首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The Saccharomyces cerevisiae type 2A protein phosphatase (PP2A) Pph22p differs from the catalytic subunits of PP2A (PP2Ac) present in mammals, plants and Schizosaccharomyces pombe by a unique N-terminal extension of approximately 70 amino acids. We have overexpressed S. cerevisiae Pph22p and its N-terminal deletion mutant Delta N-Pph22p in the GS115 strain of Pichia pastoris and purified these enzymes to apparent homogeneity. Similar to other heterologous systems used to overexpress PP2Ac, a low yield of an active enzyme was obtained. The recombinant enzymes designed with an 8 x His-tag at their N-terminus were purified by ion-exchange chromatography on DEAE-Sephacel and affinity chromatography on Ni2+-nitrilotriacetic acid agarose. Comparison of biochemical properties of purified Pph22p and Delta N-Pph22p with purified human 8 x His PP2Ac identified similarities and differences between these two enzymes. Both enzymes displayed similar specific activities with 32P-labelled phosphorylase a as substrate. Furthermore, selected inhibitors and metal ions affected their activities to the same extend. In contrast to the mammalian catalytic subunit PP2Ac, but similar to the dimeric form of mammalian PP2A, Pph22p, but not Delta N-Pph22p, interacted strongly with protamine. Also with regard to the effects of protamine and polylysine on phosphatase activity Pph22p, but not Delta N-Pph22p, behaved similarly to the PP2Ac-PR65 dimer, indicating a regulatory role for the N-terminal extension of Pph22p. The N-terminal extension appears also responsible for interactions with phospholipids. Additionally Pph22p has different redox properties than PP2Ac; in contrast to human PP2Ac it cannot be reactivated by reducing agents. These properties make the S. cerevisiae Pph22p phosphatase a unique enzyme among all type 2A protein phosphatases studied so far.  相似文献   

2.
We have previously reported that cyclic strain results in rapid phosphorylation of p38 mitogen activated protein kinase (MAPKs). The aim of this study was to examine the role of protein phosphatase type 2A (PP2A) in regulating p38 MAPK activation in bovine aortic endothelial cells exposed to cyclic strain. In this study, we demonstrate that the catalytic subunit of PP2A is tyrosine phosphorylated by cyclic strain, resulting in inhibition of phosphatase activity. Okadaic acid, an inhibitor of PP2A at lower concentrations increased phosphorylation of p-38. Phospho-p38 MAPK physically associated with the catalytic subunit, PP2Ac. Phospho-p38 MAPK was dephosphorylated by purified PP2Ac in cell lysates, but if pretreated with okadaic acid, phospho-p38 MAPK was maintained. Taken together, our result suggests that PP2A plays a regulatory role in p38 MAPK activation in endothelial cells exposed to cyclic strain.  相似文献   

3.
4.
Protein serine/threonine phosphatase 4 (PP4c) is an essential polypeptide involved in critical cellular processes such as microtubule growth and organization, DNA damage checkpoint recovery, apoptosis, and tumor necrosis factor alpha signaling. Like other phosphatases of the PP2A family, PP4c interacts with regulatory proteins, which specify substrate targeting and intracellular localization. The identification of these regulatory proteins is, therefore, key to fully understanding the function of this enzyme class. Here, using a sensitive affinity purification/mass spectrometry approach, we identify a novel, stable cytosolic PP4c interacting partner, KIAA1622, which we have renamed PP4R4. PP4R4 displays weak sequence homology with the A (scaffolding) subunit of the PP2A holoenzyme and specifically associates with PP4c (and not with the related PP2Ac or PP6c phosphatases). The PP4c.PP4R4 interaction is disrupted by mutations analogous to those abrogating the association of PP2Ac with PP2A A subunit. However, unlike the PP2A A subunit, which plays a scaffolding role, PP4R4 does not bridge PP4c with previously characterized PP4 regulatory subunits. PP4c.PP4R4 complexes exhibit phosphatase activity toward a fluorogenic substrate and gammaH2AX, but this activity is lower than that associated with the PP4c.PP4R2.PP4R3 complex, which itself is less active than the free PP4c catalytic subunit. Our data demonstrate that PP4R4 forms a novel cytosolic complex with PP4c, independent from the complexes containing PP4R1, PP4R2.PP4R3, and alpha4, and that the regulatory subunits of PP4c have evolved different modes of interaction with the catalytic subunit.  相似文献   

