首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A major challenge for further development of drug screening procedures, cell replacement therapies and developmental studies is the identification of expandable human stem cells able to generate the cell types needed. We have previously reported the generation of an immortalized polyclonal neural stem cell (NSC) line derived from the human fetal ventral mesencephalon (hVM1). This line has been biochemically, genetically, immunocytochemically and electrophysiologically characterized to document its usefulness as a model system for the generation of A9 dopaminergic neurons (DAn). Long-term in vivo transplantation studies in parkinsonian rats showed that the grafts do not mature evenly. We reasoned that diverse clones in the hVM1 line might have different abilities to differentiate. In the present study, we have analyzed 9 hVM1 clones selected on the basis of their TH generation potential and, based on the number of v-myc copies, v-myc down-regulation after in vitro differentiation, in vivo cell cycle exit, TH+ neuron generation and expression of a neuronal mature marker (hNSE), we selected two clones for further in vivo PD cell replacement studies. The conclusion is that homogeneity and clonality of characterized NSCs allow transplantation of cells with controlled properties, which should help in the design of long-term in vivo experiments.  相似文献   

2.
Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro.Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization.The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal of growth factors, proliferation and expression of v-myc were dramatically reduced and the cells differentiated into astrocytes, oligodendrocytes and neurons. hVM1 cells yield a large number of dopaminergic neurons (about 12% of total cells are TH+) after differentiation, which also produce dopamine. In addition to proneural genes (NGN2, MASH1), differentiated cells show expression of several genuine mesencephalic dopaminergic markers such as: LMX1A, LMX1B, GIRK2, ADH2, NURR1, PITX3, VMAT2 and DAT, indicating that they retain their regional identity.Our data indicate that this cell line and its clonal derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing.  相似文献   

3.
Understanding the molecular programs of the generation of human dopaminergic neurons (DAn) from their ventral mesencephalic (VM) precursors is of key importance for basic studies, progress in cell therapy, drug screening and pharmacology in the context of Parkinson's disease. The nature of human DAn precursors in vitro is poorly understood, their properties unstable, and their availability highly limited. Here we present positive evidence that human VM precursors retaining their genuine properties and long-term capacity to generate A9 type Substantia nigra human DAn (hVM1 model cell line) can be propagated in culture. During a one month differentiation, these cells activate all key genes needed to progress from pro-neural and pro-dopaminergic precursors to mature and functional DAn. For the first time, we demonstrate that gene cascades are correctly activated during differentiation, resulting in the generation of mature DAn. These DAn have morphological and functional properties undistinguishable from those generated by VM primary neuronal cultures. In addition, we have found that the forced expression of Bcl-X(L) induces an increase in the expression of key developmental genes (MSX1, NGN2), maintenance of PITX3 expression temporal profile, and also enhances genes involved in DAn long-term function, maintenance and survival (EN1, LMX1B, NURR1 and PITX3). As a result, Bcl-X(L) anticipates and enhances DAn generation.  相似文献   

4.
Neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. Here we investigated the effect of the anti-apoptotic protein Bcl-xL and oxygen tension on dopaminergic differentiation and survival of a human ventral mesencephalic stem cell line (hVM1). hVM1 cells and a Bcl-xL over-expressing subline (hVMbcl-xL) were differentiated by sequential treatment with fibroblast growth factor-8, forskolin, sonic hedgehog, and glial cell line-derived neurotrophic factor. After 10 days at 20% oxygen, hVMbcl-xL cultures contained proportionally more tyrosine hydroxylase(TH)-positive cells than hVM1 control cultures. This difference was significantly potentiated from 11 ± 0.8% to 17.2 ± 0.2% of total cells when the oxygen tension was lowered to 3%. Immunocytochemistry and Q-PCR-analysis revealed expression of several dopaminergic markers besides of TH just as dopamine was detected in the culture medium by HPLC analysis. Although Bcl-xL-over-expression reduced cell death in the cultures, it did not alter the relative content of GABAergic, neurons, while the content of astroglial cells was reduced in hVMbcl-xL cell cultures compared with control. We conclude that Bcl-xL and lowered oxygen tension act in concert to enhance dopaminergic differentiation and survival of human neural stem cells.  相似文献   

