首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bursaphelenchus xylophilus isolate MPSy-1av was subcultured from pathotype MPSy-1. MPSy-1av is nonparasitic and does not establish in Pinus sylvestris, P. strobus, P. nigra, or P. taeda. This isolate produces ethanol as an end product of carbohydrate metabolism, whereas its parent pathotype, MPSy-1, does not. Alcohol dehydrogenase activity was easily detectable in homogenates of MPSy-1av but barely detectable in some homogenates of MPSy-1. Genomic differences were seen between MPSy-1 and M PSy-1av by restriction endonuclease analysis of total nematode DNA, and hybridization of DNA fragments to the alcohol dehydrogenase gene from Drosophila.  相似文献   

2.
Treatment of 3-year-old Scots, white, and Austrian pine seedlings with copper sulfate or lead acetate significantly affected energy homeostasis and oleoresin production in the seedlings but did not induce wilting of the seedlings. Inoculation of copper sulfate-treated or lead acetate-treated white, Scots, and Austrian pine seedlings with the white pine specific pathotype of Bursaphelenchus xylophilus, VPSt-1, caused a significant increase in oleoresin production, stressed energy homeostasis, and induced rapid wilting of the seedlings. Scots pine lost tolerance and Austrian pine lost resistance to VPSt-1 after the seedlings were treated with either copper sulfate or lead acetate. These results suggest that environmental pollution may significantly affect susceptibility of pines to B. xylophilus and may have a role in establishment of this nematode in uninfested areas.  相似文献   

3.
Interbreeding potential, chromosome number, and host range were compared among several isolates and species of Bursaphelenchus from diverse geographic areas. Some isolates from North America, Japan, and France had a wide-ranging interbreeding potential, whereas others were restricted in their potential to hybridize with other isolates. Although interbreeding occurred in the laboratory between some "M" and "R" forms of B. xylophilus, interbreeding of B. xylophilus and B. mucronatus was rare. The hybrids had the pathogenicity of the parent with the broader host range. This fact suggests that virulence may be inherited as a dominant character or that increased virulence may have resulted from differences in hybrid vigor. The haploid chromosome number of the different isolates separated the isolates into three groups and distinguished B. xylophilus from B. mucronatus. The findings suggest that the pinewood nematode species complex consists of sibling species that have evolved by reproductive isolation, that the French isolate is a new species, and that B. xylophilus and B. mucronatus have evolved from a common ancestor.  相似文献   

4.
Inhibitory effects of Bursaphelenchus mucronatus on the number of B. xylophilus carried by an adult Monochamus alternatus were investigated using artificial pupal chambers. When pupal chambers were infested with either B. xylophilus or B. mucronatus, the load of B. xylophilus onto the beetle was greater (P < 0.001) than that of B. mucronatus. However, within the pupal chamber there was no difference in the abundance of the third-stage dispersal juveniles, which would molt to the fourth-stage dispersal juveniles to board beetles. The nematode load on beetles that emerged from pupal chambers infested with both Bursaphelenchus species was smaller (P = 0.015) than that of beetles with B. xylophilus alone but greater (P < 0.001) than that of beetles with B. mucronatus alone, suggesting an inhibitory effect of B. mucronatus. As a result of this study, the rate of inhibition of B. mucronatus on molting of third-stage dispersal juveniles of B. xylophilus to fourth-stage dispersal juveniles was 0.65, which resulted in great inhibition on boarding beetles at a rate of 0.7.  相似文献   

5.
Identification of closely related nematode species or races can be very difficult when diagnostic characters are plastic and overlapping. In this study we describe the use of polymerase chain reaction technology and direct DNA sequencing on 19 populations of Bursaphelenchus spp. to help understand their taxonomic relationships. The 5'' end of the heat shock 70A gene from Caenorhabditis elegans was used as the target DNA sequence because it contains both coding and non-coding regions. The results indicate that the 19 populations could be divided into five types within B. xylophilus and four types within B. mucronatus. On a larger scale, the data revealed three distinct groups, representing B. xylophilus from North America and Japan, B. mucronatus from Japan, and "B. mucronatus" from Europe. There is sufficient difference between the European and Japanese "B. mucronatus" groups to warrant their consideration as separate species.  相似文献   

6.
White, Scots, and Austrian 3-year-old pine seedlings were treated with conditions simulating acid rain and inoculated with the white pine specific pathotype of Bursaphelenchus xylophilus, VPSt-1. Oleoresin concentration increased slightly and carbohydrate concentration decreased in all seedlings treated with simulated acid rain (SAR). The changes were significantly increased after inoculation of SAR-treated white and Scots pine seedlings with VPSt-1. Wilting was delayed and nematode reproduction decreased in SAR-treated white pine seedlings inoculated with VPSt-1. SAR-treated Austrian pine seedlings were resistant to VPSt-1, but SAR-treated Scots pine seedlings lost tolerance to VPSt-1 and wilted 50-60 days after inoculation.  相似文献   

