首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We recently reported the establishment of transgenic mouse lines carrying the mouse metallothionein/ret fusion gene in which severe melanosis and melanocytic tumors developed. In the present study, we demonstrate that a significant number of pigmented hairs developed in Wv/Wv mice crossed to one of the transgenic mouse lines. The pigmented hair of Wv/Wv mice carrying the ret oncogene did not lose color during aging and reappeared after shaving, indicating that the melanocytes in the hair follicle function. The melanocytic tumors also developed in these mice, although the incidence was lower than that in the wild transgenic mice. Furthermore, the neutral tube culture of mouse embryos indicated that neural crest cells of the transgenic mice gave rise to a cell population that autonomously produced melanin even in the absence of melanocyte stimulating hormone. These results strongly suggested that the introduced ret oncogene could compensate for the defect of c-kit in Wv mice during both embryogenesis and postnatal life and induce a high level of melanin synthesis in the process of melanocyte development.  相似文献   

2.
Although melanoma is a common human disease, there were few animal models in which melanoma developed at high incidence. To date, the Xiphophorus fish has been used as a model system to study melanoma formation. Studies on this fish showed the presence of a dominant oncogene, Tu, which encodes a transmembrane, tyrosine kinase of epidermal growth factor receptor type (Wittbrodt et al., Nature, 341:415–421, 1989). Recently, we succeeded in establishing novel transgenic mouse lines in which melanosis and melanocytic tumors developed stepwise by introducing another transmembrane tyrosine kinase oncogene, ret (Iwamoto et al., EMBO J., 10:3167–3175, 1991). In our transgenic mice, high levels of expression of the ret transgene induced proliferation and neoplastic transformation of melanin-producing cells. In addition, crossbreeding experiments between transgenic mice and Wv mice showed that the ret oncogene can also induce melanogenesis and melanocyte development in Wv/Wv mice.  相似文献   

3.
We generated four independent transgenic mouse lines that showed severe melanosis of the whole body by introducing the ret oncogene fused to the mouse metallothionein (MT)-I promoter-enhancer (MT/ret). Whereas melanogenesis was accelerated without distinct proliferative disorders in one line, melanocytic tumours frequently developed in the other three lines. Northern hybridization and in situ hybridization analyses showed that tumour cells and non-tumorous melanin-producing cells expressed the transgene at high levels. The aberrant melanogenesis and tumour development were influenced by genetic and environmental factors. Furthermore, crossbreeding experiments between the transgenic mice and Wv mice suggested that the ret gene product can partially compensate for the defect of melanocyte development in Wv mice. This is a novel mammalian model in which melanosis and melanocytic tumours develop stepwise, triggered by a single transgene.  相似文献   

4.
Uveal melanoma (UM) is the most common primary intraocular cancer and has a high incidence of metastasis, which lacks any effective treatment. Here, we present zebrafish models of UM, which are driven by melanocyte‐specific expression of activating GNAQ or GNA11 alleles, GNAQ/11Q209L, the predominant initiating mutations for human UM. When combined with mutant tp53, GNAQ/11Q209L transgenics develop various melanocytic tumors, including UM, with near complete penetrance. These tumors display nuclear YAP localization and thus phenocopy human UM. We show that GNAQ/11Q209L expression induces profound melanocyte defects independent of tp53 mutation, which are apparent within 3 days of development. First, increases in melanocyte number, melanin content, and subcellular melanin distribution result in hyperpigmentation. Additionally, altered melanocyte migration, survival properties, and evasion of normal boundary cues lead to aberrant melanocyte localization and stripe patterning. Collectively, these data show that GNAQ/11Q209L is sufficient to induce numerous protumorigenic changes within melanocytes.  相似文献   

5.
Ret transgenic mouse model of skin malignant melanoma is characterized by the overexpression of the human ret transgene in melanin‐containing cells. Transgenic mice spontaneously develop skin tumors with metastases in lymph nodes, lungs, liver, brain, and the bone marrow. Tumor lesions show typical melanoma morphology and express melanoma‐associated antigens. Although transgenic mice demonstrate an accumulation of melanoma antigen‐specific memory and effector T cells, their anti‐tumor effects could be blocked by highly immunosuppressive leukocytes enriched in the tumor microenvironment and in the periphery. Here, we discuss the role of one of the most potent immunosuppressive subset, regulatory T cells, in the melanoma progression in this model.  相似文献   

