首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This paper briefly presents a review concerning the species which can arise when iron salts and citric acid are mixed together. The data commented on are required for a correct interpretation of the chemical processes which play a paramount role in biology and in the biological studies involving iron-citrate complexes.  相似文献   

2.
Heijs  Sander K.  van Gemerden  Hans 《Hydrobiologia》2000,437(1-3):121-131
Microbiological and environmental variables involved in the removal of free sulfide were studied along an eutrophication transect in the Bassin d'Arcachon (France). At four sites, analyses were carried out on reduced sulfur compounds, iron species and total numbers of viable sulfur bacteria (sulfide-producing bacteria, colorless sulfur bacteria and purple sulfur bacteria). In addition, the chemical buffering capacity towards free sulfide and the potential microbiological sulfide oxidation rates were determined.In the ecosystem, no free sulfide occurs in the top layers of the sediment at all four sites, despite a high nutrient load and hence favourable conditions for sulfide-producing bacteria. The explanation of this apparent discrepancy was shown to be the high biological sulfide oxidizing capacity in combination with a high chemical buffering capacity.The data presented illustrate that the buffering capacity of sediments towards free sulfide is the combined result of the chemical and biological processes. The ratio between these were found to depend on the degree of eutrophication. It was shown that the chemical buffering capacity towards sulfide is severely overestimated when based on the pool of chemically reactive iron, a more realistic value is obtained by estimating the total amount of sulfide that can be added before free sulfide can be detected. A clear difference was observed between the numbers of colorless sulfur bacteria and the activity of the entire population. For a proper quantification of the sulfide buffering capacity of sediments, it is essential to estimate the concentration of iron and sulfur compounds that actually can react with sulfide, as well as to analyze the activities of sulfide-oxidizing microbes.  相似文献   

3.
High nitrate concentration in surface soils is a serious concern for the agricultural industry throughout the world. Nitrate reduction can be achieved by chemical or biological processes; however, these processes are difficult to achieve in-situ because of the low permeability of clays. This study evaluates bio-electrokinetic processes for nitrate treatment in low-permeability soils. The concept is based on using iron electrodes to generate an electric field and a reducing environment in the soil to facilitate nitrate reduction by existing bacteria. Experiments were conducted using starch as an additive for microbial activity in the anolyte. Three sets of experiments were conducted under 0.5, 1.0, and 2.0 V cm?1 voltage gradient, and using starch as an anolyte for enhancing existing microbial activity in the soil. Initial nitrate concentration in the soil (agricultural soil collected from Jinju, Korea) was between 782 and 800 mg kg?1. Removal of 100% nitrate was achieved in the soil under 0.5 and 1.0 V cm?1 due to the combined effect of biological and iron reduction. A control experiment with iron electrodes, but without starch, was not as effective. Ammonium was also effectively removed by the combined action of starch and iron under 0.5 and 1.0 V cm?1. The role of starch with iron on the nitrate and ammonium removal process is evaluated along with the role of transport by electro-osmosis and electro-migration. The bacterial action on denitrification and nitrification is assessed and the relationship between pH and the efficiency of nitrate reduction in the bio-EK systems is evaluated.  相似文献   

4.
缺铁性贫血是全球最常见的一种营养素缺乏疾病,患者由于血氧不足,易引起疲劳、烦躁、记忆力减退等系列症状,严重影响身 体健康,降低了生活质量。补铁剂是目前最广谱有效的预防和治疗缺铁性贫血的药物。综述补铁剂的发展历程,在铁吸收代谢机制的基础上, 归纳总结传统铁剂的特点和类别,同时对高分子铁剂的结构信息、理化性质、给药途径和剂量、吸收机制等进行系统整理,介绍3 种即 将进入我国市场的新型静脉铁剂的使用和临床试验情况,为补铁剂的研究提供参考。  相似文献   

5.
Resource and energy efficiency are key strategies for production and recycling networks. They can contribute to more sustainable industrial production and can help cope with challenges such as competition, rising resource and energy prices, greenhouse gas emissions reduction, and scarce and expensive landfill space. In pursuit of these objectives, further enhancements of single processes are often technologically sophisticated and expensive due to past achievements that have brought the processes closer to technical optima. Nevertheless, the potential for network‐wide advancements may exist. Methods are required to identify and assess the potential for promising resource and energy efficiency measures from technical, economic, and ecological perspectives. This article presents an approach for a material flow‐based techno‐economic as well as ecological analysis and assessment of resource efficiency measures in production and recycling networks. Based on thermodynamic process models of different production and recycling processes, a material and energy flow model of interlinked production and recycling processes on the level of chemical compounds is developed. The model can be used to improve network‐wide resource efficiency by analyzing and assessing measures in scenario and sensitivity analyses. A necessary condition for overcoming technical and economic barriers for implementing such measures can be fulfilled by identifying strategies that appear technologically feasible and economically and ecologically favorable. An exemplary application to a production and recycling network of the German steel and zinc industry is presented. From a methodological point of view, the approach shows one way of introducing thermodynamics and further technological aspects into industrial planning and assessment.  相似文献   