7.
Maximum and minimum xylem pressure potentials of needles were measured to evaluate water status of Pinus thunbergii Parl. after inoculation with the virulent or avirulent populations of Bursaphelenchus xylophilus or B. mucronatus. In virulent B. xylophilus-inoculated pines, the water status changed abruptly and needle chlorosis occurred by day 29 after inoculation. Similar changes were not seen in B. mucronatus-inoculated and uninoculated control pines. Oleoresin flow ceased in virulent B. xylophilus-inoculated pines. Avirulent B. xylophilus-inoculated pines responded very little to nematode invasion by a slight decrease in oleoresin flow. Oleoresin flow did not vary in B. mucronatus-inoculated and uninoculated control pines. A decrease in soil water potential below field capacity seemed to accelerate the development of pine wilt disease.  相似文献   

8.
The influence of temperature on reproduction and movement was examined for seven geographic isolates of Bursaphelenchus xylophilus, three of B. mucronatus, and two of their interspecific hybrids. All nematode isolates tended to be more active and fecund the higher the temperature, with the isolates of B. xylophilus reaching a reproductive peak at higher temperatures than isolates of B. mucronatus. Most isolates of B. xylophilus and B. mucronatus did not produce significantly more progeny at higher male-to-female ratios. The interspecific hybrids appear to possess temperature-related characteristics of either B. xylophilus or both of the parents.  相似文献   

9.
An isolate of Bursaphelenchus xylophilus from Pinus sylvestris in Missouri infected and reproduced in 2-3-year-old seedlings of P. sylvestris and to some extent in seedlings of P. nigra. Wilting, however, occurred only in P. sylvestris. B. xylophilus isolated from P. strobus in Vermont infected and reproduced only in P. strobus seedlings. P. taeda seedlings were resistant to both of these isolates. Phytotoxin production was seen only in susceptible seedling species-nematode combinations. Significant water loss occurred only in those seedlings that were wilted because of infection by a compatible nematode isolate. Our results suggest that these isolates are pathotypes of B. xylophilus.  相似文献   

10.
Pine wilt disease (PWD) caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, is one of the most devastating diseases of Pinus spp. The PWN was therefore listed as one of the most dangerous forest pests in China meriting quarantine. Virulence of the PWN is closely linked with the spread of PWD. However, main factors responsible for the virulence of PWNs are still unclear. Recently epiphytic bacteria carried by PWNs have drawn much attention. But little is known about the relationship between endophytic bacteria and virulence of B. xylophilus. In this research, virulence of ten strains of B. xylophilus from different geographical areas in six provinces of China and four pine species were tested with 2-year-old seedlings of Pinus thunbergii. Endophytic bacteria were isolated from PWNs with different virulence to investigate the relationship between the bacteria and PWN virulence. Meanwhile, the carbon metabolism of endophytic bacteria from highly and low virulent B. xylophilus was analyzed using Biolog plates (ECO). The results indicated that ten strains of PWNs showed a wide range of virulence. Simultaneously, endophytic bacteria were isolated from 90% of the B. xylophilus strains. The dominant endophytic bacteria in the nematodes were identified as species of Stenotrophomonas, Achromobacter, Ewingella, Leifsonia, Rhizobium, and Pseudomonas using molecular and biochemical methods. Moreover, S. maltophilia, and A. xylosoxidans subsp. xylosoxidans were the predominant strains. Most of the strains (80%) from P. massoniana contained either S. maltophilia, A. xylosoxidans, or both species. There was a difference between the abilities of the endophytic bacteria to utilize carbon sources. Endophytic bacteria from highly virulent B. xylophilus had a relatively high utilization rate of carbohydrate and carboxylic acids, while bacteria from low virulent B. xylophilus made better use of amino acids. In conclusion, endophytic bacteria widely exist in B. xylophilus from different pines and areas; and B. xylophilus strains with different virulence possessed various endophytic bacteria and diverse carbon metabolism which suggested that the endophytic bacteria species and carbon metabolism might be related with the B. xylophilus virulence.  相似文献   

11.
Pines responded to inoculation with Bursaphelenchus xylophilus by changes in reducing and nonreducing carbohydrate concentrations dependent on the pine species and the pathotype of B. xylophilus with which the trees were inoculated. Carbohydrate concentrations, in compatible pine-nematode pathotype combinations, decreased initially after inoculation and then increased slightly before decreasing to approximately 10% of the control levels as the seedlings wilted. In compatible nematode pathotype-pine species combinations, carbohydrate concentrations decreased and then increased as the nematode population densities declined.  相似文献   

