was not required for Rad50/NBS1/Mre11 complex formation, it might be required for the formation of Rad50/NBS1/Mre11 nuclear foci upon DNA damage.  相似文献   

3.
The Nijmegen breakage syndrome (NBS), a chromosomal instability disorder, is characterized in part by cellular hypersensitivity to ionizing radiation. Repair of DNA double-strand breaks by radiation is dependent on a multifunctional complex containing Rad50, Mre11, and the NBS1 gene product, p95 (NBS protein, nibrin). The role of p95 in these repair processes is unknown. Here it is demonstrated that Mre11 is hyperphosphorylated in a cell cycle-independent manner in response to treatment of cells with genotoxic agents including gamma irradiation. This response is abrogated in two independently established NBS cell lines that have undetectable levels of the p95 protein. NBS cells are also deficient for radiation-induced nuclear foci containing Mre11, while those with Rad51 are unaffected. An analysis of the kinetic relationship between Mre11 phosphorylation and the appearance of its radiation-induced foci indicates that the former precedes the latter. Together, these data suggest that specific phosphorylation of Mre11 is induced by DNA damage, and p95 is essential in this process, perhaps by recruiting specific kinases.  相似文献   

4.
5.
Mre11, Rad50, and Nbs1form a tight complex which is homogeneously distributed throughout the nuclei of mammalian cells. However, after irradiation, the Mre11/Rad50/Nbs1 (M/R/N) complex rapidly migrates to sites of double strand breaks (DSBs), forming foci which remain until DSB repair is complete. Mre11 and Rad50 play direct roles in DSB repair, while Nbs1 appears to be involved in damage signaling. Hyperthermia sensitizes mammalian cells to ionizing radiation. Radiosensitization by heat shock is believed to be mediated by an inhibition of DSB repair. While the mechanism of inhibition of repair by heat shock remains to be elucidated, recent reports suggest that the M/R/N complex may be a target for inhibition of DSB repair and radiosensitization by heat. We now demonstrate that when human U-1 melanoma cells are heated at 42.5 or 45.5 degrees C, Mre11, Rad50, and Nbs1 are rapidly translocated from the nucleus to the cytoplasm. Interestingly, when cells were exposed to ionizing radiation (12 Gy of X-rays) prior to heat treatment, the extent and kinetics of translocation were increased when nuclear and cytoplasmic fractions of protein were analyzed immediately after treatment. The kinetics of the translocation and subsequent relocalization back into the nucleus when cells were incubated at 37 degrees C from 30 min to 7 h following treatment were different for each protein, which suggests that the proteins redistribute independently. However, a significant fraction of the translocated proteins exist as a triple complex in the cytoplasm. Treatment with leptomycin B (LMB) inhibits the translocation of Mre11, Rad50, and Nbs1 to the cytoplasm, leading us to speculate that the relocalization of the proteins to the cytoplasm occurs via CRM1-mediated nuclear export. In addition, while Nbs1 is rapidly phosphorylated in the nuclei of irradiated cells and is critical for a normal DNA damage response, we have found that Nbs1 is rapidly phosphorylated in the cytoplasm, but not in the nucleus, of heated irradiated cells. The phosphorylation of cytoplasmic Nbs1, which cannot be inhibited by wortmannin, appears to be a unique post-translational modification in heated, irradiated cells, and coupled with our novel observations that Mre11, Rad50, and Nbs1 translocate to the cytoplasm, lend further support for a role of the M/R/N complex in thermal radiosensitization and inhibition of DSB repair.  相似文献   

6.
A DNA damage response pathway controlled by Tel1 and the Mre11 complex.   总被引:1,自引:0,他引:1  
T Usui  H Ogawa  J H Petrini 《Molecular cell》2001,7(6):1255-1266
We define a DNA damage checkpoint pathway in S. cerevisiae governed by the ATM homolog Tel1 and the Mre11 complex. In mitotic cells, the Tel1-Mre11 complex pathway triggers Rad53 activation and its interaction with Rad9, whereas in meiosis it acts via Rad9 and the Rad53 paralog Mre4/Mek1. Activation of the Tel1-Mre11 complex pathway checkpoint functions appears to depend upon the Mre11 complex as a damage sensor and, at least in meiotic cells, to depend on unprocessed DNA double-strand breaks (DSBs). The DSB repair functions of the Mre11 complex are enhanced by the pathway, suggesting that the complex both initiates and is regulated by the Tel1-dependent DSB signal. These findings demonstrate that the diverse functions of the Mre11 complex in the cellular DNA damage response are conserved in mammals and yeast.  相似文献   

