首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Alternate planting dates and periodic destruction of the previous year''s soybean crop as well as 1-year bare fallow were used to establish a range of population densities ofHeterodera glycines for the subsequent year. Soybean cultivar Coker 156 (susceptible, moderately tolerant) was compared to cultivars Essex (susceptible, intolerant) and Bedford (resistant) to evaluate tolerance at different H. glycines population densities established through the previous year''s treatments. Yield of Coker 156 was consistently intermediate between yields of Bedford and Essex in 1986 and 1987. Yield of Essex was negatively correlated (P = 0.05) with preplant egg numbers of H. glycines in 1987, whereas yield of Bedford and Coker 156 were not related to nematode density. Reproduction of H. glycines was greater (P = 0.05) on the moderately tolerant Coker 156 than on either of the other cultivars.  相似文献   

2.
Greenhouse and field experiments were conducted to determine the effects of phenamiphos and/or alachlor on early growth of soybean, root morphology, and infection and resurgence of Heterodera glycines (race 1). All tests were planted to ''Ransom'' soybeans. In greenhouse experiments without nematodes, root growth was inhibited at 5 days by alachlor treatments and at 10 days by phenamiphos treatments; with nematodes, phenamiphos treatments enhanced root growth. Phenamiphos also suppressed early penetration of soybean roots by H. glycines in the greenhouse. Early soybean growth parameters among treatments were generally similar in the field. Nematode penetration was limited with treatments containing phenamiphos at one location. Plants treated with only alachlor had less nematode infection than did the control; however, plants treated with herbicide/nematicide combinations had more nematode penetration than did plants treated with phenamiphos alone. Alterations of root growth and interference with the efficacy of phenamiphos are two processes by which alachlor may enhance soybean susceptibility or suitability to H. glycines.  相似文献   

3.
Several abiotic and biotic stresses can affect soybean in a growing season. Heterodera glycines, soybean cyst nematode, reduces yield of soybean more than any other pathogen in the United States. Field and greenhouse studies were conducted to determine whether preemergence and postemergence herbicides modified the reproduction of H. glycines, and to determine the effects of possible interactive stresses caused by herbicides and H. glycines on soybean growth and yield. Heterodera glycines reproduction factor (Rf) generally was less on resistant than susceptible cultivars, resulting in a yield advantage for resistant cultivars. The yield advantage of resistant cultivars was due to more pods per plant on resistant than susceptible cultivars. Pendimethalin reduced H. glycines Rf on the susceptible cultivars in 1998 at Champaign, Illinois, and in greenhouse studies reduced dry root weight of H. glycines-resistant and susceptible cultivars, therefore reducing Rf on the susceptible cultivars. The interactive stresses from acifluorfen or imazethapyr and H. glycines reduced the dry shoot weight of the resistant cultivar Jack in a greenhouse study. Herbicides did not affect resistant cultivars'' ability to suppress H. glycines Rf; therefore, growers planting resistant cultivars should make herbicide decisions based on weeds present and cultivar tolerance to the herbicide.  相似文献   

4.
The influence of soil texture on Soybean yield in the presence of Heterodera glycines was investigated by comparing yields of susceptible cultivars with a resistant cultivar for 2 years. Soybean yield was negatively correlated with increasing sand content (P = 0.05). Yields of susceptible cultivars were suppressed with increasing sand content. Final nematode population densities were lowest in plots with greatest sand content. Soybean infection by SCN, as determined by the number of cysts 30 days after planting, was not consistently related to soil texture over 2 years. Initial nematode population density was positively related to soybean yield the first year and negatively related to soybean yield the second, probably a result of greater yield suppression by H. glycines in plots with greater sand content.  相似文献   

5.
Population dynamics of Heterodera glycines (SCN) were influenced by initial nematode population density in soil, soybean root growth pattern, soil type, and environmental conditions in two field experiments. Low initial populations (Pi) of SCN increased more rapidly during the growing season than high Pi and resulted in greater numbers of nematodes at harvest. Egg and juvenile (J2) populations increased within 2-6 weeks after planting when early-season soil temperatures were 20 C and above and were delayed by soil temperatures of 17 C or below in May and early June. Frequencies of occurrence and number of nematodes decreased with increasing depth and distance from center of the soybean row. Spatial pattern of SCN paralleled that of soybean roots. Higher clay content in the subsoil 30-45 cm deep in one field restricted soil penetration by roots, indirectly influencing vertical distribution of SCN. Shoot dry weight was a good indicator of the effect of SCN on seed yield. Root dry weight was poorly correlated with soybean growth and yield. The relationship of yield (seed weight) to Pi was best described by a quadratic equation at one site, but did not fit any regression model tested at the second site.  相似文献   

