首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cropping systems in which resistant potato cultivars were grown at different frequencies in rotation with susceptible cultivars and a nonhost (oats) were evaluated at four initial nematode population densities (Pi) for their ability to maintain Globodera rostochiensis at a target level of <0.2 egg/cm³ of soil. At a Pi of 0.1 to 1 egg/cm³ of soil, cropping systems with 2 successive years of a resistant cultivar every 3 years of potato production reduced and maintained G. rostochiensis at <0.2 egg/cm³ of soil. At a Pi of 1 to 4 eggs/cm³ of soil, 2 successive years of a resistant cultivar followed by 1 year of oats for every 4 years of production were necessary to reduce and maintain G. rostochiensis populations at <0.2 egg/cm³ of soil. At a Pi greater than 4 eggs/cm³ of soil, 2 successive years of a resistant cultivar plus 1 year of oats reduced G. rostochiensis densities to <0.2 egg/cm³ of soil, but the population increased above that density after cropping 1 year to a susceptible cultivar. The numbers of cysts and eggs per cyst in the final population (Pf) of G. rostochiensis were influenced by initial density and the frequency of growing a susceptible cultivar in a cropping system. The lowest number of cysts and eggs per cyst in the final G. rostochiensis population occurred with a cropping system consisting of 2 successive years of a resistant cultivar followed by oats with a susceptible cultivar grown the fourth year of production.  相似文献   

2.
The effects of aldicarb, oxamyl, 1,3-D, and plastic mulch (solarization) on soil population densities of the golden nematode (GN) Globodera rostochiensis was assessed in field and microplot experiments with different soil types. Oxamyl was evaluated in both soil and foliar treatments, whereas aldicarb, 1,3-D, and solarization were applied only to soil. Soil applications of aldicarb and oxamyl resulted in reduced nematode populations after GN-susceptible potatoes in plots with initial population densities (Pi) of > 20 and 7.5 eggs/cm³ soil, respectively, but nematode populations increased in treated soil when Pi were less than 20 and 7.5 eggs/cm³soil. In clay loam field plots with Pi of 19-76 eggs/cm³ soil, nematode densities increased even with repeated foliar applications of oxamyl, whereas nematode populations at Pi greater than 76 eggs/cm³ soil were reduced by foliar oxamyl. Treatment with 1,3-D or solarization, singly or in combination, reduced GN soil population densities regardless of soil type or Pi. Temperatures lethal to GN were achieved 5 cm deep under clear plastic but not 10 or 15 cm deep.  相似文献   

3.
Four populations of Pratylenchus penetrans did not differ (P > 0.05) in their virulence or reproductive capability on Lahontan alfalfa. There was a negative relationship (r = -0 .7 9 ) between plant survival and nematode inocula densities at 26 ± 3 C in the greenhouse. All plants survived at an inoculum level (Pi) of 1 nematode/cm³ soil, whereas survival rates were 50 to 55% at 20 nematodes/cm³ soil. Alfalfa shoot and root weights were negatively correlated (r = - 0.87; P < 0.05) with nematode inoculum densities. Plant shoot weight reductions ranged from 13 % at Pi 1 nematode/cm³ soil to 69% for Pi 20 nematodes/cm³ soil, whereas root weight reductions ranged from 17% for Pi 1 nematode/cm³ soil to 75% for Pi 20 nematodes/cm³ soil. Maximum and minimum nematode reproduction (Pf/Pi) for the P. penetrans populations were 26.7 and 6.2 for Pi 1 and 20 nematodes/cm³ soil, respectively. There were negative correlations between nematode inoculum densities and plant survival (r = 0.84), and soil temperature and plant survival (r = -0 .7 8 ). Nematode reproduction was positively correlated to root weight (r = 0.89).  相似文献   