7.
Studies of human Nijmegen breakage syndrome (NBS) cells have led to the proposal that the Mre11/Rad50/ NBS1 complex, which is involved in the repair of DNA double-strand breaks (DSBs), might also function in activating the DNA damage checkpoint pathways after DSBs occur. We have studied the role of the homologous budding yeast complex, Mre11/Rad50/Xrs2, in checkpoint activation in response to DSB-inducing agents. Here we show that this complex is required for phosphorylation and activation of the Rad53 and Chk1 checkpoint kinases specifically in response to DSBs. Consistent with defective Rad53 activation, we observed defective cell-cycle delays after induction of DSBs in the absence of Mre11. Furthermore, after gamma-irradiation phosphorylation of Rad9, which is an early event in checkpoint activation, is also dependent on Mre11. All three components of the Mre11/Rad50/Xrs2 complex are required for activation of Rad53, however, the Ku80, Rad51 or Rad52 proteins, which are also involved in DSB repair, are not. Thus, the integrity of the Mre11/Rad50/Xrs2 complex is specifically required for checkpoint activation after the formation of DSBs.  相似文献   

8.
The large protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate DNA damage checkpoint pathways. In budding yeast, ATM and ATR homologs are encoded by TEL1 and MEC1, respectively. The Mre11 complex consists of two highly related proteins, Mre11 and Rad50, and a third protein, Xrs2 in budding yeast or Nbs1 in mammals. The Mre11 complex controls the ATM/Tel1 signaling pathway in response to double-strand break (DSB) induction. We show here that the Mre11 complex functions together with exonuclease 1 (Exo1) in activation of the Mec1 signaling pathway after DNA damage and replication block. Mec1 controls the checkpoint responses following UV irradiation as well as DSB induction. Correspondingly, the Mre11 complex and Exo1 play an overlapping role in activation of DSB- and UV-induced checkpoints. The Mre11 complex and Exo1 collaborate in producing long single-stranded DNA (ssDNA) tails at DSB ends and promote Mec1 association with the DSBs. The Ddc1-Mec3-Rad17 complex associates with sites of DNA damage and modulates the Mec1 signaling pathway. However, Ddc1 association with DSBs does not require the function of the Mre11 complex and Exo1. Mec1 controls checkpoint responses to stalled DNA replication as well. Accordingly, the Mre11 complex and Exo1 contribute to activation of the replication checkpoint pathway. Our results provide a model in which the Mre11 complex and Exo1 cooperate in generating long ssDNA tracts and thereby facilitate Mec1 association with sites of DNA damage or replication block.  相似文献   

9.
Rad50/Mre11/NBS1 (R/M/N) is a multi-functional protein complex involved in DNA repair, cell cycle checkpoint activation, DNA replication and replication block-induced responses. Ionizing radiation (IR) induces the phosphorylation of NBS1 and nuclear foci formation of the complex. Although it has been suggested that the R/M/N complex is associated with DNA damage sites, we present here biochemical evidence for chromatin association of the complex. We show that the chromatin association of R/M/N is independent of IR and ataxia telangiectasia mutated (ATM). We also demonstrate that optimal chromatin association of the Rad50/Mre11/NBS1 proteins requires both the conserved forkhead-associated (FHA) and breast cancer C-terminus (BRCT) domains of NBS1. Moreover, both these domains of NBS1 are required for its phosphorylation on Ser343 but not on Ser278. Importantly, both the FHA and BRCT domains are essential for IR-induced foci (IRIF) formation of R/M/N and S phase checkpoint activation, but only the BRCT domain is needed for cell survival after IR. These data demonstrate that the FHA and BRCT domains of NBS1 are crucial for the functions of the R/M/N complex.  相似文献   