6.
Strial melanocytes are required for normal development and correct functioning of the cochlea. Hearing deficits have been reported in albino individuals from different species, although melanin appears to be not essential for normal auditory function. We have analyzed the auditory brainstem responses (ABR) of two transgenic mice: YRT2, carrying the entire mouse tyrosinase (Tyr) gene expression-domain and undistinguishable from wild-type pigmented animals; and TyrTH, non-pigmented but ectopically expressing tyrosine hydroxylase (Th) in melanocytes, which generate the precursor metabolite, L-DOPA, but not melanin. We show that young albino mice present a higher prevalence of profound sensorineural deafness and a poorer recovery of auditory thresholds after noise-exposure than transgenic mice. Hearing loss was associated with absence of cochlear melanin or its precursor metabolites and latencies of the central auditory pathway were unaltered. In summary, albino mice show impaired hearing responses during ageing and after noise damage when compared to YRT2 and TyrTH transgenic mice, which do not show the albino-associated ABR alterations. These results demonstrate that melanin precursors, such as L-DOPA, have a protective role in the mammalian cochlea in age-related and noise-induced hearing loss.  相似文献   

7.
Decreased neutrophils and megakaryocytes in anemic mice of genotype W/W   总被引:12,自引:0,他引:12  
The concentration of neutrophils and megakaryocytes was determined in the marrow of anemic mice of genotype W/Wv and their normal (+/+) litter mates. In all groups studied, the humerus of W/Wv mice contained significantly less neutrophils and megakaryocytes than did normal animals. Blood neutrophil concentration was less in all groups of W/Wv mice but in only one group which was the youngest group studied, did this value differ significantly from normal. The blood and marrow neutrophil response to endotoxin was similar in W/Wv and “+/+” animals. This suggests that the neutrophilic system of W/Wv mice responds to this stimulus in a relatively normal manner, much as their erythroid system responds to hypoxia, and androgens.  相似文献   

8.
Point mutation mice are a key tool in the study of biological functions of genomic DNA sequences and the creation of human disease models. These mice are produced by homologous recombination combined with site‐specific recombinase, which allows removal of drug selection cassettes. However, the methods currently available leave ectopic sequences in the “inactive” intron region of the targeted genome in addition to the desired mutation. Since recent research suggests that the intron region may actually have some functionality, these sequences could potentially interfere with neighboring gene expression and, as a result, affect the mouse phenotype. To completely avoid this issue, we used the PiggyBac transposon to remove selection cassettes and achieve precise genome modification without leaving behind a footprint. This PiggyBac system allowed us to successfully generate mice carrying an artificially introduced Wv point mutation in the Kit gene, and these mice were confirmed to have phenotypes identical to spontaneous Wv mutation mice. Generation of Wv‐mutation corrected mice was also possible, and phenotypes were completely restored. Our footprintless genome modification technology can generate precise point mutation mice with only the desired mutation, and they reflect an accurate phenotype that makes these mice a reliable and “worry‐free” research resource. 52:68–77, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
We have generated a novel transgenic mouse to direct inducible and reversible transgene expression in the melanocytic compartment. The Dopachrome tautomerase (Dct) control sequences we used are active early in the development of melanocytes and so this system was designed to enable the manipulation of transgene expression during development in utero and in the melanocyte stem cells as well as mature melanocytes. We observed inducible lacZ and GFP reporter transgene activity specifically in melanocytes and melanocyte stem cells in mouse skin. This mouse model will be a useful tool for the pigment cell community to investigate the contribution of candidate genes to normal melanocyte and/or melanoma development in vivo. Deregulated expression of the proto-oncogene MYC has been observed in melanoma, however whether MYC is involved in tumorigenesis in pigment cells has yet to be directly investigated in vivo. We have used our system to over-express MYC in the melanocytic compartment and show for the first time that increased MYC expression can indeed promote melanocytic tumor formation.  相似文献   

10.
Sarco(endo)plasmic reticulum calcium ATPases (SERCA) are cellular pumps that transport Ca2+ into the sarcoplasmic reticulum (SR). Serca2 is the most widely expressed gene family member. The very early embryonic lethality of Serca2null mouse embryos has precluded further evaluation of loss of Serca2 function in the context of organ physiology. We have generated mice carrying a conditional Serca2flox allele which allows disruption of the Serca2 gene in an organ-specific and/or inducible manner. The model was tested by mating Serca2flox mice with MLC-2vwt/Cre mice and with αMHC-Cre transgenic mice. In heterozygous Serca2wt/floxMLC-2vwt/Cre mice, the expression of SERCA2a and SERCA2b proteins were reduced in the heart and slow skeletal muscle, in accordance with the expression pattern of the MLC-2v gene. In Serca2flox/flox Tg(αMHC-Cre) embryos with early homozygous cardiac Serca2 disruption, normal embryonic development and yolk sac circulation was maintained up to at least embryonic stage E10.5. The Serca2flox mouse is the first murine conditional gene disruption model for the SERCA family of Ca2+ ATPases, and should be a powerful tool for investigating specific physiological roles of SERCA2 function in a range of tissues and organs in vivo both in adult and embryonic stages.  相似文献   

