首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brain actin extracted from an acetone powder of chick brains was purified by a cycle of polymerization-depolymerization followed by molecular sieve chromatography. The brain actin had a subunit molecular weight of 42,000 daltons as determined by co-electrophoresis with muscle actin. It underwent salt-dependent g to f transformation to form double helical actin filaments which could be "decorated" by muscle myosin subfragment 1. A critical concentration for polymerization of 1.3 microM was determined by measuring either the change in viscosity or absorbance at 232 nm. Brain actin was also capable of stimulating the ATPase activity of muscle myosin. Brain myosin was isolated from whole chick brain by a procedure involving high salt extraction, ammonium sulfate fractionation and molecular sieve chromatography. The purified myosin was composed of a 200,000-dalton heavy chain and three lower molecular weight light chains. In 0.6 M KCl the brain myosin had ATPase activity which was inhibited by Mg++, stimulated by Ca++, and maximally activated by EDTA. When dialyzed against 0.1 M KCl, the brain myosin self-assembled into short bipolar filaments. The bipolar filaments associated with each other to form long concatamers, and this association was enhanced by high concentrations of Mg++ ion. The brain myosin did not interact with chicken skeletal muscle myosin to form hybrid filaments. Furthermore, antibody recognition studies demonstrated that myosins from chicken brain, skeletal muscle, and smooth muscle were unique.  相似文献   

2.
Myosin has been isolated from bovine retinae and characterised by its ATPase (ATP phosphohydrolase, EC 3.6.1.3) activity, its mobility in sodium dodecyl sulphate polyacrylamide gels and by electron microscopy. The purified myosin shows high ATPase activity in the presence of EDTA or Ca2+ and a low activity in the presence of Mg2+. The Mg2+-dependent ATPase activity is stimulated by rabbit skeletal muscle actin. The presumptive retinal myosin possesses a major component which has a mobility in sodium dodecyl sulphate polyacrylamide gel electrophoresis similar to that of the heavy chain of bovine skeletal muscle myosin. Electron microscopy showed retinal myosin to form bipolar filaments in 0.1 M KCl. It is concluded that the retina possesses a protein with enzymic and structural properties similar to those of muscle myosin.  相似文献   

3.
The interactions were analyzed between actin, myosin, and a recently discovered high molecular weight actin-binding protein (Hartwig, J. H., and Stossel, T. P. (1975) J. Biol Chem.250,5696-5705) of rabbit alveolar macrophages. Purified rabbit alveolar macrophage or rabbit skeletal muscle F-actins did not activate the Mg2+ATPase activity of purified rabbit alveolar macrophage myosin unless an additional cofactor, partially purified from macrophage extracts, was added. The Mg2+ATPase activity of cofactor-activated macrophage actomyosin was as high as 0.6 mumol of Pi/mg of myosin protein/min at 37 degrees. The macrophage cofactor increased the Mg2+ATPase activity of rabbit skeletal muscle actomyosin, and calcium regulated the Mg2+ATPase activity of cofactor-activited muscle actomyosin in the presence of muscle troponins and tropomyosin. However, the Mg2+ATPase activity of macrophage actomyosin in the presence of the cofactor was inhibited by muscle control proteins, both in the presence and absence of calcium. The Mg2+ATPase activity of the macrophage actomyosin plus cofactor, whether assembled from purified components or studied in a complex collected from crude macrophage extracts, was not influenced by the presence of absence of calcium ions. Therefore, as described for Acanthamoeba castellanii myosin (Pollard, T. D., and Korn, E. D. (1973) J. Biol. Chem. 248, 4691-4697), rabbit alveolar macrophage myosin requires a cofactor for activation of its Mg2+ATPase activity by F-actin; and no evidence was found for participation of calcium ions in the regulation of this activity.In macrophage extracts containing 0.34 M sucrose, 0.5 mM ATP, and 0.05 M KCl at pH 7.0,the actin-binding protein bound F-actin into bundles with interconnecting bridges. Purified macrophage actin-binding protein in 0.1 M KCl at pH 7.0 also bound purified macrophage F-actin into filament bundles. Macrophage myosin bound to F-actin in the absence but not the presence of Mg2+ATP, but the actin-binding protein did not bind to macrophage myosin in either the presence or absence of Mg2+ATP.  相似文献   

4.
Myosin was extracted from frozen squid brain and purified by a modification of the procedure of Pollard et al. (Pollard, T.D., Thomas, S.M., and Niederman, R. (1974) Anal. Biochem. 60, 258-266). Myosin was eluted from Bio-Gel A-15m column as a single peak of (K+-EDTA)-activated ATPase ((K+-EDTA)-ATPase) activity with an average partition coefficient (Kav) of 0.22. In sodium dodecyl sulfate-acrylamide gel electrophoresis, the purified myosin showed a predominant band with similar electrophoretic mobility as the heavy chain of rabbit skeletal muscle myosin, and two less intense bands near the bottom of the gel. No actin band was seen. The properties of the (K+-EDTA)-ATPase activity were: (a) the time course of the reaction was biphasic at 25 degrees but linear at 32 degrees; (b) the optimum rate of reaction was obtained between 0.3 and 0.8 M KCl; (c) the pH optimum was between 8.0 and 9.0; (d) the reaction was specific for ATP with an apparent Km of 0.19 mM. ATPase activity in 0.06 M KCl and 5 mM MgCl2 was increased about 1.5 times by a 10-fold excess of rabbit skeletal muscle F-actin and about 5 times by a 40-fold excess. The actin activation was inhibited slightly by the addition of 0.2 mM CaCl2 and completely by the addition of 10 mM CaCl2. Myosin formed arrowhead patterns with rabbit skeletal muscle F-actin as observed by electron microscopy of negatively stained samples. It also aggregated in bipolar filaments which attached to decorated actin filaments at different angles, as well as formed cross-connections and ladder-like patterns between actin filaments. These two forms of interactions between myosin and actin were abolished by treatment with MgATP.  相似文献   

