首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 855 毫秒
1.
Genetic determinants of obesity-related lipid traits   总被引:1,自引:0,他引:1  
In our ongoing effort to identify genes influencing the biological pathways that underlie the metabolic disturbances associated with obesity, we performed genome-wide scanning in 2,209 individuals distributed over 507 Caucasian families to localize quantitative trait loci (QTLs), which affect variation of plasma lipids. Pedigree-based analysis using a quantitative trait variance component linkage method that localized a QTL on chromosome 7q35-q36, which linked to variation in levels of plasma triglyceride [TG, logarithm of odds (LOD) score = 3.7] and was suggestive of linkage to LDL-cholesterol (LDL-C, LOD = 2.2). Covariates of the TG linkage included waist circumference, fasting insulin, and insulin:glucose, but not body mass index or hip circumference. Plasma HDL-cholesterol (HDL-C) levels were suggestively linked to a second QTL on chromosome 12p12.3 (LOD = 2.6). Five other QTLs with lower LOD scores were identified for plasma levels of LDL-C, HDL-C, and total cholesterol. These newly identified loci likely harbor genetic elements that influence traits underlying lipid adversities associated with obesity.  相似文献   

2.
A genome-wide linkage study was performed to identify chromosomal regions harboring genes influencing lipid and lipoprotein levels. Linkage analyses were conducted for four quantitative lipoprotein/lipid traits, i.e., total cholesterol, triglyceride, HDL-cholesterol (HDL-C), and LDL-C concentrations, in 930 subjects enrolled in the Québec Family Study. A maximum of 534 pairs of siblings from 292 nuclear families were available. Linkage was tested using both allele-sharing and variance-component linkage methods. The strongest evidence of linkage was found on chromosome 12q14.1 at marker D12S334 for HDL-C, with a logarithm of the odds (LOD) score of 4.06. Chromosomal regions harboring quantitative trait loci (QTLs) for LDL-C included 1q43 (LOD = 2.50), 11q23.2 (LOD = 3.22), 15q26.1 (LOD = 3.11), and 19q13.32 (LOD = 3.59). In the case of triglycerides, three markers located on 2p14, 11p13, and 11q24.1 provided suggestive evidence of linkage (LOD > 1.75). Tests for total cholesterol levels yielded significant evidence of linkage at 15q26.1 and 18q22.3 with the allele-sharing linkage method, but the results were nonsignificant with the variance-component method. In conclusion, this genome scan provides evidence for several QTLs influencing lipid and lipoprotein levels. Promising candidate genes were located in the vicinity of the genomic regions showing evidence of linkage.  相似文献   

3.
To identify genetic loci influencing blood lipid levels in Caribbean Hispanics, we first conducted a genome-wide linkage scan in 1,211 subjects from 100 Dominican families on five lipid quantitative traits: total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), triglycerides (TG), and LDL-C/HDL-C ratio. We then investigated the association between blood lipid levels and 21,361 single nucleotide polymorphisms (SNP) under the 1-logarithm of odds (LOD) unit down regions of linkage peaks in an independent community-based subcohort (N = 814, 42% Dominican) from the Northern Manhattan Study (NOMAS). We found significant linkage evidence for LDL-C/HDL-C on 7p12 (multipoint LOD = 3.91) and for TC on 16q23 (LOD = 3.35). In addition, we identified suggestive linkage evidence of LOD > 2.0 on 15q23 for TG, 16q23 for LDL-C, 19q12 for TC and LDL-C, and 20p12 for LDL-C. In the association analysis of the linkage peaks, we found that seven SNPs near FLJ45974 were associated with LDL-C/HDL-C with a nominal P < 3.5 × 10(-5), in addition to associations (P < 0.0001) for other lipid traits with SNPs in or near CDH13, SUMF2, TLE3, FAH, ARNT2, TSHZ3, ZNF343, RPL7AL2, and TMC3. Further studies are warranted to perform in-depth investigations of functional genetic variants in these regions.  相似文献   