5.
Neural stem cells are self-renewing cells capable of differentiating into all neural lineage cells in vivo and in vitro. In the present study, coordinated induction of midbrain dopaminergic phenotypes in an immortalized multipotent neural stem cell line can be achieved by both overexpression of nuclear receptor Nurr1, and fibroblast growth factor-8 (FGF-8), and sonic hedgehog (Shh) signals. Nurr1 overexpression induces neuronal differentiation and confers competence to respond to extrinsic signals such as Shh and FGF-8 that induce dopaminergic fate in a mouse neural stem cell line. Our findings suggest that immortalized NSCs can serve as an excellent model for understanding mechanisms that regulate specification of ventral midbrain DA neurons and as an unlimited source of DA progenitors for treating Parkinson disease patients by cell replacement.  相似文献   

6.
γ-herpesviruses (γHVs) are common human pathogens that encode homologs of the anti-apoptotic cellular Bcl-2 proteins, which are critical to viral reactivation and oncogenic transformation. The murine γHV68 provides a tractable in vivo model for understanding general features of these important human pathogens. Bcl-XL, a cellular Bcl-2 homolog, and the murine γHV68 Bcl-2 homolog, M11, both bind to a BH3 domain within the key autophagy effector Beclin 1 with comparable affinities, resulting in the down-regulation of Beclin 1-mediated autophagy. Despite this similarity, differences in residues lining the binding site of M11 and Bcl-XL dictate varying affinities for the different BH3 domain-containing proteins. Here we delineate Beclin 1 differential specificity determinants for binding to M11 or Bcl-XL by quantifying autophagy levels in cells expressing different Beclin 1 mutants and either M11 or Bcl-XL, and we show that a G120E/D121A Beclin 1 mutant selectively prevents down-regulation of Beclin 1-mediated autophagy by Bcl-XL, but not by M11. We use isothermal titration calorimetry to identify a Beclin 1 BH3 domain-derived peptide that selectively binds to M11, but not to Bcl-XL. The x-ray crystal structure of this peptide bound to M11 reveals the mechanism by which the M11 BH3 domain-binding groove accommodates this M11-specific peptide. This information was used to develop a cell-permeable peptide inhibitor that selectively inhibits M11-mediated, but not Bcl-XL-mediated, down-regulation of autophagy.  相似文献   