12.
Genotypically different host specific pathotypes of Bursaphelenchus xylophilus have been identified. These pathotypes elicit different responses in pines depending on susceptibility, tolerance, or resistance. Continued passage of some of these pathotypes on fungal cultures leads to conversion to nonparasitic populations. These populations metabolize carbon substrates to ethanol by an anaerobic pathway, while operating some level of a phosphoenolpyruvate (PEP)-succinate pathway to excrete succinate-lactate and malate. On the other hand, parasitic populations metabolize glucose to lactate-succinate, mainly by a PEP-succinate pathway, and maintain redox balance through glycerol production. Ethanol and malate are not excreted by parasitic populations.  相似文献   

13.
We determined the complete mitochondrial genome sequences for Bursaphelenchus mucronatus, one species of pinewood nematode. The genome is a circular-DNA molecule of 14,583 bp (195 bp smaller than its congener Bursaphelenchus xylophilus) and contains 12 protein-coding genes (lacking atp8), 22 tRNA genes, and 2 rRNA genes encoded in the same direction, consistent with most other nematodes. Based on sequence comparison of mtDNA genomes, we developed a PCR-based molecular assay to differentiate B. xylophilus (highly pathogenic) and B. mucronatus (relatively less virulent) using species-specific primers. The molecular identification system employs multiplex-PCR and is very effective and reliable for discriminating these Bursaphelenchus species, which are economically important, but difficult to distinguish based on morphology. The comparison of the mitochondrial genomes and molecular identification system of the two species of Bursaphelenchus spp. should provide a rich source of genetic information to support the effective control and management (quarantine) of the pine wilt disease caused by pinewood nematodes.  相似文献   

14.
Populations of three isolates of Bursaphelenchus xylophilus, the pinewood nematode, and one of B. mucronatus were treated with three cryoprotectants at -70 C for 24 hours followed by deep freezing at -180 C in liquid nitrogen for different periods of time. A solution of 15% glycerol, 35% buffer S, and 50% M9, or 1% aqueous solution of dimethylsulfoxide (DMSO), or a mixture of 60% M9 and 40% S buffer were used as cryoprotectants. A significantly larger number of juveniles than adults survived deep freezing. Significantly more nematodes were motile after cryopreservation in the 15% glycerol-S-M9 soludon than in the M9-S buffer solution or the DMSO aqueous solution. When cryopreserved nematodes that had been treated with glycerol solution were plated onto Botrytis cinerea, they reproduced rapidly over several generations. Cryopreserved nematodes were as pathogenic as untreated nematodes to Scots pines.  相似文献   

15.
We have evaluated the potential of DNA-based methods to identify and differentiate Bursaphelenchus spp. and isolates. The isolation of a DNA probe, designated X14, and development of a DNA fingerprinting method for the identification and differentiation of Bursaphelenchus species and strains is described. Polymerase chain reaction (PCR) amplification of DNA isolated from Bursaphelenchus species using two primers derived from the sequence of the cloned repetitive DNA fragment X14 resulted in multiple band profiles. A 4-kb fragment thus amplified from B. xylophilus DNA was not amplified from B. mucronatus or B. fraudulentus DNA. In addition to this fragment, several other fragments are amplified from the three species. The banding patterns obtained allowed species identification and may have value in determining taxonomic affinities.  相似文献   

16.
The transmission of Bursaphelenchus xylophilus from Monochamus alternatus males to Pinus densiflora trees via oviposition wounds has been determined. Nematode-infested males, with mandibles fixed experimentally to prevent feeding, were placed for 48 hours with pine bolts containing oviposition wounds that had been made by nematode-free females. After removal of the nematode-infested males, the pine bolts were held for 1 month and then examined for the presence of nematodes. Reproducing nematode populations were recovered from pine bolts that were exposed to male beetles carrying a high number of nematodes. No reproducing nematode population could be recovered from pine bolts exposed to beetles with a small number of nematodes. Nematode reproduction in the pine bolts was not related to the number of oviposition wounds per bolt. Fourth-stage dispersal B. xylophilus juveniles, collected from beetle body surfaces, were inoculated on pine bolt bark 0, 5, 10, and 15 cm away from a single artificial, small hole. These dauer juveniles successfully entered some bolts. The probability of successful nematode reproduction decreased with increased distance between inoculation point and artificial hole. The results indicated that B. xylophilus can move a significant distance to oviposition wounds along the bark surface and enter a tree via the wounds. The new transmission pathway is considered important for the nematode to persist in pine forests such as in North America where pine wilt disease does not occur.  相似文献   