6.
Growth room and field experiments were conducted to determine the influence of soil temperature and soybean phenology on dormancy induction of a North Carolina population of Heterodera glycines race 1. Three temperature regimes and two photoperiods to regulate plant phenology were investigated in growth rooms. H. glycines hatch was greatest from the 26 and 22 C (day and night) temperature treatment, intermediate at 22 and 18 C, and least from the decreasing regime (26 and 22 C, 22 and 18 C, and 18 and 14 C). More eggs hatched and greater nematode reproduction occurred on pod-producing soybeans than on those that remained vegetative. In the field study, hatching patterns were not different between depodded and naturally senescing soybeans nor between the different maturity groups of soybean cultivars (groups V through VIII). Egg hatch (9-16%) was greatest in August and September when mean soil temperatures were between 25 and 29 C. Hatch declined to 1% in vitro and was not detectable in the bioassay in November. Greatest nematode numbers were observed on the latest maturing cultivar (group VIII) and fewest on the cultivar which matured earliest (group V). Decreasing temperature appears to be more important than soybean phenology in dormancy induction of H. glycines.  相似文献   

7.
Population changes of Heterodera glycines eggs on soybean in small field plots were influenced by the lepidopterous insect pest, Helicoverpa zea; however, few effects on eggs due to the presence of annual weeds were detected. Soybeans defoliated 15-35% by H. zea during August remained green and continued to produce new flowers and pods later into the season than soybeans without H. zea, resulting in higher numbers of H. glycines eggs at harvest on insect-defoliated soybeans. Final H. glycines populations also were influenced by soil population density (Pi) of the nematode at planting. Fecundity of H. glycines was generally greater at the undetected and low Pi than at high Pi levels. Soybean yields were suppressed 12, 22, and 30% by low, moderate, and high H. glycines Pi, respectively. When weed competition and H. zea feeding damage effects were added, yields were suppressed 34, 40, and 57% by the three respective nematode Pi levels. Effects among the three pests on soybean yield were primarily additive.  相似文献   

8.
An 11-year field study was initiated in 1979 to monitor population development of Heterodera glycines. Fifty cysts of a race 5 population were introduced into plots in a field with no history of soybean production and that had been in sod for 20 years. Soybean cultivars either susceptible or resistant to H. glycines were grown either in monoculture or rotated with maize in a 2-year rotation. During the first 5 years, resistant cultivars with the Peking source of resistance were planted. After year 5, monocuhure of Peking resistance resulted in 18 cysts/250 cm³ of soil, whereas populations resulting from the continuous cropping of susceptible soybean resulted in 45 cysts/250 cm³. Some plots in all treatments, including control plots, were contaminated at the end of year 5. Crop rotation delayed population development of H. glycines. During years 6 through 11 cv. Fayette (PI88.788 source of resistance) was planted. In year 6 numbers of cysts declined to 1/250 cm³ of soil in the treatment consisting of monocultured Fayette. At the end of year 10, cysts were below the detection level in all treatments in which Fayette was planted. Yield of susceptible soybean in monoculture with or without H. glycines infestation was lower beginning in year 6 when compared to yield of soybean grown in rotation and remained lower throughout the duration of the experiment except for 1987 (year 9). Yields of susceptible and resistant soybean were different each year except for drought years in 1980 and 1988. From 1979 to 1982 differences in yield were due to lower yield potential of resistant cultivars. Except for the drought year, yield of cv. Fayette was greater than susceptible Williams 82 during years 6 through 11.  相似文献   

9.
Thirteen soybean plant introduction (PI) lines, selected for their apparent susceptibility to Heterodera glycines, were compared with cultivar Lee 74 as hosts of H. glycines races 1, 2, 3, and 4. Race 3 produced the highest average number of females of the four races. Compared to Lee 74, more (P = 0.05) females of H. glycines race 1 were extracted from eI 274420, PI 274423, and PI 317333; PI 86457 had more females of H. glycines race 2; and PI 86443, PI 86457, PI 261467, PI 274420, PI 274421, and PI 274423 had more females of H. glycines race 3. Similar numbers of females of H. glycines race 4 developed on all of the soybean lines and Lee 74. PI 274421, PI 274420, or PI 196159 could provide a more or equally susceptible host for H. glycines races 1, 2, 3, and 4 than Lee 74. One of these three lines could be substituted for Lee as the standard susceptible cultivar in the race determination test.  相似文献   