11.
Oca2p-cas (oculocutaneous albinism II; pink-eyed dilution castaneus) is a coat color mutant gene on mouse chromosome 7 that arose spontaneously in wild Mus musculus castaneus mice. Mice homozygous for Oca2p-cas usually exhibit pink eyes and gray coat hair on the non-agouti genetic background, and this ordinary phenotype remains unchanged throughout life. During breeding of a mixed strain carrying this gene on the C57BL/6J background, we discovered a novel spontaneous mutation that causes darkening of the eyes and coat hair with aging. In this study, we developed a novel mouse model showing this unique phenotype. Gross observations revealed that the pink eyes and gray coat hair of the novel mutant young mice became progressively darker in color by approximately 3 months after birth. Light and transmission-electron microscopic observations revealed a marked increase in melanin pigmentation of coat hair shafts and choroid of the eye in the novel mice compared to that in the ordinary mice. Sequence analysis of Oca2p-cas revealed a 4.1-kb deletion involving exons 15 and 16 of its wild-type gene. However, there was no sequence difference between the two types of mutant mice. Mating experiments suggested that the novel mutant phenotype was not inherited in a simple fashion, due to incomplete penetrance. The novel spontaneous mutant mouse is the first example of progressive hair darkening animals and is an essential animal model for understanding of the regulation mechanisms of melanin biosynthesis with aging.  相似文献   

12.
The W locus encodes a tyrosine kinase receptor, c-kit, which affects survivial of melanoblasts from the neural crest. The primary cochlear defect in Viable Dominant Spotting (Wv/Wv) mutants is a lack of melanocytes within the stria vascularis (SV) associated with an endocochlear potential (EP) close to zero and hearing impairment. In this study, we compare inner ear pigmentation with cochlear potentials in three other W alleles (Wx, Wsh, and W41) and reveal an unequivocal correlation between presence of strial melanocytes and presence of an EP. Asymmetry was common, and 8.3% of Wsh/Wx, 25% of Wsh/Wsh, 60% of W41/Wx, and 69.2% of W41/W41 ears had a pigmented stria and an EP, while the remainder had no strial melanocytes and no EP. In those mutants that partially escaped the effects of the mutation, strial melanocytes rarely extended the entire length of the stria, but were confined to the middle and/or basal turns of the cochlea. The extent of strial pigmentation was unrelated to the EP value, which was measured from the basal turn only. Compound action potential (CAP) responses recorded from ears with an EP were variable and they showed greatly raised thresholds or were absent in all ears where the EP was close to zero. In controls, melanocytes in the vestibular part of the ear were found in the utricle, crus commune, and ampullae, whereas in many mutants only one or two of these regions were pigmented. There was a broad correlation between pigmentation of the stria and pigmentation of the vestibular region but this was not absolute. All W41/Wx, Wsh/Wsh, and W41/W41 mutants had some pigment on the pinna but, in contrast to controls where melanocytes were found in the epidermis and dermis of the pinna, pigment cells were reduced in number and generally restricted to the dermis. Injection of normal neural crest cells into 9.5-day-old mutant embryos increased the extent of skin pigmentation on the head and coat of adult chimeras and was associated with a small increase in the proportion of pigmented strias.  相似文献   

13.
Tyrosinase is the key enzyme in melanin synthesis, and is expressed in the pigment epithelium of the retina, a cell layer derived from the optic cup; and in neural crest-derived melanocytes of skin, hair follicle, choroid, and iris. The tyrosinase gene has been cloned and shown to map to the well-characterized c-locus (albino locus) of the mouse. Subsequent studies demonstrated that a functional tyrosinase minigene was able to rescue the albino phenotype in transgenic mice. The transgene was expressed in a cell type-specific manner in skin and eye. During development of the mouse, the tyrosinase gene is expressed in the pigment epithelium of the retina as early as day 10.5 of gestation. In the hair follicle, tyrosinase gene expression is detected from day 16.5 onwards. This cell-type–specific expression is largely reproduced in transgenic mice. Our results suggest that sequences in the immediate vicinity of the mouse tyrosinase gene are sufficient to provide cell type-specificity and developmental regulation in melanocytes and the pigment epithelium.  相似文献   

14.