6.
The paradigm of cancer stem cells (CSCs) defines the existence of cells exhibiting self-renewal and tumor-seeding capacity. These cells have been associated with tumor relapse and are typically resistant to conventional chemotherapeutic agents. Over the past decade, chemical biology studies have revealed a significant number of small molecules able to alter the proliferation of these cells in various settings. The natural product salinomycin has emerged as the most promising anti-CSC agent. However, an explicit mechanism of action has not yet been characterized, in particular due to the pleiotropic responses salinomycin is known for. In this punctum, we describe our recent discovery that salinomycin and the more potent synthetic derivative we named ironomycin sequester lysosomal iron. We found that these compounds, by blocking iron translocation, induce an iron-depletion response leading to a lysosomal degradation of ferritin followed by an iron-mediated lysosomal production of reactive oxygen species (ROS) and a cell death pathway that resembles ferroptosis. These unprecedented findings identified iron homeostasis and iron-mediated processes as potentially druggable in the context of CSCs.  相似文献   

7.
铁是机体必需微量元素,参与机体合成血红蛋白、肌红蛋白及多种酶的组成和功能发挥,对维持生命和健康至关重要。近四分之一的世界人口遭受铁缺乏或缺铁性贫血的威胁。此外,部分人群还存在铁过载问题,以脏器铁离子蓄积为主要病理改变的遗传性血色病,其在欧美发病率高达1/200,在中国也有报道。血色病后期多诱发肝脏、胰腺及心脏的功能衰退。铁过少或过多对健康都会造成严重危害,机体需要复杂而精密的调控体系维持铁稳态平衡。铁代谢主要包括小肠吸收、肝脏储存、血液转运、巨噬细胞再循环以及周身细胞利用。过去十多年是铁代谢研究的黄金时期,先后发现众多铁稳态代谢相关基因。该文综述了近年来哺乳动物铁代谢领域的研究进展,并对铁稳态代谢中存在的问题进行了初步讨论,为理解和进一步深入研究铁代谢分子机制提供参考。  相似文献   

8.
The iron content and the ratio of bivalent to total iron in the labile acid-soluble fraction of iron were studied in sublittoral sands of Vostok Bay, Sea of Japan. Iron oxidation and reduction rates in sand sediment were measured in the laboratory. Trivalent iron almost always prevailed in the acid-extractable fraction in the natural environment. The most oxidized state of iron occurred in spring and was associated with a low water temperature and a high seawater oxygen content; the most reduced iron was found in fall during periods of low hydrodynamics and low oxygen concentration. In sand, iron is mainly reduced by bacteria; this process is slow and can be inhibited by adding chloroform. Oxidation of iron is mainly a chemical process and cannot be stopped by chloroform. In sand, the content of redox equivalents such as trivalent iron is much greater than in dissolved oxygen of pore water. It is assumed that labile iron in sands acts as a redox buffer, is oxidized by dissolved pore water oxygen at the periods of advective mixing, and is slowly reduced by benthic bacteria during anaerobic conditions.  相似文献   

9.
The geochemical response of sediments to increased nutrient input to an Alaskan, arctic lake was examined using direct measurements of sediment-water chemical fluxes. An unexpected increase in Fe flux occurred when sediments were exposed to high incident radiation and nutrient concentrations. Correlation between light and acid-soluble Fe concentrations suggests that photoreduction of Fe(III) oxides may occur, but nutrient addition enhanced the effect indicating that primary productivity was also important. The processes controlling the flux of Fe from sediments in this lake were complex and included the redox potential (dissolved oxygen concentration) of the water, quality of organic matter present in the sediment, light, and nutrients supplied from the sediments and/or water column. These four factors together with the possibility of direct uptake of Fe by phytoplankton and the possible release of algal reductants may contribute to Fe cycling in this lake.  相似文献   