10.
Central to the DNA damage response (DDR) is the highly conserved Mre11 complex consisting of Mre11, Rad50, and Nbs1. The Mre11 complex acts as a sensor of DNA double-strand breaks (DSBs) and regulates the signal transduction cascades that are triggered following damage detection1. Rare human genetic instability syndromes such as Ataxia-telangiectasia (A-T) and Nijmegen Breakage Syndrome (NBS) have underscored the importance of the DSB response in the suppression of tumorigenesis, as well as other severe pathologies affecting the development of both the immune system and the central nervous system. Using murine models of the human diseases, we have investigated the role of the Mre11 complex, and other modulators of the DSB response, in tumor suppression2, 3. We found that the checkpoint kinase Chk2 is crucial for the suppression of a diverse array of tumor types in Mre11 complex mutants and uncovered multiple roles for the Mre11 complex in apoptotic signaling in parallel to Chk24, 5.  相似文献   

11.
Repair of DNA double-strand breaks by homologous recombination requires an extensive set of proteins. Among these proteins are Rad51 and Mre11, which are known to re-localize to sites of DNA damage into nuclear foci. Ionizing radiation-induced foci can be visualized by immuno-staining. Published data show a large variation in the number of foci-positive cells and number of foci per nucleus for specific DNA repair proteins. The experiments described here demonstrate that the time after induction of DNA damage influenced not only the number of foci-positive cells, but also the size of the individual foci. The dose of ionizing radiation influenced both the number of foci-positive cells and the number of foci per nucleus. Furthermore, ionizing radiation-induced foci formation depended on the cell cycle stage of the cells and the protein of interest that was investigated. Rad51 and Mre11 foci seemed to be mutually exclusive, though a small subset of cells did show co-localization of these proteins, which suggests a possible cooperation between the proteins at a specific moment during DNA repair.  相似文献   

12.
In response to replicative stress, cells relocate and activate DNA repair and cell cycle arrest proteins such as replication protein A (RPA, a three subunit protein complex required for DNA replication and DNA repair) and the MRN complex (consisting of Mre11, Rad50, and Nbs1; involved in DNA double-strand break repair). There is increasing evidence that both of these complexes play a central role in DNA damage recognition, activation of cell cycle checkpoints, and DNA repair pathways. Here we demonstrate that RPA and the MRN complex co-localize to discrete foci and interact in response to DNA replication fork blockage induced by hydroxyurea (HU) or ultraviolet light (UV). Members of both RPA and the MRN complexes become phosphorylated during S-phase and in response to replication fork blockage. Analysis of RPA and Mre11 in fractionated lysates (cytoplasmic/nucleoplasmic, chromatin-bound, and nuclear matrix fractions) showed increased hyperphosphorylated-RPA and phosphorylated-Mre11 in the chromatin-bound fractions. HU and UV treatment also led to co-localization of hyperphosphorylated RPA and Mre11 to discrete detergent-resistant nuclear foci. An interaction between RPA and Mre11 was demonstrated by co-immunoprecipitation of both protein complexes with anti-Mre11, anti-Rad50, anti-NBS1, or anti-RPA antibodies. Phosphatase treatment with calf intestinal phosphatase or lambda-phosphatase not only de-phosphorylated RPA and Mre11 but also abrogated the ability of RPA and the MRN complex to co-immunoprecipitate. Together, these data demonstrate that RPA and the MRN complex co-localize and interact after HU- or UV-induced replication stress and suggest that protein phosphorylation may play a role in this interaction.  相似文献   

13.
We show that DNA double-strand breaks (DSBs) induce complex subcompartmentalization of genome surveillance regulators. Chromatin marked by gamma-H2AX is occupied by ataxia telangiectasia-mutated (ATM) kinase, Mdc1, and 53BP1. In contrast, repair factors (Rad51, Rad52, BRCA2, and FANCD2), ATM and Rad-3-related (ATR) cascade (ATR, ATR interacting protein, and replication protein A), and the DNA clamp (Rad17 and -9) accumulate in subchromatin microcompartments delineated by single-stranded DNA (ssDNA). BRCA1 and the Mre11-Rad50-Nbs1 complex interact with both of these compartments. Importantly, some core DSB regulators do not form cytologically discernible foci. These are further subclassified to proteins that connect DSBs with the rest of the nucleus (Chk1 and -2), that assemble at unprocessed DSBs (DNA-PK/Ku70), and that exist on chromatin as preassembled complexes but become locally modified after DNA damage (Smc1/Smc3). Finally, checkpoint effectors such as p53 and Cdc25A do not accumulate at DSBs at all. We propose that subclassification of DSB regulators according to their residence sites provides a useful framework for understanding their involvement in diverse processes of genome surveillance.  相似文献   