7.
Lung cancer is the most common cause of cancer-related mortality worldwide, urging the discovery of novel molecular targets and therapeutic strategies. Stem cells have been recently isolated from non-small cell lung cancer (NSCLC), thus allowing the investigation of molecular pathways specifically active in the tumorigenic population. We have found that Bcl-XL is constantly expressed by lung cancer stem cells (LCSCs) and has a prominent role in regulating LCSC survival. Whereas chemotherapeutic agents were scarcely effective against LCSC, the small molecule Bcl-2/Bcl-XL inhibitor ABT-737, but not the selective Bcl-2 inhibitor ABT-199, induced LCSC death at nanomolar concentrations. Differently from gemcitabine, which preferentially eliminated proliferating LCSC, ABT-737 had an increased cytotoxic activity in vitro towards quiescent/slow-proliferating LCSC, which expressed high levels of Bcl-XL. In vivo, ABT-737 as a single agent was able to inhibit the growth of LCSC-derived xenografts and to reduce cancer stem cell content in treated tumors. Altogether, these results indicate that quiescent/slow-proliferating LCSC strongly depend on Bcl-XL for their survival and indicate Bcl-XL inhibition as a potential therapeutic avenue in NSCLC.Lung cancer is the leading cause of cancer-related death in men and is expected to become the main cause of cancer death for women in the near future.1, 2 There is increasing evidence that cancer stem cells (CSCs) have a key role in drug resistance, tumor progression and metastasis in multiple tumor types, including lung cancer.3 Lung cancer stem cells (LCSCs) have been previously identified through different criteria including surface expression of CD133, c-kit or through functional properties such as selective drug survival, elevated aldehyde dehydrogenase (ALDH) activity, increased glycolysis and glycine/serine metabolism or low concentrations of reactive oxygen species and ATP.4, 5, 6, 7, 8, 9 Importantly, when inoculated into immunocompromised mice, LCSCs give rise to xenografts that histologically reproduce the tumor of origin, thus representing an improved model for in vivo testing of new targeted therapies.10 Several tumors express elevated levels of anti-apoptotic Bcl-2 family proteins such as Bcl-2, Bcl-XL and Mcl-1, which affect the apoptotic threshold of neoplastic cells contributing to chemotherapy resistance.11 Inhibition of anti-apoptotic Bcl-2 family members has been for long time regarded as a promising strategy to induce cancer cell death through approaches of increasing specificity. BH3 mimetics such as ABT-737, the related orally available ABT-263 (navitoclax) and the recently developed Bcl-2-selective inhibitor ABT-199 have been shown to exert an antitumor effect in preclinical and clinical settings either as single agents or in combination with conventional or targeted drugs.12 Recently, a new role for Bcl-2 has emerged in acute myeloid leukemia (AML), where quiescent stem cells characterized by low levels of reactive oxygen species were found to overexpress Bcl-2 and rely on this factor for survival.13 Similarly, in chronic myeloid leukemia (CML), quiescent therapy-resistant stem cells were sensitized to tyrosine kinase inhibitors by treatment with a pan-Bcl-2 inhibitor.14 In solid tumors, the role of Bcl-2 family members in regulating the stem cell compartment is less clear. By analyzing the expression and relative function of Bcl-2 and Bcl-XL in LCSC, we identified a prevalent role of Bcl-XL in LCSC survival. Differently from chemotherapy, ABT-737 showed a preferential cytotoxic activity towards quiescent/slowly proliferating LCSC in vitro indicating a potential use of this inhibitor to eradicate chemotherapy-resistant LCSC. In vivo, ABT-737 blocked the progression of LCSC-derived xenografts and reduced CSC content, substantiating its specific effect on the CSC compartment. Altogether, these results indicate for the first time a key role of Bcl-XL in LCSC, opening new perspectives for the elimination of therapy-resistant cells.  相似文献   

8.
The Bcl-X gene has both pro-survival, Bcl-XL, and pro-apoptotic, Bcl-XS, gene products, which are produced by alternative splicing. The function of these proteins has previously been characterised in cell lines, often by transfecting expression constructs, and primary cell systems capable of dynamically regulating Bcl-XL and Bcl-XS have not been described. Such a system is potentially important to allow testing of agents that promote apoptosis by increasing the amount of Bcl-XS at the expense of Bcl-XL. In this report we characterise Bcl-X gene products in primary human leukaemic B-cells in culture conditions associated with survival and apoptosis. We found that Bcl-XS was induced in spontaneous and drug-induced apoptosis and that apoptosis induced in cells cultured on mouse fibroblasts expressing CD40 ligand with IL-4 (CD154/IL-4), a condition mimicking the tissue microenvironment, additionally produced expression of cleavage products of Bcl-XL. Both Bcl-XS and Bcl-XL were produced in a caspase dependent manner. We tested emetine, an agent previously reported to increase Bcl-XS but found that it did not have this effect in primary human B-cells. Therefore, there are two mechanisms—cleavage of Bcl-XL and production of Bcl-XS—by which Bcl-X gene products could enhance apoptosis in CLL but neither appeared to have a primary role in inducing leukaemic cell death.  相似文献   

9.
Parkinson disease is associated with decreased activity of the mitochondrial electron transport chain. This defect can be recapitulated in vitro by challenging dopaminergic cells with 1-methyl-4-phenylpyridinium (MPP+), a neurotoxin that inhibits complex I of electron transport chain. Consequently, oxidative phosphorylation is blocked, and cells become dependent on glycolysis for ATP production. Therefore, increasing the rate of glycolysis might help cells to produce more ATP to meet their energy demands. In the present study, we show that microRNA-7, a non-coding RNA that protects dopaminergic neuronal cells against MPP+-induced cell death, promotes glycolysis in dopaminergic SH-SY5Y and differentiated human neural progenitor ReNcell VM cells, as evidenced by increased ATP production, glucose consumption, and lactic acid production. Through a series of experiments, we demonstrate that targeted repression of RelA by microRNA-7, as well as subsequent increase in the neuronal glucose transporter 3 (Glut3), underlies this glycolysis-promoting effect. Consistently, silencing Glut3 expression diminishes the protective effect of microRNA-7 against MPP+. Further, microRNA-7 fails to prevent MPP+-induced cell death when SH-SY5Y cells are cultured in a low glucose medium, as well as when differentiated ReNcell VM cells or primary mouse neurons are treated with the hexokinase inhibitor, 2-deoxy-d-glucose, indicating that a functional glycolytic pathway is required for this protective effect. In conclusion, microRNA-7, by down-regulating RelA, augments Glut3 expression, promotes glycolysis, and subsequently prevents MPP+-induced cell death. This protective effect of microRNA-7 could be exploited to correct the defects in oxidative phosphorylation in Parkinson disease.  相似文献   