10.
Aims:  To develop an easy-to-use and pathogen-free protocol giving reliable information on the bioavailability of iron in a medium.
Methods and Results:  In aerobic conditions, iron bioavailability is very low, and most of its forms cannot be assimilated by micro-organisms. Media with similar iron contents can differ considerably in iron bioavailability, something that is not easily achieved using conventional physicochemical methods. The assay developed in the present work is based on a pyoverdin siderophore release by fluorescent Pseudomonas in response to iron stress.
Conclusions:  The test was applied to a complex medium used for the production of diphtheria toxin (DT). A significant difference between the bioavailable iron level and the total chemical concentrations contributed by the various compounds used to make the medium could thus be detected. This can be explained by the formation of salt complexes trapping the iron, which thus cannot be used directly by the micro-organism for its metabolism.
Significance and Impact of the Study:  The assay can easily be applied to any medium designed for the production of iron-regulated compounds. This is particularly useful when dealing with processes that use pathogenic strains as was shown in the case based on DT production.  相似文献   

11.
A challenging aspect with the use of protein hydrolysates in commercial manufacturing processes of recombinant therapeutic proteins is their impacts on the protein production due to a lack of understanding of batch-to-batch variability. Soy hydrolysates variability and its impact on fed-batch production of a recombinant monoclonal antibody (mAb) expressed in Sp2/0 cells were studied using 37 batches from the same vendor. The batch-to-batch variability of soy hydrolysates impacted cell growth, titer and product quality. Physicochemical characterization of batches confirmed that soy hydrolysates are mainly a source of amino acids and peptides containing lower amounts of other components such as carbohydrates and chemical elements in cell culture media. Soy hydrolysates composition of different batches was consistent except for trace elements. Statistical analyses identified iron as a potential marker of a poor process performance. To verify this correlation, two forms of iron, ferric ammonium citrate and ferrous sulfate, were added to a batch of soy hydrolysates associated to a low level of iron during cell culture. Both forms of iron reduced significantly cell growth, mAb titer and increased level of the acidic charge variants of the mAb. Consequently, trace element composition of soy hydrolysates or of all incoming raw materials might lead to significant impacts on process performance and product quality and therefore need to be tightly controlled.  相似文献   

12.
The eastern Dundas Tablelands resulted from a series of volcanic events some 400M years ago, and apart from uplift and erosion, has undergone little change since then. It is proposed that reduced conditions inherent in volcanic material remain deep in the landscape, and that deep groundwater flow equilibrates with this. The chemistry of sulphur and reaction with iron is discussed, and it is proposed that sulphate reduction provides a means whereby the reducing capacity can be transmitted in the flowpaths towards the discharge zones. Over time all readily reduced material has been stripped from these flowpaths, so that reduced groundwater is able to reach the surface, typically at sites of preferential flow for deep groundwater (ie cracks and fissures in the regolith). Disturbance of the discharge areas has introduced reducable material into these flowpaths resulting in severe chemical scalding within the overall degradation due to salinity. Novel remediation processes are suggested.  相似文献   

13.
Bioremediation is a commonly used process for the remediation of soils and sludges containing hydrocarbon compounds. The extent of chemical concentration reduction that occurs in bioremediation processes and the concentration of residual chemicals varies widely for different soils and sludges and for different processes. Along with changes in chemical concentration, measures of toxicity and chemical mobility are important information as site remediation decisions are increasingly being made within a risk-based corrective action framework.

This review article presents illustrative data from studies that evaluated the effectiveness of bioremediation processes and that contained information about changes in chemical mobility and soil or sludge toxicity. The weight-of-evidence data presented indicated that, as part of the bioremediation process, there is a reduction of the apparent toxicity of the soils and sludges that were treated. In addition, remaining chemical constituents generally were less mobile. The patterns were consistent for both laboratory and field-scale bioremediation studies.  相似文献   