4.
To determine whether a common quantitative trait locus (QTL) influences the variation of fasting triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) levels, we used a bivariate multipoint linkage analysis with 654 polymorphic markers in 99 white and 101 black families. The phenotypes were investigated under two conditions: at baseline and after a 20-week exercise training intervention. A maximum genome-wide bivariate LOD score of 3.0 (p = 0.00010) was found on chromosome 12q23-q24, located within the IGF1 gene (insulin-like growth factor 1, at 107 cM) for TG and HDL-C at baseline in whites. This bivariate linkage peak is considerably higher than the univariate linkage results at the same chromosome location for either trait (for TG, LOD = 2.07, p = 0.00108; for HDL-C, LOD = 2.04, p = 0.00101). The genetic correlations between baseline TG and HDL-C levels were -0.14 for the residual and -0.33 for the QTL components. Moreover, association analysis showed that TG, HDL-C, and IGF1 are significantly associated (p = 0.04). In conclusion, these results suggest that a QTL on chromosome 12q23-q24 influences the variation of plasma TG and HDL-C levels. Further investigation should confirm whether IGF1 or another nearby gene is responsible for the concomitant variation in TG and HDL-C levels.  相似文献   

5.
High plasma apolipoprotein B (apoB) and LDL cholesterol levels increase cardiovascular disease risk. These highly correlated measures may be partially controlled by common genetic polymorphisms. To identify chromosomal regions that contain genes causing low plasma levels of one or both parameters in Caucasian families ascertained for familial hypobetalipoproteinemia (FHBL), we conducted a whole-genome scan using 443 microsatellite markers typed in nine multigenerational families with at least two members with FHBL. Both variance components and regression-based linkage methods were used to identify regions of interest. Common linkage regions were identified for both measures on chromosomes 10q25.1-10q26.11 [maximum log of the odds (LOD) = 4.2 for LDL and 3.5 for apoB] and 6q24.3 (maximum LOD = 1.46 for LDL and 1.84 for apoB). There was also evidence for linkage to apoB on chromosome 13q13.2 (LOD = 1.97) and to LDL on chromosome 3p14.1 at 94 centimorgan (LOD = 1.52). Bivariate linkage analysis provided further evidence for loci contributing to both traits (6q24.3, LOD = 1.43; 10q25.1, LOD = 1.74). We evaluated single nucleotide polymorphisms (SNPs) in genes within our linkage regions to identify variants associated with apoB or LDL levels. The most significant finding was for rs2277205 in the 5' untranslated region of acyl-coenzyme A dehydrogenase short/branched chain and LDL (P = 10(-7)). Three additional SNPs were associated with apoB and/or LDL (P < 0.01). Although only the linkage signal on chromosome 10 reached genome-wide statistical significance, there are likely multiple chromosomal regions with variants that contribute to low levels of apoB and LDL and that may protect against coronary heart disease.  相似文献   

6.
A genome scan for serum triglyceride in obese nuclear families   总被引:6,自引:0,他引:6  
Serum triglyceride (TG) levels are increased in extremely obese individuals, indicating abnormalities in lipid metabolism and insulin resistance. We carried out a genome scan for serum TG in 320 nuclear families segregating extreme obesity and normal weight. Three hundred eighty-two Marshfield microsatellite markers (Screening Set 11) were genotyped. Quantitative linkage analyses were performed using family regression and variance components methods. We found linkage on the 7q36 region [D7S3058, 174 centimorgan (cM), Logarithm of Odds (LOD) = 2.98] for log-transformed TG. We also found suggestive linkages on chromosomes 20 (D20S164, 101 cM, LOD = 2.34), 13 (111 cM, LOD = 2.00), and 9 (104 cM, LOD = 1.90) as well as some weaker trends for chromosomes 1, 3, 5, 10, 12, and 22. In 58 African American families, LOD scores of 3.66 and 2.62 were observed on two loci on chromosome 16: D16S3369 (64 cM) and MFD466 (100 cM). To verify the 7q36 linkage, we added 60 nuclear families, and the LOD score increased to 3.52 (empirical P < 0.002) on marker D7S3058.  相似文献   

7.
Familial combined hyperlipidemia (FCHL) is a common dyslipidemia predisposing to premature coronary heart disease (CHD). The disease is characterized by increased levels of serum total cholesterol (TC), triglycerides (TGs), or both. We recently localized the first locus for FCHL, on chromosome 1q21-q23. In the present study, a genomewide screen for additional FCHL loci was performed. In stage 1, we genotyped 368 polymorphic markers in 35 carefully characterized Finnish FCHL families. We identified six chromosomal regions with markers showing LOD score (Z) values >1.0, by using a dominant mode of inheritance for the FCHL trait. In addition, two more regions emerged showing Z>2.0 with a TG trait. In stage 2, we genotyped 26 more markers and seven additional FCHL families for these interesting regions. Two chromosomal regions revealed Z>2.0 in the linkage analysis: 10p11.2, Z=3.20 (theta=.00), with the TG trait; and 21q21, Z=2.24 (theta=.10), with the apoB trait. Furthermore, two more chromosomal regions produced Z>2.0 in the affected-sib-pair analysis: 10q11.2-10qter produced Z=2.59 with the TC trait and Z=2.29 with FCHL, and 2q31 produced Z=2.25 with the TG trait. Our results suggest additional putative loci influencing FCHL in Finnish families, some potentially affecting TG levels and some potentially affecting TC or apoB levels.  相似文献   