5.
Protein phosphatase 2A (PP2A) is a conserved essential enzyme that is implicated as a tumor suppressor based on its central role in phosphorylation-dependent signaling pathways. Protein phosphatase methyl esterase (PME-1) catalyzes specifically the demethylation of the C-terminal Leu309 residue of PP2A catalytic subunit (PP2Ac). It has been shown that PME-1 affects the activity of PP2A by demethylating PP2Ac, but also by directly binding to the phosphatase active site, suggesting loss of PME-1 in cells would enhance PP2A activity. However, here we show that PME-1 knockout mouse embryonic fibroblasts (MEFs) exhibit lower PP2A activity than wild type MEFs. Loss of PME-1 enhanced poly-ubiquitination of PP2Ac and shortened the half-life of PP2Ac protein resulting in reduced PP2Ac levels. Chemical inhibition of PME-1 and rescue experiments with wild type and mutated PME-1 revealed methyl-esterase activity was necessary to maintain PP2Ac protein levels. Our data demonstrate that PME-1 methyl-esterase activity protects PP2Ac from ubiquitin/proteasome degradation.  相似文献   

6.
Multiple neurodegenerative disorders are linked to aberrant phosphorylation of microtubule-associated proteins (MAPs). Protein phosphatase 2A (PP2A) is the major MAP phosphatase; however, little is known about its regulation at microtubules. α4 binds the PP2A catalytic subunit (PP2Ac) and the microtubule-associated E3 ubiquitin ligase MID1, and through unknown mechanisms can both reduce and enhance PP2Ac stability. We show MID1-dependent monoubiquitination of α4 triggers calpain-mediated cleavage and switches α4's activity from protective to destructive, resulting in increased Tau phosphorylation. This regulatory mechanism appears important in MAP-dependent pathologies as levels of cleaved α4 are decreased in Opitz syndrome and increased in Alzheimer disease, disorders characterized by MAP hypophosphorylation and hyperphosphorylation, respectively. These findings indicate that regulated inter-domain cleavage controls the dual functions of α4, and dysregulation of α4 cleavage may contribute to Opitz syndrome and Alzheimer disease.  相似文献   

7.
Senescence is associated with decreased activities of DNA replication, protein synthesis, and cellular division, which can result in deterioration of cellular functions. Herein, we report that the growth and division of tumor cells were significantly repressed by overexpression of histone deacetylase (HDAC) 1 with the Tet-off induced system or transient transfection. In addition, HDAC1 overexpression led to senescence through both an accumulation of hypophosphorylated active retinoblastoma protein (pRb) and an increase in the protein level of protein phosphatase 2A catalytic subunit (PP2Ac). HDAC1 overexpression also increased the level of Sp1 deacetylation and elevated the interaction between Sp1 and p300, and subsequently that Sp1/p300 complex bound to the promoter of PP2Ac, thus leading to induction of PP2Ac expression. Similar results were obtained in the HDAC1-Tet-off stable clone. Taken together, these results indicate that HDAC1 overexpression restrained cell proliferation and induced premature senescence in cervical cancer cells through a novel Sp1/PP2A/pRb pathway.  相似文献   