17.
To determine the effect of soil environment on the life stages and total numbers of Bursaphelenchus xylophilus, nematode-infested wood chips alone and mixed with soil were incubated at 12 and 20 C. Nematodes were extracted at 2-week intervals for 12 weeks. Numbers of nematodes and percentage of third-stage dispersal larvae were greater at 12 C and in chips without soil. Percentage of juveniles of the propagative cycle was greater at 20 C and in chips with soil. Although B. xylophilus survived in chips with soil for 12 weeks, nematode numbers and life stage percentages changed little over time. To determine if B. xylophilus was capable of infecting wounded roots, infested and uninfested chips were mixed with soil in pots with white and Scots pine seedlings. Trees were maintained at 20 and 30 C and harvested at mortality or after 12 weeks. Only seedlings treated with infested chips contained nematodes. In field experiments, planted seedlings were mulched with infested chips to determine if nematodes would invade basal stem wounds. Among these trees, Scots pine was more susceptible than white or red pines to infection and mortality.  相似文献   

18.
The pinewood nematode, Bursaphelenchus xylophilus, is one of the greatest threats to coniferous forests worldwide, causing severe ecological damage and economic loss. The biology of B. xylophilus is similar to that of its closest relative, B. mucronatus, as both species share food resources and insect vectors, and have very similar morphological characteristics, although little pathogenicity to conifers has been associated with B. mucronatus. Using both nuclear and mitochondrial DNA markers, we show that B. xylophilus and B. mucronatus form distinct phylogenetic groups with contrasting phylogeographic patterns. B. xylophilus presents lower levels of intraspecific diversity than B. mucronatus, as expected for a species that evolved relatively recently through geographical or reproductive isolation. Genetic diversity was particularly low in recently colonised areas, such as in southwestern Europe. By contrast, B. mucronatus displays high levels of genetic diversity and two well-differentiated clades in both mitochondrial and nuclear DNA phylogenies. The lack of correlation between genetic and geographic distances in B. mucronatus suggests intense gene flow among distant regions, a phenomenon that may have remained unnoticed due to the reduced pathogenicity of the species. Overall, our findings suggest that B. xylophilus and B. mucronatus have different demographic histories despite their morphological resemblance and ecological overlap. These results suggest that Bursaphelenchus species are a valuable model for understanding the dispersion of invasive species and the risks posed to native biodiversity and ecosystems.  相似文献   

19.
The nematicidal activity of two cassia, Cinnamomum cassia, oils (Especial and true), four cinnamon, Cinnamomum zey-lanicum, oils (technical, #500, bark and green leaf), and their compounds (e.g., trans-cinnamaldehyde and trans-cinnamic acid) toward adult Bursaphelenchus xylophilus was examined by a direct contact bioassay. Results were compared with those of 34 related compounds. As judged by 24-hour LC50 values, two cassia oils (0.084–0.085 mg/ml) and four cinnamon oils (0.064–0.113 mg/ml) were toxic toward adult B. xylophilus. Of 45 test compounds, trans-cinnamaldehyde (0.061 mg/ml) was the most active nematicide, followed by ethyl cinnamate, α-methyl-trans-cinnamaldehyde, methyl cinnamate and allyl cinnamate (0.114–0.195 mg/ml). Potent nematicidal activity was also observed with 4-methoxycinnamonitrile, trans-4-methoxycinnamaldehyde, trans-2-methoxy-cinnamaldehyde, ethyl α-cyanocinnamate, cinnamonitrile and cinnamyl bromide (0.224–0.502 mg/ml). Structure-activity relationships indicate that structural characteristics, such as types of functional groups, saturation and carbon skeleton, appear to play a role in determining the toxicities to adult B. xylophilus. Cassia and cinnamon oils and test compounds described merit further study as potential nematicides or leads for the control of pine wilt disease caused by B. xylophilus.  相似文献   

20.
Pine wilt is caused by the nematode Bursaphelenchus xylophilus, which is transported to host trees in the trachea of Monochamus spp. (Coleoptera: Cerambycidae). The study of the relationship between the nematode and its beetle vectors has been hampered by the inability to estimate nematode presence or density within live beetles. This report describes a rapid method for estimating nematode load within live M. carolinensis and M. alternatus by visual examination of the atrium of the first abdominal spiracle. Visual estimates of nematode numbers correlated highly with actual nematode numbers. This method is a timesaving technique for determining relative numbers of B. xylophilus in pine wilt research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号