首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Several unicellular and filamentous, nitrogen-fixing and non-nitrogen-fixing cyanobacterial strains have been investigated on the molecular and the physiological level in order to find the most efficient organisms for photobiological hydrogen production. These strains were screened for the presence or absence of hup and hox genes, and it was shown that they have different sets of genes involved in H2 evolution. The uptake hydrogenase was identified in all N2-fixing cyanobacteria, and some of these strains also contained the bidirectional hydrogenase, whereas the non-nitrogen fixing strains only possessed the bidirectional enzyme. In N2-fixing strains, hydrogen was mainly produced by the nitrogenase as a by-product during the reduction of atmospheric nitrogen to ammonia. Therefore, hydrogen production was investigated both under non-nitrogen-fixing conditions and under nitrogen limitation. It was shown that the hydrogen uptake activity is linked to the nitrogenase activity, whereas the hydrogen evolution activity of the bidirectional hydrogenase is not dependent or even related to diazotrophic growth conditions. With regard to large-scale hydrogen evolution by N2-fixing cyanobacteria, hydrogen uptake-deficient mutants have to be used because of their inability to re-oxidize the hydrogen produced by the nitrogenase. On the other hand, fermentative H2 production by the bidirectional hydrogenase should also be taken into account in further investigations of biological hydrogen production.Abbreviations Chl chlorophyll - MV methyl viologen  相似文献   

2.
Nitrogenase activity in the Gunnera Nostoc symbiosis is shown to respond dramatically to the addition of glucose. H2 can replace glucose in stimulating nitrogenase activity, but there is no H2 stimulation in the presence of excess glucose. Net hydrogen evolution is strongly stimulated by addition of glucose. We postulate that carbohydrate supply and uptake hydrogenase can moderate the apparent activity of nitrogenase by supplying reductant and/or ATP. The recycling of a large proportion of the electron flux in nitrogenase through uptake hydrogenase maintains a high level of potential nitrogenase ready to take advantage of an influx of carbohydrate.  相似文献   

3.
The marine purple nonsulfur bacterium, Rhodopseudomonas sulfidophila, strain W4, was capable of photosynthetic growth on dinitrogen and malate. Higher growth rates were observed when either glutamate or ammonia replaced dinitrogen as nitrogen source and when bicarbonate was omitted from the culture medium. Although ammonia was released from cells growing on malate and N2, no nitrogenase activity could be detected unless -ketoglutarate was added to the culture medium. No nitrogenase activity was found in cultures grown in the presence of NH 4 + . In cultures grown on glutamate as nitrogen source, nitrogenase and hydrogenase activities were found to be 5.4 nmol C2H2 reduced · min-1 · mg-1 dry weight and 50 nmol methylene blue reduced · min-1 · mg-1 dry weight respectively. Such activities are significantly lower than those observed for other members of the Rhodospirillaceae e.g. Rhodopseudomonas capsulata. However, the hydrogenase activity would be sufficient to recycle all H2 produced by nitrogenase. It was indeed observed that growing cells did not evolve molecular hydrogen during photoheterotrophic growth and that H2 stimulated nitrogenase activity in resting cells of R. sulfidophila. The nitrogenase from this bacterium proved to be extremely sensitive to low concentrations of oxygen, half-inhibition occurring at between 1–1.5% O2 in the gas phase, depending on the bacterial concentration. Light was essential for nitrogenase activity. No activity was found during growth in the dark under extremely low oxygen concentrations (1–2% O2), which are still sufficient to support good growth. Resting cell suspensions prepared from such cultures were unable to reduce acetylene upon illumination. Optimum nitrogenase activities were broadly defined over the temperature range, 30–38°C, and between pH 6.9 and 8.0. The results are discussed in comparison with the non-marine purple nonsulfur bacterium, R. capsulata, which somewhat resembles R. sulfidophila.  相似文献   