8.
9.
Protein phosphatase 2A is ubiquitous among eukaryotes and exists as a family of holoenzymes in which the catalytic subunit. PP2Ac, binds a variety of regulatory subunits. Using the yeast Saccharomyces cerevisia, we have investigated the role of the phylogenetically invariant C-terminal leucine residue of PP2Ac, which, in mammalian cells, undergoes reversible methylation and modulates binding of the PR55/B subunit. In S. cerevisiae, the C-terminal Leu-377 residue of Pph22p (equivalent to human PP2Ac Leu-309) was dispensable for cell growth under optimum conditions and its removal, or substitution by alanine, did not inhibit PP2A activity in vitro. However, Leu-377 is required for binding of the yeast PR55/B subunit, Cdc55p, by Pph22p, though apparently not for the binding of Rts1p, the yeast PR61/B' subunit. Furthermore, mutation of this leucine enhanced the sensitivity of cells to microtubule destabilization, a defect characteristic of cdc55delta mutant cells, which are impaired for spindle checkpoint function. These results demonstrate that the regulation of PP2A, mediated by PR55/B binding to the highly conserved PP2Ac C-terminus, is critical for cell viability under conditions of microtubule damage and support a role for PP2A in exit from mitosis.  相似文献   

10.
Physiological functions of protein phosphatase 2A (PP2A) are determined via the association of its catalytic subunit (PP2Ac) with diverse regulatory subunits. The predominant form of PP2Ac assembles into a heterotrimer comprising the scaffolding PR65/A subunit together with a variable regulatory B subunit. A distinct population of PP2Ac associates with the Tap42/alpha4 subunit, an interaction mutually exclusive with that of PR65/A. Tap42/alpha4 is also an interacting subunit of the PP2Ac-related phosphatases, PP4 and PP6. Tap42/alpha4, an essential protein in yeast and suppressor of apoptosis in mammals, contributes to critical cellular functions including the Tor signaling pathway. Here, we describe the crystal structure of the PP2Ac-interaction domain of Saccharomyces cerevisiae Tap42. The structure reveals an all alpha-helical protein with striking similarity to 14-3-3 and tetratricopeptide repeat (TPR) proteins. Mutational analyses of structurally conserved regions of Tap42/alpha4 identified a positively charged region critical for its interactions with PP2Ac. We propose a scaffolding function for Tap42/alpha4 whereby the interaction of PP2Ac at its N-terminus promotes the dephosphorylation of substrates recruited to the C-terminal region of the molecule.  相似文献   

11.
Protein phosphatase 2A (PP2A) is regulated through a variety of mechanisms, including post-translational modifications and association with regulatory proteins. Alpha4 is one such regulatory protein that binds the PP2A catalytic subunit (PP2Ac) and protects it from polyubiquitination and degradation. Alpha4 is a multidomain protein with a C-terminal domain that binds Mid1, a putative E3 ubiquitin ligase, and an N-terminal domain containing the PP2Ac-binding site. In this work, we present the structure of the N-terminal domain of mammalian Alpha4 determined by x-ray crystallography and use double electron-electron resonance spectroscopy to show that it is a flexible tetratricopeptide repeat-like protein. Structurally, Alpha4 differs from its yeast homolog, Tap42, in two important ways: 1) the position of the helix containing the PP2Ac-binding residues is in a more open conformation, showing flexibility in this region; and 2) Alpha4 contains a ubiquitin-interacting motif. The effects of wild-type and mutant Alpha4 on PP2Ac ubiquitination and stability were examined in mammalian cells by performing tandem ubiquitin-binding entity precipitations and cycloheximide chase experiments. Our results reveal that both the C-terminal Mid1-binding domain and the PP2Ac-binding determinants are required for Alpha4-mediated protection of PP2Ac from polyubiquitination and degradation.  相似文献   