4.
Meloidogyne chitwoodi reduced the growth of winter wheat ''Nugaines'' directly in relation to nematode density in the greenhouse, The relationship between top dry weight and initial nematode density suggests a tolerance limit of Nugaines wheat to M. chitwoodi of between 0.03 and 0.18 eggs/cm³ of soil; the value for relative minimum plant top weight was 0.45 g and 0.75 g, respectively. Growth of wheat in field microplots containing four population densities (0.003, 0.05, 0.75 and 9 eggs/cm³ soil) was not affected significantly at any inoculum level compared to controls during September to July, However, suppression of head weights of ''Fielder'' spring wheat grown May-July occurred in microplots initially infested with 0.75 and 9 eggs/cm³ soil. Reproduction (Pf/Pi) was poorer at these two inoculum levels as compared to the lower densities. In another greenhouse experiment, roots of wheat cultivars Fielder, ''Fieldwin,'' ''Gaines,'' ''Hyslop,'' and Nugaines became infected by M. chitwoodi, but not by M. hapla. Reproduction of M. chitwoodi was less on Gaines and Nugaines than on Fielder, Fieldwin, or Hyslop.  相似文献   

5.
Damage functions and reproductive curves were determined for Hoplolaimus columbus on cotton cv. Deltapine 90 and soybean cv. Gordon over 2 years in field plots in Georgia. Maximum potential yield suppressions of 18% on cotton and 48% on soybean were predicted with respect to increasing Pi. Similar functions indicated yield suppressions of 38% on cotton and 30% on soybean with respect to increasing midseason nematode densities (Pm). Maximum Pf predicted by reproductive curves were 123 and 474/100 cm³ soil on cotton and soybean, respectively. Thresholds at which 10% yield suppression would occur were lower on soybean (Pi of 4) than on cotton (Pi of 70/100 cm³ soil). The economic threshold for a control measure costing $72/ha was a Pi of 60/100 cm³ soil on cotton, assuming a price for cotton lint of $1.44/kg ($0.60/lb), whereas a similar treatment would not be economically feasible on soybean at any Pi with an assumed price of $0.04/kg ($5.50/bu) soybean seed. Damage functions and reproductive curves as determined in this study offer potentially useful tools for analyzing cropping systems and providing decision tools for nematode management.  相似文献   

6.
Field microplot experiments were conducted from 1987 to 1992 to determine the relationship between fresh weight leaf yield of shade tobacco (Nicotiana tabacum) and initial density of Globodera tabacum tabacum (encysted J2 per cm³ soil). Initial nematode densities of 0.1 to 1,097 J2/cm³ soil were negatively correlated with leaf yield, total shoot weight, and normalized plant height 5 to 6 weeks after transplanting (r = -0.73, -0.73, and -0.52, respectively). Nonlinear damage functions were used to relate initial G. t. tabacum densities to the yield and shoot weight data. The model described leaf yield losses of < 5 % for initial nematode densities of less than 100 J2/cm³ soil. Densities above 100 J2 resulted in yields decreasing exponentially to a maximum yield loss of >40% at 500 to 1,000 J2/cm³ soil. A similar initial density tolerance threshold relationship was observed for total shoot weight. No threshold effect was evident for standardized plant height, which was a poor predictor of leaf yield. Globodera tabacum tabacum population increase over a growing season was described by a linear relation on a log/log plot (R² = 0.73).  相似文献   

7.
Lettuce was seeded in pots in the greenhouse and in field microplots in 1991 and 1992. Pots and microplots were filled with untreated or fumigated organic soil infested with Meloidogyne hapla at seven initial population densities (Pi) (0 to 32 eggs/cm³ soil). Lettuce weight, severity of root galling, and number of eggs per root system (Pf) were determined after 8 weeks. At the highest Pi, M. hapla caused yield losses up to 64% in the microplots and plant death in the greenhouse tests. The Seinhorst equation was used to describe the relation between lettuce weight and Pi (r² = 0.73 - 0.98) and to calculate the damage threshold density (T). Values of T were 7 and 8 eggs/cm³ soil in the greenhouse tests of 1991 and 1992, respectively. In the microplot tests, T was 1 egg/cm³ soil in 1991 and 2 eggs/cm³ soil in 1992. The damage threshold was the same in untreated and fumigated soils. At low Pi, root galling was more severe in the pots than in the microplots. Pf increased with increasing Pi of M. hapla in both tests, but declined at Pi > T in the greenhouse tests. The reproduction rate (Pf/Pi) of M. hapla was highest at the lowest Pi.  相似文献   