4.
5.
The conditions necessary for coordinate derepression of nitrogenase and O2-dependent hydrogenase activities in free-living cultures of Rhizobium japonicum were studied. Carbon sources were screened for their ability to support nitrogenase, and then hydrogenase activities. There was a positive correlation between the level of nitrogenase and corresponding hydrogenase activities among the various carbon substrates. The carbon substrate -ketoglutarate was able to support the highest levels of both nitrogenase and hydrogenase activities. When cells were incubated in -ketoglutarate-containing medium, without added H2 but in the presence of acetylene (to block H2 evolution from nitrogenase) significant hydrogenase activity was still observed. Complete inhibition of nitrogenase-dependent H2 evolution by acetylene was verified by the use of a Hup- mutant. Hydrogen is therefore not required to induce hydrogenase. The presence of 10% acetylene inhibited derepression of hydrogenase. Constitutive (Hupc) mutants were isolated which contained up to 9 times the level of hydrogenase acitivity than the wild type in nitrogenase induction medium. These mutants did not have greater nitrogenase activities than the wild type.This is contribution number 1254 from the Department of Biology and the McCollum-Pratt Institute Abbreviations: -Ketoglutarate-containing medium (LOKG) and pre-adaptation medium (SRM) as described in Materials and methods  相似文献   

6.
Acetylene reduction, deuterium uptake and hydrogen evolution were followed in in-vivo cultures of Azospirillum brasilense, strain Sp 7, by a direct mass-spectrometric kinetic method. Although oxygen was needed for nitrogenase functioning, the enzyme was inactivated by a fairly low oxygen concentration in the culture and an equilibrium had to be found between the rate of oxygen diffusion and bacterial respiration. A nitrogenase-mediated hydrogen evolution was observed only in the presence of carbon monoxide inhibiting the uptake hydrogenase activity which normally recycles all the hydrogen produced. However, under anaerobic conditions and in the presence of deuterium, a bidirectional hydrogenase activity was observed, consisting in D2 uptake and in H2 and HD evolution. In contrast to the nitrogenase-mediated H2 production, this anaerobic H2 and HD evolution was insensitive to the presence of acetylene and was partly inhibited by carbon monoxide. It was moreover relatively unaffected by the deuterium partial pressure. These results suggest that the anaerobic H2 and HD evolution can be ascribed to a reverse hydrogenase activity under conditions where D2 is saturating the uptake process and scavenging the electron acceptors. Although the activities of both nitrogenase and hydrogenase were thus clearly differentiated, a close relationship was found between their respective functioning conditions.  相似文献   

7.
8.
Summary The structural genes (hup) of the H2 uptake hydrogenase of Rhodobacter capsulatus were isolated from a cosmid gene library of R. capsulatus DNA by hybridization with the structural genes of the H2 uptake hydrogenase of Bradyrhizobium japonicum. The R. capsulatus genes were localized on a 3.5 kb HindIII fragment. The fragment, cloned onto plasmid pAC76, restored hydrogenase activity and autotrophic growth of the R. capsulatus mutant JP91, deficient in hydrogenase activity (Hup-). The nucleotide sequence, determined by the dideoxy chain termination method, revealed the presence of two open reading frames. The gene encoding the large subunit of hydrogenase (hupL) was identified from the size of its protein product (68108 dalton) and by alignment with the NH2 amino acid protein sequence determined by Edman degradation. Upstream and separated from the large subunit by only three nucleotides was a gene encoding a 34 256 dalton polypeptide. Its amino acid sequence showed 80% identity with the small subunit of the hydrogenase of B. japonicum. The gene was identified as the structural gene of the small subunit of R. capsulatus hydrogenase (hupS). The R. capsulatus hydrogenase also showed homology, but to a lesser extent, with the hydrogenase of Desulfovibrio baculatus and D. gigas. In the R. capsulatus hydrogenase the Cys residues, (13 in the small subunit and 12 in the large subunit) were not arranged in the typical configuration found in [4Fe–4S] ferredoxins.  相似文献   

9.
When cyanide is gradually added to a nitrogenfixing culture, Rhizobium ORS 571 is capable of assimilating large amounts of cyanide using its nitrogenase. Under these conditions the molar growth yield on succinate (Y succ) increases from 27 at the start of cyanide addition to 38 at the end. The respiratory chain of cells grown at a concentration of 7 mM cyanide is still very sensitive to cyanide. The increase in growth yield is explained by a decrease in hydrogen production by nitrogenase as soon as cyanide is assimilated. This is confirmed by calculating the influence of hydrogen production on Y succ. Hydrogen production by nitrogenase has a greater influence on growth yields than the presence or absence of hydrogenase activity. At the end of cyanide addition when all cell nitrogen is synthesized from cyanide and no nitrogen fixation occurs, nitrogenase will be in a very oxidized state.  相似文献   