10.
Epidermal neural crest stem cells (EPI-NCSCs), which reside in the bulge of hair follicles, are attractive candidates for several applications in cell therapy, drug screening and tissue engineering. As suggested remnants of the embryonic neural crest (NC) in an adult location, EPI-NCSCs are able to generate a wide variety of cell types and are readily accessible by a minimally invasive procedure. Since the combination of epidermal growth factor (EGF) and fibroblast growth factor type 2 (FGF2) is mitogenic and promotes the neuronal commitment of various stem cell populations, we examined its effects in the proliferation and neuronal potential of mouse EPI-NCSCs. By using a recognized culture protocol of bulge whiskers follicles, we were able to isolate a population of EPI-NCSCs, characterized by the migratory potential, cell morphology and expression of phenotypic markers of NC cells. EPI-NCSCs expressed neuronal, glial and smooth muscle markers and exhibited the NC-like fibroblastic morphology. The treatment with the combination EGF and FGF2, however, increased their proliferation rate and promoted the acquisition of a neuronal-like morphology accompanied by reorganization of neural cytoskeletal proteins βIII-tubulin and nestin, as well as upregulation of the pan neuronal marker βIII-tubulin and down regulation of the undifferentiated NC, glial and smooth muscle cell markers. Moreover, the treatment enhanced the response of EPI-NCSCs to neurogenic stimulation, as evidenced by induction of GAP43, and increased expression of Mash-1 in neuron-like cell, both neuronal-specific proteins. Together, the results suggest that the combination of EGF–FGF2 stimulates the proliferation and improves the neuronal potential of EPI-NCSCs similarly to embryonic NC cells, ES cells and neural progenitor/stem cells of the central nervous system and highlights the advantage of using EGF–FGF2 in neuronal differentiation protocols.  相似文献   

11.
Neural cells isolated from the brain have a number of research and clinical applications, including transplantation to patients with neurodegenerative conditions. Tissue supply is one of the major limiting factors to clinical transplantation. Cryopreservation of primary neural cells would improve supply, aid in organisation of transplantation surgery and facilitate research. To date, cryopreservation using standard methods has resulted in reduced yield and/or viability of primary neural tissue. In order to optimise freezing protocols specifically for such cells, the non-osmotic volume (Vb), water permeability (Lp) and permeability to cryoprotectant (Pcpa) were determined.Murine foetal brain tissue from the ganglionic eminence (GE), ventral mesencephalon (VM), or neocortical mantle (Ctx) was trypsinised to a single cell suspension. To determine Vb, cell volume was measured after exposure to anisotonic solutions of sucrose (150–1500 mOsmol/kg). Lp (μm/min.atm) and Pcpa (μm/s) were determined for GE cells by measuring cell volume during exposure to 1.5 mol/l cryoprotectant. Cell volume was determined using an electronic particle counting method.Vb was 27% for Ctx and GE, and 30% for VM. The osmotic response of GE cells was similar in the presence of propane-1,2-diol and dimethyl sulphoxide. In the presence of ethylene glycol, cell volume decrease was greater on initial exposure to cryoprotectant and recovery slower. Differences in Lp, but not Pcpa, were found between cryoprotectants.The present results provide key parameters for optimisation of freezing protocols for cryopreservation of primary foetal brain tissues for application in neural cell transplantation.  相似文献   