12.
To understand the molecular mechanism of gibberellin-dependent gene regulation, the effect of three phosphatase inhibitors on the germination of rice seeds and the expression of a target gene, the -amylase gene, Osamy-c, were measured. We found that okadaic acid, microcystin-LR, and calyculin A, which are known to specifically inhibit Ser/Thr phosphatases 1 and 2A, strongly inhibit the expression of the Osamy-c and may be involved in the germination of rice seeds.The protein phosphatase enzyme activity assays showed that there is no obvious effect of GA3 on total PP1/PP2A activities. To further understand the possible role of protein phosphatases 1 and 2A in the GA-dependent expression of Osamy-c, we isolated cDNA clones encoding protein phosphatase 1 and protein phosphatase 2A from a rice aleurone cDNA library. These were designated OsPP1c and OsPP2Ac, respectively. Comparison of the deduced amino acid sequences of OsPP1c and OsPP2Ac with the catalytic subunits of PP1 or PP2A of rabbit skeletal muscle, Arabidopsis thaliana, maize and Brassica napus showed that the catalytic subunit sequences of PP1 or PP2A among these organisms are highly conserved (73% to 90% similarity). Genomic Southern blot analysis indicated that there are only one or two copies of OsPP1c genes and more than two copies of OsPP2Ac genes in the rice genome. Northern blot analysis showed that OsPP1c and OsPP2Ac genes are expressed in several organs of rice, including seed, shoot and root. We also showed by using 3 gene-specific probes of OsPP1c and OsPP2Ac cDNA, that the expression of neither gene is regulated by GA. Taken together, our results suggest that protein phosphatases PP1 or PP2A are involved in the GA-dependent expression of the rice Osamy-c gene, though the PP1 or/and PP2A enzymatic activities as well as mRNA levels do not increase upon GA3 treatment.  相似文献   

13.
PP2A is the main serine/threonine-specific phosphatase in animal cells. The active phosphatase has been described as a holoenzyme consisting of a catalytic, a scaffolding, and a variable regulatory subunit, all encoded by multiple genes, allowing for the assembly of more than 70 different holoenzymes. The catalytic subunit can also interact with α4, TIPRL (TIP41, TOR signaling pathway regulator-like), the methyl-transferase LCMT-1, and the methyl-esterase PME-1. Here, we report that the gene encoding the catalytic subunit PP2Acα can generate two mRNA types, the standard mRNA and a shorter isoform, lacking exon 5, which we termed PP2Acα2. Higher levels of the PP2Acα2 mRNA, equivalent to the level of the longer PP2Acα mRNA, were detected in peripheral blood mononuclear cells that were left to rest for 24 h. After this time, the peripheral blood mononuclear cells are still viable and the PP2Acα2 mRNA decreases soon after they are transferred to culture medium, showing that generation of the shorter isoform depends on the incubation conditions. FLAG-tagged PP2Acα2 expressed in HEK293 is catalytically inactive. It displays a specific interaction profile with enhanced binding to the α4 regulatory subunit, but no binding to the scaffolding subunit and PME-1. Consistently, α4 out-competes PME-1 and LCMT-1 for binding to both PP2Acα isoforms in pulldown assays. Together with molecular modeling studies, this suggests that all three regulators share a common binding surface on the catalytic subunit. Our findings add important new insights into the complex mechanisms of PP2A regulation.  相似文献   

