首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

Background

Stress-activated protein kinases regulate multiple cellular responses to a wide variety of intracellular and extracellular conditions. The conserved, multifunctional, ATF/CREB protein Atf1 (Mts1, Gad7) of fission yeast binds to CRE-like (M26) DNA sites. Atf1 is phosphorylated by the conserved, p38-family kinase Spc1 (Sty1, Phh1) and is required for many Spc1-dependent stress responses, efficient sexual differentiation, and activation of Rec12 (Spo11)-dependent meiotic recombination hotspots like ade6-M26.

Methodology/Principal Findings

We sought to define mechanisms by which Spc1 regulates Atf1 function at the ade6-M26 hotspot. The Spc1 kinase was essential for hotspot activity, but dispensable for basal recombination. Unexpectedly, a protein lacking all eleven MAPK phospho-acceptor sites and detectable phosphorylation (Atf1-11M) was fully proficient for hotspot recombination. Furthermore, tethering of Atf1 to ade6 in the chromosome by a heterologous DNA binding domain bypassed the requirement for Spc1 in promoting recombination.

Conclusions/Significance

The Spc1 protein kinase regulates the pathway of Atf1-promoted recombination at or before the point where Atf1 binds to chromosomes, and this pathway regulation is independent of the phosphorylation status of Atf1. Since basal recombination is Spc1-independent, the principal function of the Spc1 kinase in meiotic recombination is to correctly position Atf1-promoted recombination at hotspots along chromosomes. We also propose new hypotheses on regulatory mechanisms for shared (e.g., DNA binding) and distinct (e.g., osmoregulatory vs. recombinogenic) activities of multifunctional, stress-activated protein Atf1.  相似文献   

20.
Mutation in DJ-1 gene is the cause of autosomal recessive Parkinson's disease, however, its physiological function remains unclear. The isoelectric point of DJ-1 shows an acidic shift after cells are treated with hydrogen peroxide. This suggests that DJ-1 is modified in response to oxidative stress. Here we report the structural characterization of an acidic isoform of DJ-1 using a proteomic approach with nanospray interface liquid chromatography-electrospray ionization/linear ion trap mass spectrometer. When human umbilical vein endothelial cells were exposed to hydrogen peroxide, all three cysteines in DJ-1 were oxidized to cysteine sulphonic acid. Although a small part of the Cys-46 and Cys-53 were oxidized, Cys-106 was oxidized completely at any hydrogen peroxide concentration used here. These results suggest that Cys-106 is the most sensitive among three cysteine residues to oxidative stress, and that DJ-1 function is regulated, in terms of the intracellular redox state, by oxidation of Cys-106.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号