10.
R. O. D. Dixon 《Plant and Soil》1987,100(1-3):149-156
Summary The apparent Km(hydrogen) for uptake of hydrogen by pea root nodules was determined. This enabled the concentration gradient necessary for the evolution of hydrogen to be calculated for nodules with no hydrogenase activity. This indicated that hydrogen inhibition of nitrogenase is not likely to be the cause of the low relative efficiency of legume root nodules. The factors that affect electron allocation between protons and nitrogen in nitrogenase are reviewed and it is concluded that there must be some as yet unknown factor that affects electron distribution inRhizobium nitrogenase. One possibility is put forward and considered. A strain ofRhizobium was used that was found to possess hydrogenase activity in combination with pea variety Feltham First but not with variety Meteor. The control of this enzyme is briefly discussed.  相似文献   

11.
Summary The effect of trace elements (Fe, Ni) and chelating compounds on the activity of hydrogen (H2) uptake (Hup) hydrogenase, nitrogenase and rate and yield of H2 photoproduction from l-lactate in photosynthetic cultures of Rhodospirillum rubrum was investigated. Hup activity depended on the availability of Ni2+ and was inhibited by EDTA (0.3–0.5 mm ethylenedinitrilotetraacetic acid). Addition of EDTA (0.5 mm) to the culture medium caused a nearly complete inactivation of Hup activity and activation of nitrogenase, which was paralleled by a threefold increase in total H2 photoproduced from lactate. Hup mutants, isolated by transposon Tn5 mutagenesis, produced maximally twofold more H2 than the wild-type. Experiments with different chelating agents [EDTA, NTA (nitrilotriacetic acid), citrate, isocitrate] and varying concentrations of Fe2+ and Fe3+ showed that photosynthetic growth and nitrogenase activity of R. rubrum were strongly influenced by the iron supply. It is concluded that EDTA enhanced H2 photoproduction by (I) inhibition of biosynthesis of Hup hydrogenase and (II) mobilization of iron, thereby activating the biosynthesis of the nitrogenase complex. Correspondence to: M. Kern  相似文献   

12.
Chen Yin  Fan Da-wei 《Hydrobiologia》1985,123(3):219-221
Molecular hydrogen inhibits nitrogenase activity in Anabaena pre-illuminated with red or blue light. The inhibitory effect of molecular hydrogen decreased in the presence of oxygen and several electron acceptors. When NH4Cl and urea were added simultaneously with molecular hydrogen, marked synergistic inhibitory effects took place. The inhibitory effect of molecular hydrogen disappeared or was weakened after the suppression of hydrogenase activity. The addition of O2 and electron acceptors to systems showed no enhancing effect on the C2H2-reducing activity.  相似文献   

13.
Hydrogen evolution from root nodules has been reported to make N2 fixation by some legume-Rhizobium symbiotic systems inefficient. We have surveyed the extent of H2 evolution and estimated relative efficiencies of nodules of Austrian winter peas formed by 15 strains of R. leguminosarum. Their rates of H2 evolution in air were about 30% of the rates of H2 evolution under an atmosphere in which N2 was replaced by Ar. Relative efficiency values based on C2H2 reduction rates ranged from 0.55 to 0.80. With some of the strains, hydrogenase activities were demonstrated in intact nodules and in bacteroids, but the levels of activity were insufficient to recycle all the H2 evolved by the nitrogenase system. In both intact nodules and bacteroids the hydrogenase is less sensitive to O2 damage than the nitrogenase system, so H2 uptake capacity was observed in intact nodules by suppressing the nitrogenase-dependent H2 evolution with an atmosphere containing a high O2 concentration, and in bacteroids by using aerobically prepared bacteroid suspensions. The hydrogenase activity of both was dependent on O2 consumption. A K mfor H2 of near 4 M was determined in suspension of bacteroids from nodules formed by strains 128C53 and 128C56.  相似文献   