12.
Human immunodeficiency virus (HIV) infection-induced apoptosis of infected CD4 T cells as well as uninfected (bystander) CD4 T cells and other types of cells is a major factor in the pathogenesis of AIDS. Clinically, HIV-2 patients have a higher CD4 cell count at the time of an AIDS diagnosis, and generally have longer survival after development of symptoms. The mortality after an AIDS diagnosis has been reported to be more influenced by CD4 cell count than HIV type. Previous studies have shown significant variations in cytopathic effects following in vitro infection with primary isolates of HIV-1 or HIV-2 subtypes; however, the relative contributions of HIV-1 and HIV-2 infection leading to cell death remain unclear. Using a human cell line, Jurkat, we examined differences in key molecules involved in apoptotic signaling pathways during infection with either HIV-1 or HIV-2. HIV-1 infection generated more reactive oxygen species (ROS), increased the expression of a larger number of molecules involved in cell signaling such as p47, p38α, JNK, c-Yes, total PKC, and decreased the expression of molecules such as p38β, ERK1/2, and XIAP relative to HIV-2 infection. HIV-1 induced a higher degree of cell death through stronger activation of both apoptotic pathways. HIV-1 infection downregulated both Bcl-XL and FLIP expressions at later time points postinfection, while HIV-2 infection dramatically upregulated both Bcl-XL and FLIP expression. We also found that the expression of Bcl-XL or FLIP resulted in significant inhibition of HIV replication in Jurkat cells. These findings suggest that HIV-1 infection with high levels of cytotoxicity results in a higher level of cell death through apoptosis during a short time postinfection. The longer period of infection observed with HIV-2 with a lower degree of cytotoxicity was accompanied by increased Bcl-XL and FLIP expression. High protein levels of Bcl-XL or FLIP inhibit HIV replication and may be one explanation for the clinical observation that HIV-2 infected patients generally tend to be long-term nonprogressors with high CD4 lymphocyte counts compared with HIV-1 infected persons.  相似文献   

13.
Lewis X (LeX, Galβ1–4(Fucα1–3)GlcNAc) is a carbohydrate epitope that is present at the nonreducing terminus of sugar chains of glycoproteins and glycolipids, and is abundantly expressed in several stem cell populations. LeX antigen can be used in conjunction with fluorescence-activated cell sorting to isolate neurosphere-forming neural stem cells (NSCs) from embryonic mouse brains. However, its function in the maintenance and differentiation of stem cells remains largely unknown. In this study, we examined mice deficient for fucosyltransferase 9 (Fut9), which is thought to synthesize most, if not all, of the LeX moieties in the brain. We found that the number of NSCs was increased in the brain of Fut9−/− embryos, suggesting that Fut9-synthesized LeX is dispensable for the maintenance of NSCs. Another α1,3-fucosyltransferase gene, fucosyltransferase 10 (Fut10), is expressed in the ventricular zone of the embryonic brain. Overexpression of Fut10 enhanced the self-renewal of NSCs. Conversely, suppression of Fut10 expression induced the differentiation of NSCs and embryonic stem cells. In addition, knockdown of Fut10 expression in the cortical ventricular zone of the embryonic brain by in utero electroporation of Fut10-miRNAs impaired the radial migration of neural precursor cells. Our data suggest that Fut10 is involved in a unique α1,3-fucosyltransferase activity with stringent substrate specificity, and that this activity is required to maintain stem cells in an undifferentiated state.  相似文献   

14.
Growth/differentiation factor 5 (GDF5) is a member of the transforming growth factor-β superfamily that is expressed in the developing CNS, including the ventral mesencephalon (VM). GDF5 has been shown to increase the survival of dopaminergic neurones in animal models of Parkinson’s disease. This study was aimed at characterising the effects of GDF5 on dopaminergic neurones in vitro. Treatment with GDF5 induced a three-fold increase in the number of dopaminergic neurones in embryonic day 14 rat VM cultures after six days in vitro. A significant increase was also observed in the numbers of astrocytes in GDF5-treated cultures. GDF5 treatment also had significant effects on the morphology of dopaminergic neurones in these cultures; total neurite length, number of branch points and somal area were all significantly increased after six days in vitro. Analysis of neurite length and numbers of branch points at each level of the neuritic field revealed that the most pronounced effects of GDF5 were on the secondary and tertiary levels of the neuritic field. The specific type I receptor for GDF5, bone morphogenetic protein receptor (BMPR)-Ib, was found to be strongly expressed in freshly-dissected E14 VM tissue, but its expression was lost with increasing time in culture. Accordingly, treatment with GDF5 for 24 h from the time of plating induced increases in the numbers of dopaminergic neurones, while treatment with GDF5 for 24 h after six days in vitro did not. This study shows that GDF5 can promote both the survival and morphological differentiation of VM dopaminergic neurones in vitro, lending support to its potential as a candidate dopaminergic neurotrophin for use in the treatment of Parkinson’s disease.  相似文献   