8.
Abnormal lipid levels are important risk factors for cardiovascular diseases. We conducted genome-wide variance component linkage analyses to search for loci influencing total cholesterol (TC), LDL, HDL and triglyceride in families residing in American Samoa and Samoa as well as in a combined sample from the two polities. We adjusted the traits for a number of environmental covariates, such as smoking, alcohol consumption, physical activity, and material lifestyle. We found suggestive univariate linkage with log of the odds (LOD) scores > 3 for LDL on 6p21-p12 (LOD 3.13) in Samoa and on 12q21-q23 (LOD 3.07) in American Samoa. Furthermore, in American Samoa on 12q21, we detected genome-wide linkage (LOD(eq) 3.38) to the bivariate trait TC-LDL. Telomeric of this region, on 12q24, we found suggestive bivariate linkage to TC-HDL (LOD(eq) 3.22) in the combined study sample. In addition, we detected suggestive univariate linkage (LOD 1.9-2.93) on chromosomes 4p-q, 6p, 7q, 9q, 11q, 12q 13q, 15q, 16p, 18q, 19p, 19q and Xq23 and suggestive bivariate linkage (LOD(eq) 2.05-2.62) on chromosomes 6p, 7q, 12p, 12q, and 19p-q. In conclusion, chromosome 6p and 12q may host promising susceptibility loci influencing lipid levels; however, the low degree of overlap between the three study samples strongly encourages further studies of the lipid-related traits.  相似文献   

9.
We performed a genomewide scan for genes that predispose to low serum HDL cholesterol (HDL-C) in 25 well-defined Finnish families that were ascertained for familial low HDL-C and premature coronary heart disease. The potential loci for low HDL-C that were identified initially were tested in an independent sample group of 29 Finnish families that were ascertained for familial combined hyperlipidemia (FCHL), expressing low HDL-C as one component trait. The data from the previous genome scan were also reanalyzed for this trait. We found evidence for linkage between the low-HDL-C trait and three loci, in a pooled data analysis of families with low HDL-C and FCHL. The strongest statistical evidence was obtained at a locus on chromosome 8q23, with a two-point LOD score of 4.7 under a recessive mode of inheritance and a multipoint LOD score of 3.3. Evidence for linkage also emerged for loci on chromosomes 16q24.1-24.2 and 20q13.11, the latter representing a recently characterized region for type 2 diabetes. Besides these three loci, loci on chromosomes 2p and 3p showed linkage in the families with low HDL-C and a locus on 2ptel in the families with FCHL.  相似文献   

10.
Genome-wide multipoint linkage analyses were performed to identify chromosomal regions harboring genes influencing LDL-cholesterol, total apolipoprotein B (apoB), and LDL-apoB levels using 654 markers. They were assessed in a sedentary state (baseline) and after a 20 week endurance training program. Strong evidence for two quantitative trait loci (QTLs) for baseline levels was found. There is linkage evidence in black families on chromosomes 1q41-q44 [at marker D1S2860, 238 centimorgan (cM), with a maximum log of the odds (LOD) score of 3.7 for LDL-apoB] and in white families on chromosome 8q24 (at marker D8S1774, 142 cM, with LOD scores of 3.6, 3.3, and 2.5 for baseline LDL-cholesterol, LDL-apoB, and apoB, respectively). There were no strong signals for the lipoprotein training responses (as computed as the difference in posttraining minus baseline levels). In conclusion, QTLs for baseline apoB and LDL-cholesterol levels on chromosomes 1q41-q44 (in blacks) and 8q24 (in whites) were found. As there are no known strong candidate genes in these regions for lipids, follow-up studies to determine the source of those signals are needed.  相似文献   