8.
The reproduction of a Wyoming population of Heterodera schachtii was determined for resistant trap crop radish (Raphanus sativus) and mustard (Sinapis alba) cultivars, and resistant and susceptible sugar beet (Beta vulgaris) cultivars in a greenhouse (21 °C/16 °C) and a growth chamber study (25 °C). Oil radish cultivars also were field tested in 2000 and 2001. In the greenhouse study, reproduction was suppressed similarly by the resistant sugar beet cultivar Nematop and all trap crop cultivars (P ≤ 0.05). In the growth chamber study, the radish cultivars were superior to most of the mustard cultivars in reducing nematode populations. All trap crops showed less reproduction than Nematop (P ≤ 0.05). In both studies, Nematop and all trap crops had lower Pf than susceptible sugar beet cultivars HH50 and HM9155 (P ≤ 0.05). In field studies, Rf values of radish cultivars decreased with increasing Pi of H. schachtii (r² = 0.59 in 2000 and r² = 0.26 in 2001). In 2000, trap crop radish cv. Colonel (Rf = 0.89) reduced nematode populations more than cv. Adagio (Rf = 4.67) and cv. Rimbo (Rf = 13.23) (P ≤ 0.05) when Pi was lower than 2.5 H. schachtii eggs and J2/cm³ soil. There were no differences in reproductive factors for radish cultivars in 2001 (P ≤ 0.05); Rf ranged from 0.23 for Adagio to 1.31 for Commodore for all Pi.  相似文献   

9.
A degree-day model was derived to predict egg hatch for Criconemella xenoplax. Eggs collected from gravid females were incubated in distilled water at constant temperatures of 10-35 C. Sixty-six percent of all eggs hatched between 13 and 32 C, and 42% hatched at 10 C. All eggs aborted above 32.5 C. Between 25 and 32 C, 8.5 ± 0.5 days were required for egg hatch. Degree-day requirement for egg hatch at 10-30 C was estimated to be 154 ± 5 with a base of 9.03 ± 0.04 C. This base of 9 C was adopted in studies of the relationship between degree-days and nematode population increase on Prunus seedlings grown 9-11 weeks in a greenhouse. Degree-day accumulations were based upon daily averages from maximum and minimum air temperatures. Ratios of final to initial population densities exhibited an exponential pattern in relation to degree-day accumulations with proportionate doubling increment of 0.100 ± 0.049 every 139 ± 8 degree-days. These results provide a means of predicting nematode population increase under greenhouse conditions and a basis for choosing sampling intervals when evaluating nematode multiplication.  相似文献   

10.
The relationship between population densities of race 1 of Meloidogyne incognita and yield of eggplant was studied. Microplots were infested with finely chopped nematode-infected pepper roots to give population densities of 0, 0.062, 0.125, 0.25, 0.50, 1, 2, 4, 8, 16, 32, 64, and 128 eggs and juveniles/cm³ soil. Both plant growth and yield were suppressed by the nematode. A tolerance limit of 0.054 eggs and juveniles/cm³ soil and a minimum relative yield of 0.05 at four or more eggs and juveniles/cm³ soil were derived by fitting the data with the equation y = m + (1 - m)zP⁻T. Maximum nematode reproduction rate was 12,300. Hatch of eggs from egg masses in water or from sodium hypochlorite dissolved egg masses was similar (41% and 39%), but egg viability was significantly greater from egg masses in water (58%) than from sodium hypochlorite dissolved egg masses (12%) after 4 weeks. Greater numbers of nematodes were collected from roots of tomatoes from soil infested with entire egg masses than from tomato roots from soil infested with egg masses dissolved by sodium hypochlorite.  相似文献   