14.
The presence of DNA damage activates a specific response cascade culminating in DNA repair activity and cell cycle checkpoints. Although the type of lesion dictates what proteins are involved in the response, replication protein A (RPA) and the Mre11/Rad50/Nbs1 complex (MRN) respond to most types of lesions. To examine the relationship of RPA and the MRN complex in DNA damage responses, we used siRNA-mediated protein depletion of RPA-p70 and Mre11. Depletion of RPA-p70 decreased the ability of cells to form phospho-Nbs1 foci and increased levels of DNA double-strand breaks (DSBs) following treatment with etoposide (ETOP). In contrast, depletion of Mre11 led to increased levels of RPA-p34 foci formation, but abrogated phospho-RPA-p34 foci formation. These data support a role for RPA as an initial signal/sensor for DNA damage that facilitates recruitment of MRN and ATM/ATR to sites of damage, where they then work together to fully activate the DNA damage response.  相似文献   

15.
Rapid activation of ATR by ionizing radiation requires ATM and Mre11   总被引:16,自引:0,他引:16  
The ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases are crucial regulatory proteins in genotoxic stress response pathways that pause the cell cycle to permit DNA repair. Here we show that Chk1 phosphorylation in response to hydroxyurea and ultraviolet radiation is ATR-dependent and ATM- and Mre11-independent. In contrast, Chk1 phosphorylation in response to ionizing radiation (IR) is dependent on ATR, ATM, and Mre11. The ATR and ATM/Mre11 pathways are generally thought to be separate with ATM activation occurring early and ATR activation occurring as a late response to double strand breaks. However, we demonstrate that ATR is activated rapidly by IR, and ATM and Mre11 enhance ATR signaling. ATR-ATR-interacting protein recruitment to double strand breaks is less efficient in the absence of ATM and Mre11. Furthermore, IR-induced replication protein A foci formation is defective in ATM- and Mre11-deficient cells. Thus, ATM and Mre11 may stimulate the ATR signaling pathway by converting DNA damage generated by IR into structures that recruit and activate ATR.  相似文献   

16.
Ataxia-telangiectasia mutated (ATM), ataxia-telangiectasia Rad3-related (ATR) and the Mre11/Rad50/Nbs1 complex ensure genome stability in response to DNA damage. However, their essential role in DNA metabolism remains unknown. Here we show that ATM and ATR prevent accumulation of DNA double-strand breaks (DSBs) during chromosomal replication. Replicating chromosomes accumulate DSBs in Xenopus laevis egg extracts depleted of ATM and ATR. Addition of ATM and ATR proteins to depleted extracts prevents DSB accumulation by promoting restart of collapsed replication forks that arise during DNA replication. We show that collapsed forks maintain MCM complex but lose Pol epsilon, and that Pol epsilon reloading requires ATM and ATR. Replication fork restart is abolished in Mre11 depleted extracts and is restored by supplementation with recombinant human Mre11/Rad50/Nbs1 complex. Using a novel fluorescence resonance energy transfer-based technique, we demonstrate that ATM and ATR induce Mre11/Rad50/Nbs1 complex redistribution to restarting forks. This study provides direct biochemical evidence that ATM and ATR prevent accumulation of chromosomal abnormalities by promoting Mre11/Rad50/Nbs1 dependent recovery of collapsed replication forks.  相似文献   