14.
Managanese (Mn) is an essential trace element at low concentrations, but at higher concentrations is neurotoxic. It has several chemical and biochemical properties similar to iron (Fe), and there is evidence of metabolic interaction between the two metals, particularly at the level of absorption from the intestine. The aim of this investigation was to determine whether Mn and Fe interact during the processes involved in uptake from the plasma by the brain and other organs of the rat. Dams were fed control (70 mg Fe/kg), Fe-deficient (5–10 mg Fe/kg), or Fe-loaded (20 g carbonyl Fe/kg) diets, with or without Mn-loaded drinking water (2 g Mn/L), from day 18–19 of pregnancy, and, after weaning the young rats, were continued on the same dietary regimens. Measurements of brain, liver, and kidney Mn and nonheme Fe levels, and the uptake of54Mn and59Fe from the plasma by these organs and the femurs, were made when the rats were aged 15 and 63 d. Organ nonheme Fe levels were much higher than Mn levels, and in the liver and kidney increased much more with Fe loading than did Mn levels with Mn loading. However, in the brain the increases were greater for Mn. Both Fe depletion and loading led to increased brain Mn concentrations in the 15-d/rats, while Fe loading also had this effect at 63 d. Mn loading did not have significant effects on the nonheme Fe concentrations.54Mn, injected as MnCl2 mixed with serum, was cleared more rapidly from the circulation than was59Fe, injected in the form of diferric transferrin. In the 15-d-rats, the uptake of54Mn by brain, liver, kidneys, and femurs was increased by Fe loading, but this was not seen in the 63-d rats. Mn supplementation led to increased59Fe uptake by the brain, liver, and kidneys of the rats fed the control and Fe-deficient diets, but not in the Fe-loaded rats. It is concluded that Mn and Fe interact during transfer from the plasma to the brain and other organs and that this interaction is synergistic rather than competitive in nature. Hence, excessive intake of Fe plus Mn may accentuate the risk of tissue damage caused by one metal alone, particularly in the brain.  相似文献   

15.
Seven reference areas in the Netherlandswere selected to trial restoration measuresin acidified rich fens in discharge areas.In about half of the projects the measuresthat aimed to restore the high base statusof the topsoil failed. The aim of thepresent study was to identify the keyfactors and processes in base regulation ofrich fen systems, in order to underpinfuture restoration. We sampled soil andinterstitial water from distinct soilhorizons and analysed it for variablesinvolved in geohydrochemical processes. Wemonitored interstitial water chemistry andredox potentials to calibrate and validatea chemical speciation model, that we usedfor the interpretation of our observations.It appeared that soil pH, Ca2+saturation and iron contents weresignificantly lower at sites whererestoration efforts had failed. At the sametime, soils of these sites were verystratified instead of homogenous. Onlysoils with high iron contents recovered ahigh Ca2+ saturation. All sites werecharacterised by considerable downwardwater fluxes through the soil. Chemicalspeciation modelling was a useful tool forthe interpretation of processes underlyingour observations and helped elucidate thefactors and processes that control therecharge of the CEC by base cations. Themodelling results suggested that the mainprocess in proton neutralisation ofsuccessful sites is the production ofinternal alkalinity by reduction of ironoxides. Additional redox capacity can besupplied by the ample presence ofsulphates. From our results we hypothesisethat the CEC will only be rechargedsuccessfully with base cations in thepresence of sufficient redox capacity ofthe soil. It seems that redox processesfacilitate the ionic exchange of protonsfor Ca2+ ions. Sites where restorationefforts failed changed from discharge areasto recharge areas, which caused irondepletion by leaching. We conclude thatproper understanding of the pedological andgeohydrochemical processes that control thebase status of soils is a prerequisite forsuccessful nature restoration. The role ofsoil processes cannot be ignored as itseems that the production of internalalkalinity upon reduction exceeds theexternal supply of alkalinity bygroundwater flow.  相似文献   

16.
ABSTRACT: Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate) and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as the chemical ones. Taking advantages of the molecular biology and synthetic biology methods as well as changing process patterns, we can develop bioprocesses as competitive as chemical ones, these including the minimized cells, open and continuous fermentation processes et al.  相似文献   

17.
Iron is a key micronutrient for the human body and participates in biological processes, such as oxygen transport, storage, and utilization. Iron homeostasis plays a crucial role in the function of the heart and both iron deficiency and iron overload are harmful to the heart, which is partly mediated by increased oxidative stress. Iron enters the cardiomyocyte through the classic pathway, by binding to the transferrin 1 receptor (TfR1), but also through other routes: T-type calcium channel (TTCC), divalent metal transporter 1 (DMT1), L-type calcium channel (LTCC), Zrt-, Irt-like Proteins (ZIP) 8 and 14. Only one protein, ferroportin (FPN), extrudes iron from cardiomyocytes. Intracellular iron is utilized, stored bound to cytoplasmic ferritin or imported by mitochondria. This cardiomyocyte iron homeostasis is controlled by iron regulatory proteins (IRP). When the cellular iron level is low, expression of IRPs increases and they reduce expression of FPN, inhibiting iron efflux, reduce ferritin expression, inhibiting iron storage and augment expression of TfR1, increasing cellular iron availability. Such cellular iron homeostasis explains why the heart is very susceptible to iron overload: while cardiomyocytes possess redundant iron importing mechanisms, they are equipped with only one iron exporting protein, ferroportin. Furthermore, abnormalities of iron homeostasis have been found in heart failure and coronary artery disease, however, no clear picture is emerging yet in this area. If we better understand iron homeostasis in the cardiomyocyte, we may be able to develop better therapies for a variety of heart diseases to which abnormalities of iron homeostasis may contribute.  相似文献   