11.
The influence of resistant and susceptible potato cultivars on Globodera rostochiensis population density changes was studied at different nematode inoculum levels (Pi) in the greenhouse and field. Soil in which one susceptible and two resistant cultivars were grown and fallow soil in pots was infested with cysts to result in densities of 0.04-75 eggs/cm³ soil. A resistant cultivar was grown in an infested field with Pi of 0.7-16.7 eggs/cm³ soil. Pi was positively correlated with decline of soil population densities due to hatch where resistant potatoes were grown in the greenhouse and in the field but not in fallow soil. However, Pi was not correlated with in vitro hatch of G. rostochiensis cysts in water or potato root diffusate. Under continuous culture o f a resistant cultivar, viable eggs per cyst declined 60-90% per plant growth cycle (4 weeks) and the number of cysts containing viable eggs had decreased by 77% after five cycles. The rate of G. rostochiensis reproduction on both resistant and susceptible cultivars was negatively correlated with Pi. These data were used to predict the effect of resistant and susceptible potato cultivars on G. rostochiensis soil population dynamics.  相似文献   

12.
Effects of several population densities ofMeloidogyne incognita on the sweet potato cultivars Centennial (susceptible) and Jasper (moderately resistant) were studied. Field plots were infested with initial levels (Pi) of 0, 10, 100, 1,000, 5,000, and 10,000 eggs and juveniles/500 cm³ soil in 1980 and 0, 100, 1,000, 2,000, 3,000, 4,000, and 5,000 in 1981. M. incognita population development trends were similar on both cultivars; however, at high Pi, more eggs and juveniles were recovered from Centennial than from Jasper. The highest Pi did not result in the highest mid-season (Pm) counts. Pi was negatively correlated with the number of marketable roots and root weight but positively correlated with total cracked roots, percentage of cracked roots, and cracking severity. Jasper tolerated higher Pi with greater yields and better root quality than Centennial. Cracking of fleshy roots occurred with both cultivars at low Pi.  相似文献   

13.
The soil fumigant 1,3-dichloropropene gave good to excellent control of the Columbia root-knot nematode, Meloidogyne chitwoodi, on potato, Solanum tuberosum L. Nonfumigant nematicides (aldicarb, fensulfothion, carbofuran, ethoprop, and phenamiphos) were less effective in controlling M. chitwoodi, since the nematode affects tuber quality more than quantity. Soil temperature during the growing season affected parasitism of M. chitwoodi on potato more than did the initial nematode population. There were positive linear correlations between degree-days and infected and galled tubers (r = 0.92), degree-days and nematode generations (r = 1.00), and infected and galled tubers and nematode generations (r = 0.91). Differences in degree-days and resultant nematode reproduction caused great variability in infection and galling of potato tubers during four growing seasons: 89% for 1979, 0% for 1980, 13% for 1981, and 18% for 1982, giving positive linear correlation (r = 0.99) between final nematode soil population (Pf) and percentage of infected and galled tubers. Corresponding increases in the soil populations of second-stage juveniles (J2) during the growing season were 9,700% in 1979, 170% in 1980,552% in 1981, and 326% in 1982. There was a negative linear correlation (r = -0.87) between initial soil J2 populations (Pi) and the degree of parasitism (infection and galling) of potato tubers, Pi being of secondary importance to degree-days.  相似文献   