14.
Diverse functions of protein Ser/Thr phosphatases depend on the distribution of the catalytic subunits among multiple regulatory subunits. In cells protein phosphatase 2A catalytic subunit (PP2Ac) mostly binds to a scaffold subunit (A subunit or PR65); however, PP2Ac alternatively binds to alpha-4, a subunit related to yeast Tap42 protein, which also associates with phosphatases PP4 or PP6. We mapped alpha-4 binding to PP2Ac to the helical domain, residues 19-165. We mutated selected residues and transiently expressed epitope-tagged PP2Ac to assay for association with A and alpha-4 subunits by co-precipitation. The disabling H118N mutation at the active site or the presence of the active site inhibitor microcystin-LR did not interfere with binding of PP2Ac to either the A subunit or alpha-4, showing that these are allosteric regulators. Positively charged side chains Lys(41), Arg(49), and Lys(74) on the back surface of PP2Ac are unique to PP2Ac, compared with phosphatases PP4, PP6, and PP1. Substitution of one, two, or three of these residues with Ala produced a progressive loss of binding to the A subunit, with a corresponding increase in binding to alpha-4. Conversely, mutation of Glu(42) in PP2Ac essentially eliminated PP2Ac binding to alpha-4, with an increase in binding to the A subunit. Reciprocal changes in binding because of mutations indicate competitive distribution of PP2Ac between these regulatory subunits and demonstrate that the mutated catalytic subunits retained a native conformation. Furthermore, neither the Lys(41)-Arg(49)-Lys(74) nor Glu(42) mutations affected the phosphatase-specific activity or binding to microcystin-agarose. Binding of PP2Ac to microcystin and to alpha-4 increased with temperature, consistent with an activation energy barrier for these interactions. Our results reveal that the A subunit and alpha-4 (mTap42) require charged residues in separate but overlapping surface regions to associate with the back side of PP2Ac and modulate phosphatase activity.  相似文献   

15.
Protein phosphatase 2A (PP2A) is a major threonine/serine phosphatase that is involved in regulating a variety of cellular processes. It has been shown in both yeast and mammals that the PP2A catalytic subunit (PP2Ac) is methyl-esterified at the conserved C-terminal Leu residue. The recent characterization of a mammalian PP2A carboxyl methyltransferase has led to the identification of two ORFs in Saccharomyces cerevisiae as potential orthologues of the mammalian PP2A methyltransferase: protein phosphatase methyltransferase 1 (PPM1) and protein phosphatase methyltransferase 2 (PPM2). To experimentally identify the PP2A methyltransferase in yeast, we obtained deletion mutants of PPM1 and PPM2 and then constructed double mutants. Using in vivo-labeling techniques, we demonstrate that only the PPM1 gene is required for PP2Ac methylation at the C-terminus. Because yeast has at least three homologues of PP2Ac (PPH21, PPH22, and PPH3), we then asked whether all of these catalytic subunits are methylated by the PPM1 and/or PPM2 putative methyltransferases. We modified the segment corresponding to the N-terminal coding region of all three PP2Ac genomic genes with a hemagglutinin (HA) tag in the parent, ppm1, ppm2, and ppm1ppm2 mutant genetic backgrounds. Using immuoprecipitation with anti-HA antibodies followed by methyl ester analysis, we showed that only in the ppm1 mutant were both Pph21p and Pph22p not methylated. We did not detect any methylesterification of Pph3p under our conditions. Our results indicate that PPM1 is the sole methyltransferase responsible for methylating the two major homologues of PP2Ac in yeast. The function of the PPM2 gene product remains unclear.  相似文献   

16.
The protein phosphatase 2A (PP2A) holoenzyme is structurally conserved among eukaryotes. This reflects a conservation of function in vivo because the human catalytic subunit (PP2Ac) functionally replaced the endogenous PP2Ac of Saccharomyces cerevisiae and bound the yeast regulatory PR65/A subunit (Tpd3p) forming a dimer. Yeast was employed as a novel system for mutagenesis and functional analysis of human PP2Ac, revealing that the invariant C-terminal leucine residue, a site of regulatory methylation, is apparently dispensable for protein function. However, truncated forms of human PP2Ac lacking larger portions of the C terminus exerted a dominant interfering effect, as did several mutant forms containing a substitution mutation. Computer modeling of PP2Ac structure revealed that interfering amino acid substitutions clustered to the active site, and consistently, the PP2Ac-L199P mutant protein was catalytically impaired despite binding Tpd3p. Thus, interfering forms of PP2Ac titrate regulatory subunits and/or substrates into non-productive complexes and will serve as useful tools for studying PP2A function in mammalian cells. The transgenic approach employed here, involving a simple screen for interfering mutants, may be applicable generally to the analysis of structure-function relationships within protein phosphatases and other conserved proteins and demonstrates further the utility of yeast for analyzing gene function.  相似文献   