15.
Among the debilitating diseases, neurological related diseases are the most challenging ones to be treated using cell replacement therapies. Recently, dental pulp stem cells (SHED) were found to be most suitable cell choice for neurological related diseases as evidenced with many preclinical studies. To enhance the neurological potential of SHED, we recapitulated one of the pharmacological therapeutic tools in cell replacement treatment, we pre-conditioned dental pulp stem cells (SHED) with culture medium of ReNCell VM, an immortalized neuron progenitor cell, prior to neurogenesis induction and investigated whether this practice enhances their neurogenesis potential especially towards dopaminergic neurons. We hypothesed that the integration of pharmacological practices such as co-administration of various drugs, a wide range of doses and duration as well as pre-conditioning into cell replacement may enhance the efficacy of stem cell therapy. In particular, pre-conditioning is shown to be involved in the protective effect from some membrano-tropic drugs, thereby improving the resistance of cell structures and homing capabilities. We found that cells pre-treated with ReNCell VM conditioned medium displayed bipolar structures with extensive branches resembling putative dopaminergic neurons as compared to non-treated cells. Furthermore, many neuronal related markers such as NES, NR4A2, MSI1, and TH were highly expressed (fold changes > 2; p < 0.05) in pre-treated cells. Similar observations were detected at the protein level. The results demonstrate for the first time that SHED pre-conditioning enhances neurological potential and we suggest that cells should be primed to their respective environment prior to transplantation.  相似文献   

16.
AIM:To find a safe source for dopaminergic neurons,we generated neural progenitor cell lines from human embryonic stem cells.METHODS:The human embryonic stem(hES)cell line H9 was used to generate human neural progenitor(HNP)cell lines.The resulting HNP cell lines were differentiated into dopaminergic neurons and analyzed by quantitative real-time polymerase chain reaction and immunofluorescence for the expression of neuronal differentiation markers,including beta-III tubulin(TUJ1)and tyrosine hydroxylase(TH).To assess the risk of teratoma or other tumor formation,HNP cell lines and mouse neuronal progenitor(MNP)cell lines were injected subcutaneously into immunodeficient SCID/beige mice.RESULTS:We developed a fairly simple and fast protocol to obtain HNP cell lines from hES cells.These cell lines,which can be stored in liquid nitrogen for several years,have the potential to differentiate in vitro into dopaminergic neurons.Following day 30 of differentiation culture,the majority of the cells analyzed expressed the neuronal marker TUJ1 and a high proportion of these cells were positive for TH,indicating differentiation into dopaminergic neurons.In contrast to H9 ES cells,the HNP cell lines did not form tumors in immunodeficient SCID/beige mice within 6 mo after subcutaneous injection.Similarly,no tumors developed after injection of MNP cells.Notably,mouse ES cells or neuronal cells directly differentiated from mouse ES cells formed teratomas in more than 90%of the recipients.CONCLUSION:Our findings indicate that neural progenitor cell lines can differentiate into dopaminergic neurons and bear no risk of generating teratomas or other tumors in immunodeficient mice.  相似文献   