14.
Field microplot experiments were conducted from 1995 to 1998 to determine the relationship between fresh shoot weight of stalk-cut broadleaf and shade-grown cigar wrapper tobacco types (Nicotiana tabacum L.) and initial density of Globodera tabacum tabacum second stage juveniles (J2) per cm³ soil. Total shoot weight was negatively correlated with initial nematode densities of 12.3 to 747.3 J2/cm³ soil (r = -0.53 and -0.70 for broadleaf and shade-grown tobacco, respectively). Nonlinear damage functions were used to relate initial G. t. tabacum densities to shoot weight. The models described shoot weight losses of less than 14% or 39% for broadleaf and shade tobacco, respectively, at G. t. tabacum densities below 50 J2/cm³ soil. Total shoot weights were reduced by 40% and 60% of uninfested plots as preplant nematode densities approached maximum levels (>600 J2/cm³ soil) for broadleaf and shade tobacco, respectively. Globodera t. tabacum population increase over a growing season was described by a linear relation on a log/log plot (R² = 0.07 and 0.61 for broadleaf and shade, respectively). These experiments demonstrate that G. t. tabacum can directly reduce shoot weight of stalk-cut broadleaf tobacco. Broadleaf is more tolerant to nematode infection than shade tobacco, as shade tobacco shoot weight reductions were greater at the same initial nematode densities in the same years.  相似文献   

15.
The effects of host genotype and initial nematode population densities (Pi) on yield of soybean and soil population densities of Heterodera glycines (Hg) race 3 and Meloidogyne incognita (Mi) race 3 were studied in a greenhouse and field microplots in 1983 and 1984. Centennial (resistant to Hg and Mi), Braxton (resistant to Mi, susceptible to Hg), and Coker 237 (susceptible to Hg and Mi) were planted in soil infested with 0, 31, or 124 eggs of Hg and Mi, individually and in all combinations, per 100 cm³ soil. Yield responses of the soybean cultivars to individual and combined infestations of Hg and Mi were primarily dependent on soybean resistance or susceptibility to each species separately. Yield of Centennial was stimulated or unaffected by nematode treatments, yield of Braxton was suppressed by Hg only, and yield suppressions caused by Hg and Mi were additive and dependent on Pi for Coker 237. Other plant responses to nematodes were also dependent on host resistance or susceptibility. Population densities of Mi second-stage juveniles (J2) in soil were related to Mi Pi and remained constant in the presence of Hg for all three cultivars. Population densities of Hg J2 on the two Hg-susceptible Cultivars, Braxton and Coker 237, were suppressed in the presence of Mi at low Hg Pi.  相似文献   

16.
Resistant plant introductions, PI 230977 and PI 200538, and partially resistant Jackson and susceptible CNS were evaluated for seed yield in response to races 1 and 2 of Meloidogyne arenaria. Initial soil population densities (Pi) of the nematode were 0, 31, 125, and 500 eggs/100 cm³ soil. At the highest Pi, yield suppressions of CNS, Jackson, PI 230977, and PI 200538 were 55, 28, 31, and 29%, and 99, 86, 66, and 58% for races 1 and 2 compared with uninfested controls. Numbers of second-stage juveniles (J2) present in roots 14 days after planting increased as Pi increased, but did not differ between the two races. At the highest Pi, fewer race 1 (40-57%) and race 2 (53-68%) J2 were present in roots of the plant introductions than in roots of Jackson. Soil population densities of race 1 J2 at 135 days after planting were 83-89% lower on the resistant genotypes than on CNS. These numbers did not differ for race 2. Reproductive factors were considerably higher for race 2 compared to race 1 for all genotype by Pi combinations, except for CNS at the highest Pi.  相似文献   