11.
The presence of systemic lupus erythematosus (SLE) susceptibility genes on chromosome 20 is suggested by the observation of genetic linkage in several independent SLE family collections. To further localize the genetic effects, we typed 59 microsatellites in the two best regions, as defined by genome screens. Genotypes were analyzed for statistical linkage and/or association with SLE, by use of a combination of nonparametric linkage methods, family-based tests of association (transmission/disequilibrium and pedigree disequilibrium tests), and haplotype-sharing statistics (haplotype runs test), in a set of 230 SLE pedigrees. Maximal evidence for linkage to SLE was to 20p12 (LOD = 2.84) and 20q13.1 (LOD = 1.64) in the white pedigrees. Subsetting families on the basis of evidence for linkage to 16q12 significantly improved the LOD scores at both chromosome 20 locations (20p12 LOD = 5.06 and 20q13 LOD = 3.65), consistent with epistasis. We then typed 162 single-nucleotide polymorphism markers across a 1.3-Mb candidate region on 20q13.1 and identified several SNPs that demonstrated significant evidence for association. These data provide additional support for linkage and association to 20p12 and 20q13.1 in SLE and further refine the intervals of interest. These data further suggest the possibility of epistatic relationships among loci within the 20q12, 20q13, and 16q12 regions in SLE families.  相似文献   

12.
Atherosclerosis accounts for 75% of all deaths from cardiovascular disease and includes coronary heart disease (CHD), stroke, and other diseases of the arteries. More than half of all CHD is attributable to abnormalities in levels and metabolism of lipids. To locate genes that affect total cholesterol, high density lipoprotein cholesterol (HDL-C), and triglycerides, genome-wide linkage scans for quantitative trait loci were performed using variance components methods as implemented in SOLAR on a large diverse sample recruited as part of the Family Blood Pressure Program. Phenotype and genetic marker data were available for 9,299 subjects in 2,953 families for total cholesterol, 8,668 subjects in 2,736 families for HDL, and 7,760 subjects in 2,499 families for triglycerides. Mean lipid levels were adjusted for the effects of sex, age, age2, age-by-sex interaction, body mass index, smoking status, and field center. HDL-C and triglycerides were further adjusted for average total alcoholic drinks per week and estrogen use. Significant linkage was found for total cholesterol on chromosome 2 (LOD = 3.1 at 43 cM) in Hispanics and for HDL-C on chromosome 3 (LOD = 3.0 at 182 cM) and 12 (LOD = 3.5 at 124 cM) in Asians. In addition, there were 13 regions that showed suggestive linkage (LOD ≥ 2.0); 7 for total cholesterol, 4 for HDL, and 2 for triglycerides. The identification of these loci affecting lipid phenotypes and the apparent congruence with previous linkage results provides increased support that these regions contain genes influencing lipid levels.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

13.
Zhao LJ  Xiao P  Liu YJ  Xiong DH  Shen H  Recker RR  Deng HW 《Human genetics》2007,121(1):145-148
To identify quantitative trait loci (QTLs) that contribute to obesity, we performed a large-scale whole genome linkage scan (WGS) involving 4,102 individuals from 434 Caucasian families. The most pronounced linkage evidence was found at the genomic region 20p11-12 for fat mass (LOD = 3.31) and percentage fat mass (PFM) (LOD = 2.92). We also identified several regions showing suggestive linkage signals (threshold LOD = 1.9) for obesity phenotypes, including 5q35, 8q13, 10p12, and 17q11.  相似文献   

14.
Plasminogen is a hemostasis-related phenotype and is commonly implicated in thrombotic and bleeding disorders. In the San Antonio Family Heart Study (SAFHS), we performed to our knowledge the first genomewide linkage scan for quantitative trait loci (QTLs) that influence the level of plasminogen. The subset of the SAFHS population used for this study consists of 629 individuals distributed across 26 extended Mexican American families. Pedigree-based variance component linkage analyses were performed using SOLAR. The mean plasminogen level was 114.94% +/- 17.8 (range, 42-195). The heritability (h2) of plasminogen was 0.43 +/- 0.08 (p < 6.3 x 10(-13)). One region on chromosome 12 (12q14.1) showed suggestive evidence of linkage (LOD = 2.73, nominal p < 0.0002, genomewide p = 0.0786) near marker D12S1609. Because plasminogen has important effects in many human health problems, such as cancer and atherosclerosis, the role of this putative QTL in the regulation of plasminogen variability needs to be studied further.  相似文献   