17.
The Mre11/Rad50/Nbs1 (MRN) complex is required for eukaryotic DNA double-strand break (DSB) repair and meiotic recombination. We cloned the Coprinus cinereus rad50 gene and showed that it corresponds to the complementation group previously named rad12, identified mutations in 15 rad50 alleles, and mapped two of the mutations onto molecular models of Rad50 structure. We found that C. cinereus rad50 and mre11 mutants arrest in meiosis and that this arrest is Spo11 dependent. In addition, some rad50 alleles form inducible, Spo11-dependent Rad51 foci and therefore must be forming meiotic DSBs. Thus, we think it likely that arrest in both mre11-1 and the collection of rad50 mutants is the result of unrepaired or improperly processed DSBs in the genome and that Rad50 and Mre11 are dispensable in C. cinereus for DSB formation, but required for appropriate DSB processing. We found that the ability of rad50 mutant strains to form Rad51 foci correlates with their ability to promote synaptonemal complex formation and with levels of stable meiotic pairing and that partial pairing, recombination initiation, and synapsis occur in the absence of wild-type Rad50 catalytic domains. Examination of single- and double-mutant strains showed that a spo11 mutation that prevents DSB formation enhances axial element (AE) formation for rad50-4, an allele predicted to encode a protein with intact hook region and hook-proximal coiled coils, but not for rad50-1, an allele predicted to encode a severely truncated protein, or for rad50-5, which encodes a protein whose hook-proximal coiled-coil region is disrupted. Therefore, Rad50 has an essential structural role in the formation of AEs, separate from the DSB-processing activity of the MRN complex.  相似文献   

18.
DNA double-strand breaks (DSBs) are highly cytotoxic lesions and pose a major threat to genome stability if not properly repaired. We and others have previously shown that a class of DSB-induced small RNAs (diRNAs) is produced from sequences around DSB sites. DiRNAs are associated with Argonaute (Ago) proteins and play an important role in DSB repair, though the mechanism through which they act remains unclear. Here, we report that the role of diRNAs in DSB repair is restricted to repair by homologous recombination (HR) and that it specifically relies on the effector protein Ago2 in mammalian cells. Interestingly, we show that Ago2 forms a complex with Rad51 and that the interaction is enhanced in cells treated with ionizing radiation. We demonstrate that Rad51 accumulation at DSB sites and HR repair depend on catalytic activity and small RNA-binding capability of Ago2. In contrast, DSB resection as well as RPA and Mre11 loading is unaffected by Ago2 or Dicer depletion, suggesting that Ago2 very likely functions directly in mediating Rad51 accumulation at DSBs. Taken together, our findings suggest that guided by diRNAs, Ago2 can promote Rad51 recruitment and/or retention at DSBs to facilitate repair by HR.  相似文献   

19.
Cells with non-functional poly(ADP-ribose) polymerase (PARP-1) show increased levels of sister chromatid exchange, suggesting a hyper recombination phenotype in these cells. To further investigate the involvement of PARP-1 in homologous recombination (HR) we investigated how PARP-1 affects nuclear HR sites (Rad51 foci) and HR repair of an endonuclease-induced DNA double-strand break (DSB). Several proteins involved in HR localise to Rad51 foci and HR-deficient cells fail to form Rad51 foci in response to DNA damage. Here, we show that PARP-1 mainly does not localise to Rad51 foci and that Rad51 foci form in PARP-1–/– cells, also in response to hydroxyurea. Furthermore, we show that homology directed repair following induction of a site-specific DSB is normal in PARP-1-inhibited cells. In contrast, inhibition or loss of PARP-1 increases spontaneous Rad51 foci formation, confirming a hyper recombination phenotype in these cells. Our data suggest that PARP-1 controls DNA damage recognised by HR and that it is not involved in executing HR as such.  相似文献   

20.
Repair of DNA double-strand break(DSB) is critical for the maintenance of genome integrity. A class of DSB-induced small RNAs(di RNAs) has been shown to play an important role in DSB repair. In humans,di RNAs are associated with Ago2 and guide the recruitment of Rad51 to DSB sites to facilitate repair by homologous recombination(HR). Ago2 activity has been reported to be regulated by phosphorylation under normal and hypoxic conditions. However, the role of Ago2 phosphorylation in DNA damage repair is unexplored. Here, we show that S672, S828, T830, and S831 of human Ago2 are phosphorylated in response to ionizing radiation(IR). S672 A mutation of Ago2 leads to significant reduction in Rad51 foci formation and HR efficiency. We further show that defective association of Ago2 S672 A variant with DSB sites, instead of defects in di RNA and Rad51 binding, may account for decreased Rad51 foci formation and HR efficiency.Our study reveals a novel regulatory mechanism for the function of Ago2 in DNA repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号