Background  

A number of transgenic mice carrying different deletions in the Locus Control Region (LCR) of the mouse tyrosinase (Tyr) gene have been developed and analysed in our laboratory. We require melanocytes from these mice, to further study, at the cellular level, the effect of these deletions on the expression of the Tyr transgene, without potential interference with or from the endogenous Tyr alleles. It has been previously reported that it is possible to obtain and immortalise melanocyte cell cultures from postnatal mouse skin.  相似文献   

15.
Embryonic deletion of mouse Chk1 is lethal; however, whether Chk1 is essential in all individual tissues is unknown. By breeding C57Bl/ 6 mice homozygous for a conditional allele of Chk1 (Chk1fl/fl) and bearing melanocyte‐specific Tyr::Cre and DCT:: LacZ transgenes, we investigated the consequences of Chk1 deletion in the melanocytic lineage. We show that adult Tyr::Cre; Chk1fl/fl mice lack coat pigmentation and epidermal melanocytes in the hair follicles, but retain eye pigmentation in the retinal pigmented epithelium (RPE). Melanoblasts formed normally during embryogenesis in Tyr::Cre; Chk1fl/fl mice at early times (embryonic day 10.5; E10.5) but were completely absent by stage E13.5, most probably as a consequence of spontaneous DNA damage and apoptosis. By contrast, melanoblast numbers were only slightly reduced in heterozygous Tyr::Cre; Chk1fl/ + embryos, and these mice exhibited normal coat pigmentation as adults. Thus, Chk1 is essential for the developmental formation of murine epidermal melanocytes but hemizygosity has little, if any, permanent developmental consequence in this cell type.  相似文献   

16.
Genetically anemicW/W v mice were cured by marrow allografts from donors of 13 out of 18 tested strains that differed at non-H-2 histocompatibility alleles defined by skin or tumor grafting. They were also cured by donors from all four tested congenic lines whose antigenic differences had been defined by induction of serum antibodies. They were not cured acrossH-2 differences. Tail skin graft survival times on uncuredW/W v recipients were determined for all congenic lines used as marrow donors. The longest and shortest skin graft survival times predicted correctly marrow graft success or failure. NoW/W v mice were cured by marrow grafts from donors of the three congenic lines whose skin grafts were rejected in fewer than three weeks. Almost everyW/W v mouse grafted was cured by marrow grafts from donors of the 13 congenic lines whose skin grafts survived longest, from 11 to more than 25 weeks. Intermediate skin graft survival times failed to predict whether marrow grafts would succeed.W/W v mice were cured by marrow from four congenic lines with mean skin graft survival times of 4.2, 4.4, 8, and 9 weeks, while marrow grafts failed from other congenic lines with mean skin graft survival times of 3.3, 3.4, 4.8, and 8.7 weeks. The simplest explanation for these results is that the antigens specified by theH-2, H-3, H-4, H-25, andH-28 loci are strongly immunogenic on both marrow precursor cells and skin,H-17 andH-24 are strongly immunogenic on skin but not on marrow, andH-12 is strongly immunogenic on marrow precursor cells but less strongly on skin.  相似文献   

17.
Melanin is a free-radical scavenger, antioxidant, and broadband absorber of ultraviolet (UV) radiation which protects the skin from environmental carcinogenesis. However, melanin synthesis and UV-induced reactive melanin species are also implicated in melanocyte genotoxicity. Here, we attempted to reconcile these disparate functions of melanin using a UVB-sensitive, NRAS-mutant mouse model, TpN. We crossed TpN mice heterozygous for an inactivating mutation in Tyrosinase to produce albino and black littermates on a C57BL/6J background. These animals were then exposed to a single UVB dose on postnatal day three when keratinocytes in the skin have yet to be melanized. Approximately one-third (35%) of black mice were protected from UVB-accelerated tumor formation. However, melanoma growth rates, tumor mutational burdens, and gene expression profiles were similar in melanomas from black and albino mice. Skin from albino mice contained more cyclobutane pyrimidine dimer (CPD) positive cells than black mice 1-h post-irradiation. However, this trend gradually reversed over time with CPDs becoming more prominent in black than albino melanocytes at 48 h. These results show that in the absence of epidermal pigmentation, melanocytic melanin limits the tumorigenic effects of acute UV exposure but fails to protect melanocytes from UVB-induced mutagenesis.  相似文献   