18.
The interest in synthetic siderophore mimics includes therapeutic applications (iron chelation therapy), the design of more effective agents to deliver Fe to plants and the development of new chemical tools in order to study iron metabolism and iron assimilation processes in living systems. The design of ligands needs a rational approach for the understanding of the metal ion complexing abilities. The octahedral arrangement of donor atoms is the most favourable geometry, allowing the maximum possible distance between their formal or partial negative charges. Hexadentate chelators, usually of the tris-bidentate type, can accommodate the metal coordination sphere and are well-suited to obtain high pFe values. The first part of this review is dedicated to selected synthetic routes, taking into account (i) the nature of the chelating subunits, connecting groups and spacers, (ii) the water-solubility and hydrophilic/lipophilic balance, (iii) the chirality and (iv) the possibility of grafting probes or vectors. In the second part, we discuss the role of the molecular design on complexing abilities (thermodynamics and kinetics). The bidentate 8-hydroxyquinoline moiety offers an alternative to the usual coordinating hydroxamic acids, catechols and/or α-hydroxycarboxylic acids groups encountered in natural siderophores. The promizing results obtained with the tris-hydroxyquinoline-based ligand O-TRENSOX are summarized. O-TRENSOX exhibits a high and selective affinity for Fe(III) complexation. Its efficiency in delivering Fe to plants, iron mobilization, cell protection, and antiproliferative effects has been evidenced. Other chelators derived from O-TRENSOX (mixed catechol/8-hydroxyquinoline ligands, lipophilic ligands) are also described. Some results question the relevance of partition coefficients to foresee the activity of iron chelators. The development of probes (fluorescent, radioactive, spin labelled) based on the O-TRENSOX backbone is in progress in order to get insights in the complicated iron metabolism processes.  相似文献   

19.
Abstract

Coupled geochemical speciation/transport models are being developed to assess potential transport of metal contaminants in the subsurface environment. In a test of the geochemical speciation portion of the effort, MINTEQA2 model predictions are compared with laboratory data concerning the pH dependent partitioning behavior of eight cationic contaminants (Ba, Be, Cd, Cu, Ni, Pb, Tl and Zn) on a sandy aquifer material in an oxidized environment. MINTEQA2 contains provisions for describing potential attenuation due to both mineral phase precipitation processes and adsorption processes resulting from amorphous iron oxides in aquifer materials (MIT Diffuse Layer Model). In the comparison, several trends were discerned. (1) Adsorptive processes tend to better describe the pH-dependent partitioning behavior of transition metals (especially Pb, Zn and Ni). (2) Cd behavior is better described by precipitation as a cadmium carbonate phase. (3) Cu behavior is not reasonably described by the model. (4) Ba and Be comparisons are poor (although presumably their partitioning behavior results from adsorptive and/or pH sensitive solid solution processes). (5) unlike the other elements, the behavior of Tl is relatively insensitive to pH.  相似文献   

20.

Background, aim, and scope  

To achieve sustainable development in industrial processes, attributed chemical risks as well as environmental impacts should be managed. Such non-monetary issues have been analyzed by scientific assessment methodologies such as various risk assessment (RA) and life cycle assessment (LCA) procedures. Local risks to be addressed in RA are microenvironments, including the workplace and neighborhood. Although a comprehensive interpretation of such risks is necessitated in industrial decision making, no practical method has been developed to interpret various types of risk with sufficient understandings of plant-specific functions and constraints. Because elaborate model-based approaches are inevitable for practical process development, actual case studies on chemical risks and detailed plant-specific functions and constraints should be performed. Manufacturing processes require that metal parts must be cleaned in preparation for surface treatments or the completion of metal processing. The significant amount of cleansing agents utilized in cleaning processes has become an issue in Japan. Almost all cleaning processes in Japan are carried out by small- and medium-sized enterprises (SMEs). Machinery processes have not been systematically analyzed in terms of chemical risks and, in addition, the environmental management skills of SMEs are generally far behind those of large enterprises. The objective of this study is to reveal the relationships between chemical risks and plant-specific conditions for a practical risk reduction carried out by industrial decision makers. For this purpose, we aimed at the analysis of such relationships in metal-cleaning processes. Through this analysis, the correlation between local risks and global impacts were discussed in terms of plant-specific conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号