15.
We performed a genomewide scan and genetic linkage analysis, to identify loci associated with age-related macular degeneration (AMD). We collected 70 families, ranging from small nuclear families to extended multigenerational pedigrees and consisting of a total of 344 affected and 217 unaffected members available for genotyping. We performed linkage analyses using parametric and allele-sharing models. We performed the analyses on the complete pedigrees but also subdivided the families into nuclear pedigrees. Finally, to dissect potential genetic factors responsible for differences in disease manifestation, we stratified the sample by two major AMD phenotypes (neovascular AMD and geographic atrophy) and by age of affected family members at the time of our evaluation. We have previously demonstrated linkage between AMD and 1q25-31 in a single large family. In the combined sample, we have detected the following loci with scores exceeding a LOD=2 cutoff under at least one of the models considered: 1q31 (HLOD=2.07 at D1S518), 3p13 (HLOD=2.19 at D3S1304/D3S4545), 4q32 (HLOD=2.66 at D4S2368, for the subset of families with predominantly dry AMD), 9q33 (LODZlr=2.01 at D9S930/D9S934), and 10q26 (HLOD=3.06 at D10S1230). Using correlation analysis, we have found a statistically significant correlation between LOD scores at 3p13 and 10q26, providing evidence for epistatic interactions between the loci and, hence, a complex basis of AMD. Our study has identified new loci that should be considered in future mapping and mutational analyses of AMD and has strengthened the evidence in support of loci suggested by other studies.  相似文献   

16.
When activated, thrombin activatable fibrinolysis inhibitor (TAFI) inhibits fibrinolysis by modifying fibrin, depressing its plasminogen binding potential. Polymorphisms in the TAFI structural gene (CPB2) have been associated with variation in TAFI levels, but the potential occurrence of influential quantitative trait loci (QTLs) located elsewhere in the genome has been explored only in families ascertained in part through probands affected by thrombosis. We report the results of the first genome-wide linkage screen for QTLs that influence TAFI phenotypes. Data are from 635 subjects from 21 randomly ascertained Mexican American families participating in the San Antonio Family Heart Study. Potential QTLs were localized through a genome-wide multipoint linkage scan using 417 highly informative autosomal short tandem repeat markers spaced at approximately 10-cM intervals. We observed a maximum multipoint LOD score of 3.09 on chromosome 13q, the region of the TAFI structural gene. A suggestive linkage signal (LOD = 2.04) also was observed in this region, but may be an artifact. In addition, weak evidence for linkage occurred on chromosomes 17p and 9q. Our results suggest that polymorphisms in the TAFI structural gene or its nearby regulatory elements may contribute strongly to TAFI level variation in the general population, although several genes in other regions of the genome may also influence variation in this phenotype. Our findings support those of the Genetic Analysis of Idiopathic Thrombophilia (GAIT) project, which identified a potential TAFI QTL on chromosome 13q in a genome-wide linkage scan in Spanish thrombophilia families.  相似文献   

17.
Stuttering is a speech disorder long recognized to have a genetic component. Recent linkage studies mapped a susceptibility locus for stuttering to chromosome 12 in 46 highly inbred families ascertained in Pakistan. We report here on linkage studies in 100 families of European descent ascertained in the United States, Sweden, and Israel. These families included 252 individuals exhibiting persistent stuttering, 45 individuals classified as recovered from stuttering, and 19 individuals too young to classify. Primary analyses identified moderate evidence for linkage of the broader diagnosis of "ever stuttered" (including both persistent and recovered stuttering) on chromosome 9 (LOD = 2.3 at 60 cM) and of the narrower diagnosis of persistent stuttering on chromosome 15 (LOD = 1.95 at 23 cM). In contrast, sex-specific evidence for linkage on chromosome 7 at 153 cM in the male-only data subset (LOD = 2.99) and on chromosome 21 at 34 cM in the female-only data subset (LOD = 4.5) met genomewide criteria for significance. Secondary analyses revealed a significant increase in the evidence for linkage on chromosome 12, conditional on the evidence for linkage at chromosome 7, with the location of the increased signal congruent with the previously reported signal in families ascertained in Pakistan. In addition, a region on chromosome 2 (193 cM) showed a significant increase in the evidence for linkage conditional on either chromosome 9 (positive) or chromosome 7 (negative); this chromosome 2 region has been implicated elsewhere in studies on autism, with increased evidence for linkage observed when the sample is restricted to those with delayed onset of phrase speech. Our results support the hypothesis that the genetic component to stuttering has significant sex effects.  相似文献   