18.
Lack of characteristic pigmentation and a wide range of clinical presentations account for the diagnostic challenge associated with amelanotic malignant melanoma. Experimental studies of this important human cancer have been hampered by the lack of an appropriate animal model. We previously described a transgenic mouse line (TG‐3) that spontaneously develops pigmented cutaneous melanoma. F1 crosses were generated with TG‐3 and several albino strains, and backcrosses were then made with the albinos. In the present report, we describe the restricted development and characterization of cutaneous amelanotic melanoma in these albino transgenic backcrosses. The incidence and behavior of melanoma in these mice were monitored. A high incidence (80–100%) of spontaneous amelanotic melanoma was observed in albino transgenic mice derived from backcrosses with A, AKR, FVB, and SJL strains. The lowest incidence (30%) was obtained in BALB/c‐derived crosses. No tumors were observed in non‐transgenic mice. Immunohistochemical and western blot analyses using antibodies against three melanocyte‐specific markers of the tyrosinase family of proteins confirmed that the tumors were composed of amelanotic melanocytes. Furthermore, the presence of numerous premelanosomes observed by electron microscopy further supported the melanocytic origin of these tumors. Previous in vitro studies on human melanoma have suggested that cutaneous amelanotic melanoma was evolving from pre‐existing pigmented cutaneous melanoma. However, our results indicate that it can occur directly, as evidenced by the appearance of cutaneous amelanotic melanoma in the tyrosinase‐deficient albino mice. These mice represent a potentially valuable model for studying the mechanistic, diagnostic, and therapeutic features of this highly malignant neoplasm.  相似文献   

19.
Melanins are an important factor determining the vulnerability of mammalian skin to UV radiation and thus to UV-induced skin cancers. Transgenic mice overexpressing hepatocyte growth factor/scatter factor (HGF/SF) have extra-follicular dermal melanocytes, notably in the papillary upper dermis, and are susceptible to UV-induced melanoma. Pigmented HGF/SF neonatal mice are more susceptible than albino HGF/SF animals to UVA -induced melanoma, indicating an involvement of melanin in melanoma formation. This raises the question of the effect of transgenic HGF/SF on melanization. We developed a methodology to accurately quantitate both the production of melanin and the efficiency of melanogenesis in normal, and HGF/SF transgenic mice in vivo. Skin and hair shafts of 5 day old and adult (3 week old) C57BL/6-HGF/SF and corresponding C57BL/6 wild type mice were investigated by electron paramagnetic resonance spectroscopy (EPR) to quantitate melanin, by transmission electron microscopy (TEM) for the presence of melanosomes, and by standard histology and by Western blotting and zymography to determine the expression and activity of melanogenesis-related proteins. Eumelanin but no phaeomelanin was detected in transgenic C57BL/6-HGF and C57BL/6 wild type mice. Transgenic HGF/SF overexpression did not change the type of melanin produced in the skin or hair, did not affect the terminal content of melanin production in standard samples of hair and did not influence hair cycle/morphogenesis-related changes in skin thickness. No melanocytes were found in the epidermis and no melanosomes were found in epidermal keratinocytes. HGF/SF transgenic mice thus lack the epidermal melanin UV-protection found in constitutively dark human skin. We conclude that melanocytes in the HGF/SF transgenic mouse, particularly in the papillary dermis, are vulnerable to UVA which interacts with eumelanin but not phaeomelanin to induce melanoma.  相似文献   

20.
The kinetics of growth of bone marrow cells from normal or genetically anemic mice (Sl/Sld and W/Wv) were studied in irradiated normal and genetically anemic hosts. The parameters followed included total cellularity, the number of peroxidase positive cells, and the number of cells capable of forming colonies in vivo (CFU-S) or in culture (CFU-C). The results of these experiments demonstrate that W and Sl defects alter the growth of CFU-C and peroxidase-positive cells to a modest degree; that the defects are more obvious when studied in spleen rather than in bone marrow; and that there is no additivity of W and Sl defects. Nineteen irradiated recipients of marrow from W/Wv mice were studied after three to six months. Of these, 18 showed host-type erythrocytes, while in one mouse the erythrocytes had the size distribution of W/Wv cells. This finding indicated that occasionally genetically defective stem cells may repopulate irradiated hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号