17.
Sting nematode (Belonolaimus longicaudatus) is recognized as a pathogen of cotton (Gossypium hirsutum), but the expected damage from a given population density of this nematode has not been determined. The objective of this study was to quantify the effects of increasing initial population densities (Pi) of B. longicaudatus on cotton yield and root mass. In a field plot study, nematicide application and cropping history were used to obtain a wide range of Pi values. Cotton yields were regressed on Pi density of B. longicaudatus to quantify yield losses in the field. In controlled environmental chambers, cotton was grown in soil infested with increasing Pi''s of B. longicaudatus. After 40 days, root systems were collected, scanned on a desktop scanner, and root lengths were measured. Root lengths were regressed on inoculation density of B. longicaudatus to quantify reductions in the root systems. In the field, high Pi''s (>100 nematodes/130 cm³ of soil) reduced yields to near zero. In controlled environmental chamber studies, as few as 10 B. longicaudatus/130 cm³ of soil caused a 39% reduction in fine cotton roots, and 60 B. longicaudatus/130 cm³ of soil caused a 70% reduction. These results suggest that B. longicaudatus can cause significant damage to cotton at low population densities, whereas at higher densities crop failure can result.  相似文献   

18.
The response of two soybean plant introductions, PI 96354 and PI 417444, highly resistant to Meloidogyne incognita, to increasing initial soil population densities (Pi) (0, 31, 125, and 500 eggs/100 cm³ soil) of M. incognita was studied in field microplots for 2 years. The plant introductions were compared to the cultivars Forrest, moderately resistant, and Bossier, susceptible to M. incognita. Averaged across years, the yield suppressions of Bossier, Forrest, PI 417444, and PI 96354 were 97, 12, 18, and < 1%, respectively, at the highest Pi when compared with uninfested control plots. Penetration of roots by second-stage juveniles (J2) increased linearly with increasing Pi at 14 days after planting. At the highest Pi, 62% fewer J2 were present in roots of PI 96354 than in roots of the other resistant genotypes. Soil population densities of M. incognita were lower on both plant introductions than on Forrest. At 75 and 140 days after planting, PI 96354 had the lowest number of J2 in the soil, with 49% and 56% fewer than Forrest at the highest Pi. The resistance genes in PI 96354 should be useful in a breeding program to improve the level of resistance to M. incognita in soybean cultivars.  相似文献   

19.
The influence o f various crop rotations and nematode inoculum levels on subsequent population densities of Meloidogyne incognita races 1 and 3 were studied in microplots. Ten different 3-year sequences o f cotton, corn, peanut, or soybean, all with cotton as the 3rd-year crop, were grown in microplots infested with each race. Cotton monoculture, two seasons o f corn, or cotton followed by corn resulted in high race 3 population densities and severe root galling on cotton the 3rd year. Peanut for 2 years preceding cotton most effectively decreased the race 3 population and root galls on cotton the 3rd year. Race 1 did not significantly influence cotton growth or yield at initial populations of up to 5,000 eggs/500 cm³ soil. At 5,000 eggs/500 cm³, cotton growth was suppressed by race 3 but yield was not affected.  相似文献   

20.
Microplot experiments were conducted in 1989 and 1990 to determine the relationship between yield of peanut (Arachis hypogaea) and inoculum density ofMeloidogyne arenaria race 1. Nine inoculum densities were used, ranging from 0-200 eggs/100 cm³ soil (1989) or from 0-100 eggs/100 cm³ (1990), and each density was replicated 10 times. In 1989, higher final densities (mean of 1,171 juveniles [J2]/100 cm³ soil) were obtained in plots inoculated with 0.5 to 50 eggs/100 cm³ soil than in plots inoculated with 100 to 200 eggs/100 cm³ (313 J2/100 cm³ soil). In 1990, final densities of M. arenaria reached high levels (≥ 1,111 J2/100 cm³ soil) in all inoculated plots. Pod yield and dry weight of foliage at harvest were negatively correlated (P ≤ 0.05) with inoculum density in both seasons. In 1989, the relationship between pod weight (y) and initial density (x) was described by Seinhorst''s equation, with y = 0.088 + 0.91(0.90)⁽x⁻¹⁾ and r² = 0.826. In 1990, the relationship was y = 0.22 + 0.78(0.97)⁽x⁻¹⁾ and r² = 0.794. These equations suggest tolerance limits of approximately 1 egg/100 cm³ soil, which may require specialized methods, such as bioassay, for detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号