18.
We sought to identify quantitative trait loci (QTLs) by genome‐wide linkage analysis for BMI and waist circumference (WC) exploring various strategies to address heterogeneity including covariate adjustments and complex models based on epistatic components of variance. Because cholesterol‐lowering drugs and diabetes medications may affect adiposity and risk of coronary heart disease, we excluded subjects medicated for hypercholesterolemia and hyperglycemia. The evidence of linkage increased on 2p25 (BMI: lod = 1.59 vs. 2.43, WC: lod = 1.32 vs. 2.26). Because environmental and/or genetic components could mask the effect of a specific locus, we investigated further whether a QTL could influence adiposity independently of lipid pathway and dietary habits. Strong evidence of linkage on 2p25 (BMI: lod = 4.31; WC: lod = 4.23) was found using Willet's dietary factors and lipid profile together with age and sex in adjustment. It suggests that lipid profile and dietary habits are confounding factors for detecting a 2p25 QTL for adiposity. Because evidence of linkage has been previously detected for BMI on 7q34 and 13q14 in National Heart, Lung, and Blood Institute Family Heart Study (NHLBI FHS), and for diabetes on 15q13, we investigated epistasis between chromosome 2 and these loci. Significant epistatic interactions were found between QTLs 2p25 and 7q34, 2q37 and 7q34, 2q31 and 13q14, and 2q31–q36 and 15q13. These results suggest multiple pathways and factors involving genetic and environmental effects influencing adiposity. By taking some of these known factors into account, we clarified our linkage evidence of a QTL on 2p25 influencing BMI and WC. The 2p25, 2q24–q31, and 2q36–q37 showed evidence of epistatic interaction with 7q34, 13q14, and 15q13.  相似文献   

19.
Obesity is a multigenic trait that has a substantial genetic component. Animal models confirm a role for gene-gene interactions, and human studies suggest that as much as one-third of the heritable variance may be due to nonadditive gene effects. To evaluate potential epistatic interactions among five regions, on chromosomes 7, 10, and 20, that have previously been linked to obesity phenotypes, we conducted pairwise correlation analyses based on alleles shared identical by descent (IBD) for independent obese affected sibling pairs (ASPs), and we determined family-specific nonparametric linkage (NPL) scores in 244 families. The correlation analyses were also conducted separately, by race, through use of race-specific allele frequencies. Conditional analyses for a qualitative trait (body mass index [BMI] >/=27) and hierarchical models for quantitative traits were used to further refine evidence of gene interaction. Both the ASP-specific IBD-sharing probability and the family-specific NPL score revealed that there were strong positive correlations between 10q (88-97 cM) and 20q (65-83 cM), through single-point and multipoint analyses with three obesity thresholds (BMI >/=27, >/=30, and >/=35) across African American and European American samples. Conditional analyses for BMI >/=27 found that the LOD score at 20q rises from 1.53 in the baseline analysis to 2.80 (empirical P=.012) when families were weighted by evidence for linkage at 10q (D10S1646) through use of zero-one weights (weight(0-1)) and to 3.32 (empirical P<.001) when proportional weights (weight(prop)) were used. For percentage fat mass, variance-component analysis based on a two-locus epistatic model yielded significant evidence for interaction between 20q (75 cM) and the chromosome 10 centromere (LOD = 1.74; P=.024), compared with a two-locus additive model (LOD = 0.90). The results from multiple methods and correlated phenotypes are consistent in suggesting that epistatic interactions between loci in these regions play a role in extreme human obesity.  相似文献   

20.
In previous work in non‐diabetic participants of the Strong Heart Family Study, we identified three heritable principal components of nine insulin resistance (IR) phenotypes: 1) a glucose/insulin/obesity factor, 2) a blood pressure factor, and 3) a dyslipidemia factor. To localize quantitative trait loci (QTL) potentially influencing these factors, we conducted a genome scan of factor scores in Strong Heart Family Study participants. Approximately 599 men and women, ≥18 years of age, in 32 extended families at three centers (in Arizona, Oklahoma, and North and South Dakota), were examined between 1997 and 1999. We used variance components linkage analysis to identify QTLs for the IR factors. With age, sex, and study center as covariates, we detected linkage of the glucose/insulin/obesity factor to chromosome 4 (robust logarithm of the odds (LOD) = 2.2), the dyslipidemia factor to chromosome 12 (robust LOD = 2.7), and the blood pressure factor to chromosome 1 (robust LOD = 1.6). The peak linkage signals identified for these IR factors support several positive findings from other studies and occur in regions harboring interesting candidate genes. The corroboration of existing QTLs will bring us closer to the identification of the functional genes that predispose to IR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号