17.
蛋白磷酸酶2A(PP2A)是由36 k Da的催化亚基C(PP2Ac)和65 k Da的结构亚基A(PP2Aα/β)一起组成PP2A的核心酶,并且和各种不同的调节亚基B形成具有不同功能的PP2A全酶复合体。在细胞中PP2A发挥着重要作用,特别是在抑制肿瘤的形成当中,编码PP2Aα/β基因的突变将导致肿瘤的形成和其他疾病。当非小细胞肺癌细胞H1299中过表达PP2A-Aα时,细胞生长被抑制,细胞周期停留在G0/G1期,致瘤能力也同时被抑制。进一步研究证明当PP2A-Aα过表达时,Akt被去磷酸化失活使Skp2的表达下调,从而导致细胞周期抑制因子p27kip1的表达上调。肿瘤细胞软琼脂克隆形成实验的结果表明过表达PP2A-Aα之后H1299细胞的锚定非依赖性生长能力明显的降低,形成的克隆细胞团也较小,这些结果和裸鼠成瘤实验的结果是一致的。  相似文献   

18.
Protein phosphatase 2A (PP2A) is a heterotrimeric serine/threonine phosphatase involved in essential cellular functions. T cells from patients with systemic lupus erythematosus (SLE) express high levels of the catalytic subunit of PP2A (PP2Ac). A mouse overexpressing PP2Ac in T cells develops glomerulonephritis in an IL-17-dependent manner. Here, using microarray analyses, we demonstrate that increased expression of PP2Ac grants T cells the capacity to produce an array of proinflammatory effector molecules. Because IL-17 is important in the expression of glomerulonephritis, we studied the mechanism through which PP2Ac dysregulation facilitates its production. We report that PP2Ac is involved in the regulation of the Il17 locus by enhancing histone 3 acetylation through a mechanism that involves activation of interferon regulatory factor 4. Increased histone 3 acetylation of the Il17 locus is shared between T cells of PP2Ac transgenic mice and patients with SLE. We propose that, by promoting the inflammatory capacity of T cells, PP2Ac dysregulation contributes to the pathogenesis of SLE.  相似文献   

19.
Cantharidin, a natural toxicant of blister beetles, is a strong inhibitor of protein phosphatases types 1(PP1) and 2A (PP2A). Like okadaic acid, cantharidin inhibits the activity of the purified catalytic subunit of PP2A (IC50 = 0.16 μM) at a lower concentration than that of PPI (IC50 = 1.7 μM) and only inhibits the activity of protein phosphatase type 2B (PP2B) at high concentrations. Dose-inhibition studies conducted with whole cell homogenates indicate that cantharidin also inhibits the native forms of these enzymes. Thus, cantharidin, which is economical and readily available, may be useful as an additional probe for studying the functions of serine/threonine protein phosphatases.  相似文献   

20.
Mouse epidermal cytosol contains a protein phosphatase with Mr 38,000, which dephosphorylates the elongation factor 2 (EF-2) of protein biosynthesis and is stimulated after topical application of TPA to mouse skin [(1988) Biochem. Biophys. Res. Commun. 153, 1129-1135]. Dephosphorylation of EF-2 by this phosphatase is inhibited by okadaic acid at concentrations as low as 10(-8) M, but not by heparin up to concentrations of 600.micrograms/ml. The catalytic subunit of protein phosphatase 2A (PP2Ac) with EF-2 as a substrate exhibits the same sensitivity towards okadaic acid and insensitivity towards heparin as the EF-2 phosphatase of epidermal cytosol. The catalytic subunit of protein phosphatase 1 (PP1c) is strongly suppressed by heparin and less sensitive towards okadaic acid than PP2Ac. PP2Ac is around 50 times more efficient in dephosphorylating EF-2 than PP1c. These data indicate that the TPA-stimulated EF-2 phosphatase in epidermal cytosol is a type 2A protein phosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号