10.
Trap crops that stimulate nematode egg hatching but not reproduction have been reported as an effective means for managing certain nematodes. Studies were carried out at two field sites each year in 1998 and 1999 to evaluate the potential of trapping the soybean cyst nematode (Heterodera glycines) with soybean and pea in the corn year to manage the nematode in Minnesota. The trap crops were planted on the same day as corn at each site and later killed with the herbicide glyphosate. Nematode egg densities were determined at planting, 1 and 2 months after planting, and at harvest. Treatments included four seeding rates (0, 124,000, 247,000, and 494,000 seeds/ha) of resistant soybean as a trap crop and four kill dates (3, 4, 5, and 6 weeks after planting). No effects of the trap-crop and kill-date treatments on H. glycines population density, corn yield, and the followingyear soybean yield were observed at the two locations. In a second study, the experiment included four trap-crop comparisons (resistant soybean at 494,000 seeds/ha, susceptible soybean at 494,000 seeds/ha, pea at 1,482,000 seeds/ha, and no trap crop) and five kill dates (3, 4, 5, 6 weeks after planting, and no-kill). At the Waseca site, egg density at harvest was lower where resistant soybean was grown for 6 weeks and where pea was grown for 5 and 6 weeks compared with where no trap crop was grown. Maintaining pea plants for more than 5 weeks, however, reduced corn yield by 20% at the Waseca site. At the Lamberton site, egg density at harvest was lower where the susceptible soybean was grown for 5 weeks compared with where no trap crop was grown. Even with significant reduction of eggs in some treatments, use of soybean and pea as trap crops in the corn year was not an effective means for managing H. glycines.  相似文献   

11.
The reproductive potentials of Heterodera glycines (mixture of races 3 and 4 and unidentified races) and a tobacco cyst nematode Globodera tabacum solanacearum were studied in the field. The experiments involved four cultivars of soybean Glycine max and four cultivars of Nicotiana tabacum. The reproductive potential of the H. glycines population was high on Essex and Lee 74 soybean but low on Forrest and Bedford over the 3 years (1982-84) of continuous cropping. The reproductive potential of H. glycines was 12% on Forrest and 6% on Bedford in 1982 but increased to 37 and 35% in 1983 and to 71 and 41% in 1984, respectively, on these two cultivars. The reproductive potential of G. tabacum solanacearum was high on McNair 944 and Coker 319 tobacco cultivars and low on VA 81 and PD 4 over the 3 years of cropping. The reproductive potential of G. tabacum solanacearum on VA 81 and PD 4 was 18 and 17% in 1982, 7 and 16% in 1983, and 5 and 5% in 1984, respectively. The changes in reproductive potentials of H. glycines and G. tabacum solanacearum may be related to inherent genetic variability in the systems that control reproduction of the two cyst nematodes and nature of resistance incorporated in the soybean and tobacco cultivars.  相似文献   

12.
Changes in the carbohydrate (glucose, trehalose, and glycogen) and total protein contents of eggs retained within Heterodera glycines cysts were monitored monthly in a field microplot experiment conducted from March 1993 to March 1995. Treatments included two near-isogenic lines of soybean cv. Clark differing for date of maturity, and one corn hybrid. The soybean lines were planted in microplots infested with H. glycines at a high average initial population density (Pi) (23,810 eggs/100 cm³ soil), and the corn was planted in microplots infested at high (24,640) and low (5,485) Pi. Soil temperatures at 15 cm depth and rainfall were monitored. Carbohydrate contents varied in the same pattern, with the highest levels measured before planting (May) and after harvest (October) in both years. Neither Pi nor soybean isoline had an effect on any measured response, but the carbohydrate contents of eggs from corn and soybean microplots differed during the overwinter (October-May) periods (P < 0.0001). Trehalose accumulation was negatively correlated with soil temperature (r = -0.78 and r = -0.84, P = 0.0001, July through November 1993 and 1994, respectively), which reflects its role as a cryoprotectant. In contrast to the pattern for carbohydrates, total protein was lowest before planting and after harvest, and highest (>20 μg/1,000 eggs) June through October. Protein content was unaffected by plant cultivar or species. Protein and carbohydrate levels in H. glycines eggs showed seasonal changes that appeared to be primarily temperature-dependent.  相似文献   