17.
18.
Cytotoxic T cells (Tc) use perforin and granzyme B (gzmB) to kill virus-infected cells and cancer cells. Recent evidence suggests that human gzmB primarily induces apoptosis via the intrinsic mitochondrial pathway by either cleaving Bid or activating Bim leading to the activation of Bak/Bax and subsequent generation of active caspase-3. In contrast, mouse gzmB is thought to predominantly induce apoptosis by directly processing pro-caspase-3. However, in certain mouse cell types gzmB-mediated apoptosis mainly occurs via the mitochondrial pathway. To investigate whether Bim is involved under the latter conditions, we have now employed ex vivo virus-immune mouse Tc that selectively kill by using perforin and gzmB (gzmB+Tc) as effector cells and wild type as well as Bim- or Bak/Bax-deficient spontaneously (3T9) or virus-(SV40) transformed mouse embryonic fibroblast cells as targets. We show that gzmB+Tc-mediated apoptosis (phosphatidylserine translocation, mitochondrial depolarization, cytochrome c release, and caspase-3 activation) was severely reduced in 3T9 cells lacking either Bim or both Bak and Bax. This outcome was related to the ability of Tc cells to induce the degradation of Mcl-1 and Bcl-XL, the anti-apoptotic counterparts of Bim. In contrast, gzmB+Tc-mediated apoptosis was not affected in SV40-transformed mouse embryonic fibroblast cells lacking Bak/Bax. The data provide evidence that Bim participates in mouse gzmB+Tc-mediated apoptosis of certain targets by activating the mitochondrial pathway and suggest that the mode of cell death depends on the target cell. Our results suggest that the various molecular events leading to transformation and/or immortalization of cells have an impact on their relative resistance to the multiple gzmB+Tc-induced death pathways.  相似文献   

19.
The mediators in activating neural stem cells during the regenerative process of neurogenesis following stroke have not been fully identified. Milk fat globule-EGF Factor VIII (MFG-E8), a secreted glycoprotein serves several cellular functions by binding to its receptor, αv β3-integrin. However, its role in regulating neural stem cells after stroke has not been determined yet. We therefore, aim to reveal whether MFG-E8 promotes neural stem cell proliferation and migration during stroke. Stroke was induced in wild-type (Wt) and MFG-E8-deficinet (Mfge8-/-) mice by transient middle cerebral artery occlusion (tMCAO). Commercially available recombinant mouse MFG-E8 (rmMFG-E8) was used for mechanistic assays in neural stem cell line, while the in house prepared recombinant human MFG-E8 (rhMFG-E8) was used for in vivo administration into rats with tMCAO. The in vitro effects of recombinant rmMFG-E8 for the neural stem cell proliferation and migration were determined by BrdU and transwell migration assay, respectively. The expression of cyclin D2, p53 and netrin-1, was analyzed by qPCR. We report that the treatment of rhMFG-E8 significantly improved the neurological deficit score, body weight lost and neural stem cell proliferation in a rat model of tMCAO. Conversely, decreased neural stem cell proliferation was observed in Mfge8-/- mice in comparison with the Wt counterparts underwent tMCAO. rmMFG-E8 stimulated the proliferation of mouse embryonic neural stem cells via upregulation of cyclin D2 and downregulation of p53, which is mediated by αv β3-integrin. rmMFG-E8 also promoted mouse embryonic neural stem cell migration via αv β3-integrin dependent manner in upregulating netrin-1. Our findings suggest MFG-E8 to promote neural stem cell proliferation and migration, which therefore establishes a promising therapeutic strategy for cerebral ischemia.  相似文献   

20.
Activation of γ-aminobutyric A receptors (GABAARs) in the subependymal zone (SEZ) induces hyperpolarization and osmotic swelling in precursors, thereby promoting surface expression of the epidermal growth factor receptor (EGFR) and cell cycle entry. However, the mechanisms underlying the GABAergic modulation of cell swelling are unclear. Here, we show that GABAARs colocalize with the water channel aquaporin (AQP) 4 in prominin-1 immunopositive (P+) precursors in the postnatal SEZ, which include neural stem cells. GABAAR signaling promotes AQP4 expression by decreasing serine phosphorylation associated with the water channel. The modulation of AQP4 expression by GABAAR signaling is key to its effect on cell swelling and EGFR expression. In addition, GABAAR function also affects the ability of neural precursors to swell in response to an osmotic challenge in vitro and in vivo. Thus, the regulation of AQP4 by GABAARs is involved in controlling activation of neural stem cells and water exchange dynamics in the SEZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号