14.
15.
The blue-green alga Anabaena cylindrica is found to consume molecular hydrogen in a hydrogenase dependent reaction. This hydrogen uptake proceeds in the dark and is strictly dependent on oxygen, thus representing a Knallgas reactions. Its rate is almost as high as that of the endogenous respiration in Anabaena. Studies with inhibitors reveal that hydrogen is utilized via the complete respiratory chain providing additional energy for the alga. CO plus C2H2 completely block the Knallgas reaction which explains the previously reported considerable increase in the total H2 formation representing the difference between the nitrogenase-dependent H2-evolution and the reutilization of the gas catalysed by the hydrogenase in intact Anabaena.H2 is able to support the C2H2-reduction in the dark in a reaction again strictly dependent on oxygen. Moreover, H2 is also consumed in experiments carried out under far red light and in the presence of dichlorophenyl-dimenthyl-urea (DCMU) where the energy for nitrogen fixation is no longer provided by respiration but by cyclic photophosphorylation. Under these conditions, H2 is found to supply electrons for the formation of C2H4 from C2H2 in a reaction no longer dependent on the presence of oxygen. Moreover, in these experiments, the presence of H2 stabilizes the C2H2-reduction activity against the deleterious effect of oxygen.Thus, this communication provides evidence for a triplicate function of the H2-uptake catalysed by hydrogenase in intact Anabaena which is (a) to provide energy by the Knallgas reaction, (b) to supply reducing equivalents for nitrogenase, (c) to protect nitrogenase from damage by oxygen.Abbreviations DCMU N-(3,4-dichlorophenyl)N,N-dimethylurea - DNP 2-4-dinitrophenol - FCCP carbonylcyanid-p-trifluormethoxyphenyl-hydrazone(=p-CF3-CCP) - Chl chlorophyll  相似文献   

16.
The effect of different carbon sources on the growth of Frankia isolates for Casuarina sp. was studied. In addition, regulation of nitrogenase and uptake hydrogenase activity by carbon sources was investigated. For each of the three isolates, JCT287, KB5 and HFPCcI3, growth was greatest on the carbon sources pyruvate and propionate. In general the carbon sources which gave the greatest growth gave the highest levels of nitrogenase activity, but repressed the activity of uptake hydrogenase. The regulation of growth, uptake hydrogenase activity and nitrogenase activity is discussed.  相似文献   

17.
18.
A comparative study of the development of uptake hydrogenase and nitrogenase activities in cells of the cyanobacterium Anabaena variabilis was performed. The induction of heterocysts is followed by the induction of both in vivo hydrogen uptake and nitrogenase activities. Interestingly, a low but significant H2-uptake [2–7 μmoles of H2 · mg−1 (Chl a) · h−1] occurs in cultures with no heterocysts and with no nitrogenase activity. A slight stimulatory effect (30–40%) of H2 on in vivo H2-uptake was observed during the early stages of nitrogenase induction. However, exogenous H2 does not further stimulate the induction of in vivo hydrogen uptake observed during heterocyst differentiation. Similarly, organic carbon (fructose) did not influence the induction of either in vivo hydrogen uptake or nitrogenase activities. Exogenous fructose supports higher in vivo hydrogen uptake and nitrogenase activities when the cells enter late exponential phase of growth. Received: 22 November 1995 / Accepted: 22 December 1995  相似文献   

19.
Cyanobacteria are oxygenic photosynthetic prokaryotes and play a crucial role in the Earth's carbon and nitrogen cycles. The photoautotrophic cyanobacterium Anabaena sp. PCC 7120 has the ability to fix atmospheric nitrogen in heterocysts and produce hydrogen as a byproduct through a nitrogenase. In order to improve hydrogen production, mutants from Anabaena sp. PCC 7120 are constructed by inactivation of the uptake hydrogenase (ΔhupL) and the bidirectional hydrogenase (ΔhoxH) in previous studies. Here the proteomic differences of enriched heterocysts between these mutants cultured in N2‐fixing conditions are investigated. Using a label‐free quantitative proteomics approach, a total of 2728 proteins are identified and it is found that 79 proteins are differentially expressed in the ΔhupL and 117 proteins in the ΔhoxH variant. The results provide for the first time comprehensive information on proteome regulation of the uptake hydrogenase and the bidirectional hydrogenase, as well as systematic data on the hydrogen related metabolism in Anabaena sp. PCC 7120.  相似文献   

20.
Summary Genomic DNA from Azotobacter chroococcum was shown by DNA hybridization to contain sequences homologous to Rhizobium japonicum H2-uptake (hup) hydrogenase genes carried on the plasmid pHU1. Two recombinant cosmid clones, pACD101 and pACD102, were isolated from a gene library of A. chroococcum by colony hybridization and physically mapped. Each contained approximately 42 kb of insert DNA with approximately 27 kb of overlapping DNA. Further hybridization studies using three fragments from pHU1 (6 kb HindIII, 6.4 kb BglII and 5 kb EcoRI) showed that the hup-specific regions of R. japonicum and A. chroococcum are probably highly conserved. Weak homology to the hydrogenase structural genes from Desulfovibrio vulgaris (Hildenborough) was also observed. A 24 kb BamHI fragment from pACD102 subcloned into a broad host-range vector restored hydrogenase activity to several Hup- mutants of A. chroococcum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号