13.
The influence of Heterodera glycines (soybean cyst nematode) on the interspecific and intraspecific competition associated with Glycine max (soybean) and Chenopodium album (common lambsquarters) was studied in 1988 and 1989 in three de Wit replacement series experiments in growth chambers and microplots. Glycine max was grown alone (1 plant/experimental unit), in intraspecific competition (2 plants/experimental unit), in interspecific competition with C. album, and in presence or absence of H. glycines. No significant effects of H. glycines and C. album on G. max growth were observed 14 days after planting. By 42 days after planting, both H. glycines and C. album had a negative (P = 0.05) influence on the growth of G. max. Relative crowding coefficients for G. max were lower and deviated (P = 0.05 and P = 0.001) from 1.0 in the presence of H. glycines, compared to that of C. album and early emerged C. album in the absence of the nematode, respectively. Glycine max, therefore, became less competitive than C. album. There was a trend that the presence of H. glycines decreased the competitiveness of G. max on measures of the aggressivity and relative mixture response. Heterodera glycines decreased the aggressivity of G. max (ca. 150-350%) and increased the relative effects of intraspecific interference on G. max (ca. 10-50%) and interspecific interference (ca. 60-350%) after 42 days of plant growth, compared with plants grown in the absence of H. glycines. No H. glycines x C. album interactions were detected. Observations showed that H. glycines and early emerged C. album inhibited the growth of G. max 5-13%, as measured by plant dry weight.  相似文献   

14.
The soybean cyst nematode, Heterodera glycines, is one of the most economically important pathogens of soybean. Effective management of the nematode is often dependent on the planting of resistant soybean cultivars. During the past 40 years, more than 60 soybean genotypes and plant introductions (PI) have been reported as resistant to H. glycines. About 130 modern soybean cultivars registered in the United States are resistant to certain races of H. glycines. Several resistance genes have been identified and genetically mapped; however, resistance levels in many soybean cultivars are not durable. Some older cultivars are no longer resistant to certain H. glycines populations in many production areas, especially if a soybean monoculture has been practiced. Past soybean registration reports show that all resistant cultivars developed in public institutions from the mid-1960s to the present have been derived from five PIs. This narrow genetic background is fragile. To further complicate the issue, soybean-H. glycines genetic interactions are complex and poorly understood. Studies to identify soybean resistance genes sometimes have overlapped, and the same genes may have been reported several times and designated by different names. Nevertheless, many potential resistance genes in existing germplasm resources have not yet been characterized. Clearly, it is necessary to identify new resistance genes, develop more precise selection methods, and integrate these resistance genes into new cultivars. Rational deployment of resistant cultivars is critical to future sustained soybean production.  相似文献   

15.
Nematodes produced in monoxenic culture are used for many research purposes. To maximize the number of Heterodera glycines produced in culture, 24 soybean cultivars (maturity groups 0-8) were evaluated for host suitability. A strain of H. glycines race 3, maintained in monoxenic culture on excised soybean root tips of cv. Kent, was inoculated into 20 petri dishes of each cultivar. The highest numbers of first-generation females per petri dish were produced on cultivars Bass, Williams 82, Kent, Proto, and Chapman, and the lowest on cultivars Lambert and Chesapeake. A diapause-like period with decreased nematode production was recorded on some cultivars but not others. Six generations of cultivation on CX 366 did not affect the number of females produced. The results indicated that soybean maturity group could not be used as a parameter for selecting the optimum cultivars for nematode production, and that only J2 petri dishes needed to be counted to determine a 60-female difference per petri dish among cultivars. This study demonstrated that H. glycines populations in monoxenic culture can be more than quadrupled by selection of an appropriate soybean cultivar.  相似文献   

16.
Greenhouse and field microplot studies were conducted to compare soybean shoot and root growth responses to root penetration by Heterodera glycines (Hg) and Meloidogyne incognita (Mi) individually and in combination. Soybean cultivars Centennial (resistant to Hg and Mi), Braxton (resistant to Mi, susceptible to Hg), and Coker 237 (susceptible to Hg and Mi) were selected for study. In the greenhouse, pot size and number of plants per pot had no effect on Hg or Mi penetration of Coker 237 roots; root weight was higher in the presence of either nematode species compared with the noninoculated controls. In greenhouse studies using a sand or soil medium, and in field microplot studies, each cultivar was grown with increasing initial population densities (Pi) of Hg or Mi. Interactions between Hg and Mi did not affect early plant growth or number of nematodes penetrating roots. Root penetration was the only response related to Pi. Mi penetration was higher in sand than in soil, and higher in the greenhouse than in the field, whereas Hg penetration was similar under all conditions. At 14 days after planting, more second-stage juveniles were present in roots of susceptible than in roots of resistant plants. Roots continued to lengthen in the greenhouse in the presence of either Mi or Hg regardless of host genotype, but only in the presence of Mi in microplots; otherwise, responses in field and greenhouse studies were similar and differed only in magnitude and variability.  相似文献   

17.
A series of greenhouse experiments was conducted to elucidate the postinfection development of Heterodera glycines in response to applications of alachlor and fenamiphos. The rate of H. glycines maturation on a susceptible soybean cultivar was not altered by 1.0 μg alachlor/g soil but was completely inhibited by 1.0 or 1.5 μg fenamiphos/g soil. An alachlor-fenamiphos combination allowed development after an initial 300-degree-day delay. Nematode maturation on the resistant soybean cultivar Centennial with 1.0 μg alachlor/g soil was similar to that observed on an untreated resistant control. Twice as many females matured on Centennial plants growing in alachlor-treated soil as on untreated Centennial plants. Fenamiphos in combination with alachlor (1.0 μg a.i./g soil) allowed development on Centennial at half the rate of the resistant control. This antagonism between alachlor and fenamiphos on development may help to explain late season population resurgence of H. glycines observed with field application of these pesticides.  相似文献   

18.
Heterodera glycines was identified in North Carolina in 1954, although symptoms of the disease were noted in the state at least 8 years earlier. Crop rotation experiments designed to develop management systems were initiated in 1956. Two or more years in production of a nonhost crop resulted in decreases of the nematode to low or undetectable levels with acceptable subsequent yields of soybean (Glycine max). Because of almost complete dependence on resistant cultivars and (or) nematicides for nematode control, crop rotation experiments were not conducted from 1962 to 1980. Research on control of H. glycines, beginning in 1981, emphasized biological and ecological aspects of the nematode in order to determine cropping systems that restrict the nematode to nondamaging levels. Mortality during embryogenesis was high at temperatures above 30 C. Hatching of eggs occurs readily in May and June. Postinfection development takes 2-3 weeks at weekly mean temperatures of 22-29 C and is slow above and below those temperatures. Egg production is high during the late growing season. Some cultural practices such as planting early maturing cultivars in mid-to-late June and rotation with a nonhost effectively keeps populations at low levels.  相似文献   

19.
Heterodera glycines is a serious pest of soybean in the United States. Plant introductions 90763 and 424595 are reported to be resistant to H. glycines race 5; however their genetic relationship for resistance is unknown. Crosses between these two lines and the susceptible cultivar Essex were studied in the F₁, F₂, and F₃ generations to determine the number of genes involved in inheritance of resistance. The plants were screened using conventional techniques based on the index of parasitism. The data were subjected to analyses using chi-square test to determine goodness of fit between observed and expected genetic ratios. The cross PI 424595 x Essex segregated 1 resistant:63 susceptible in the F₂ generation, which indicated the presence of three recessive genes controlling resistance to race 5. In the cross PI 90763 x Essex, resistance was conditioned by one dominant and two recessive genes. The cross between PI 424595 and PI 90763 segregated into 13 resistant:3 susceptible. The data fit a four-gene model with two recessive and two dominant genes with epistasis. PI 90763 has a dominant gene, whereas PI 424595 has a recessive gene; both share two additional recessive genes for resistance to race 5. This information is important to geneticists and soybean breeders for the development of cultivars resistant to H. glycines.  相似文献   

20.
Egg hatch and emergence of second-stage juveniles (J2) of Heterodera glycines races 3 and 4 from cysts exposed to soybean root leachate of cv. Fayette (resistant to H. glycines) and H. glycines-susceptible cultivars A2575, A3127, and Williams 82 were determined in three sets of experiments. In the first experiment, cysts of both race 3 and race 4 were exposed to leachate of 8-week-old plants for a 2-week period. In the second experiment, cysts from populations of races 3 and 4 were raised on cultivars A2575, A3127, and Williams 82. Cysts then were exposed to leachate from 8-week-old plants for a 2-week period in all possible race-per-cultivar combinations. In the third experiment, cysts of races 3 and 4 were exposed at 4-day intervals to leachate from plants as the plants developed 7 to 59 days after planting. In experiments 1 and 2, leachate from 8-week-old Williams 82 and A3127 stimulated more hatch and emergence of H. glycines than leachate from A2575, Fayette, or the control. In the first experiment, cumulative hatch and emergence were greater for race 3 than for race 4. In experiment 2, no apparent relationship developed between leachate from a cultivar and the population developed on that cultivar in terms of stimulation of hatch and emergence. In the third experiment, A2575 stimulated more hatch and emergence of both race 3 and race 4 than A3127, Fayette, and Williams 82. Leachate from Fayette stimulated less hatch and emergence of both race 3 and race 4. Hatch and emergence were greatest during the initial 12 days of the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号