5.
Myosin has been isolated from bovine retinae and characterised by its ATPase (ATP phosphohydrolase, EC 3.6.1.3) activity, its mobility in sodium dodecyl sulphate polyacrylamide gels and by electron microscopy. The purified myosin shows high ATPase activity in the presence of EDTA or Ca2+ and a low activity in the presence of Mg2+. The Mg2+-dependent ATPase activity is stimulated by rabbit skeletal muscle actin. The presumptive retinal myosin possesses a major component which has a mobility in sodium dodecyl sulphate polyacrylamide gel electrophoresis similar to that of the heavy chain of bovine skeletal mucle myosin. Electron microscopy showed retinal myosin to form bipolar filaments in 0.1 M KCl. It is concluded that the retina possesses a protein with enzymic and structural properties similar to those of muscle myosin.  相似文献   

6.
1. Purealin, a novel bioactive principle of a sea sponge Psammaplysilla purea, activated the superprecipitation of myosin B (natural actomyosin) from rabbit skeletal muscle. The maximum change in the turbidity increased with increasing purealin concentrations and was three times the control value in the presence of 50 microM purealin. 2. The ATPase activity of myosin B was also elevated to 160% of the control value by 10 microM purealin. On the other hand, purealin inhibited the myosin ATPase in the presence of 10 mM CaCl2 and 0.5 M KCl (Ca2+-ATPase), and the concentration for the half inhibition was 4 microM. 3. On the other hand, purealin activated the myosin ATPase in the presence of 5 mM EDTA and 0.5 M KCl (EDTA-ATPase). The maximum activation by 10 microM purealin was 160% of the control value. 4. Furthermore, similar results concerning the modification of ATPase activities by purealin were obtained in myosin subfragment-1 instead of myosin. 5. These results suggest that purealin activates the superprecipitation of myosin B by affecting the myosin heads directly. It is also an interesting observation that there is a correlation between the activities of the myosin EDTA-ATPase and actomyosin ATPase of myosin B.  相似文献   

7.
Myosin has been purified from the principal pancreatic islet of catfish, hog salivary gland, and hog pituitary. Use of the protease inhibitor Trasylol (FBA Pharmaceuticals, New York) was essential in the isolation of pituitary myosin. Secretory tissue myosins were very similar to smooth muscle myosin, having a heavy chain of 200,000 daltons and light chains of 14,000 and 19,000 daltons. Salivary gland myosin cross-reacted with antibodies directed toward both smooth muscle myosin and fibroblast myosin, but not with antiskeletal muscel myosin serum. The specific myosin ATPase activity measured in 0.6 M KCl was present. Tissues associated with secretion of hormone granules contained substantial amounts of this ATPase, rat pancreatic islets having 4.5 times that of rat liver. Activation of low ionic strength myosin ATPase by actin could not be demonstrated despite adequate binding of the myosin to muscle actin and elution by MgATP. The myosins were located primarily in the cytoplasm as determined by cell fractionation and were quite soluble in buffers of low ionic strength.  相似文献   

8.
Myosin was prepared from smooth muscle of horse esophagus in good yield (about 150 mg/100 g tissue) and was designated myosin S. Its properties were compared with those of myosin A from skeletal muscle.

The ratio of the absorption of myosin S at 280 nm to that at 260 nm was about 1.8, and the amount of contaminating phosphorus was only 0.91 g/105 g of myosin S, indicating that the latter is free of nucleic acid. The purity of this protein was examined by ultracentrifugation, gel filtration in the presence of 0.5 M KCl and 6 M urea and chromatography on DEAE-cellulose columns. These experiments all indicated that myosin S was homogeneous, like highly purified rabbit skeletal myosin A.

Amino acid analyses showed differences in the composition of smooth and skeletal myosins. Myosin S contained the same amount of sulfhydryl groups per 105 g of protein as horse and rabbit skeletal myosin A (about 8 moles/105 g of protein). But it contained more asparatic acid or asparagine, more leucine and less lysine, glycine and proline.

Ca2+-ATPase of myosin S in the presence of 0.5 M KCl and Mg2+-ATPase in the presence of 0.05 M KCl at 37° were very similar to those of skeletal myosin A. On the other hand, EDTA-ATPase and Ca2+-ATPase in the presence of 0.05 M KCl were much lower than those of skeletal myosin A. Lowering the temperature from 37 to 25°, the degree of decrease of the ATPase activities was much larger in myosin S than in skeletal myosin A. The reaction of N-ethylmaleimide with myosin S caused inhibition of the EDTA-ATPase but did not affect the Ca2+-ATPase activity. This behaviour was different from that of skeletal myosin A which exhibited an inhibition of EDTA-ATPase and an activation of Ca2+-ATPase during the course of the reaction of sulfhydryl groups of myosin with N-ethylmaleimide. These facts suggest that the structure of the active site of myosin S ATPase differs significantly from that of skeletal myosin A. These differences appear to influence the interaction of myosin with F-actin, so that the rate of superprecipitation found in an actomyosin reconstituted from myosin S and F-actin was only one fortieth of that found with skeletal myosin A.  相似文献   


9.
The Mg2+ATPase activity of the myosin of a myeloid leukemia cell line (Ml) was not activated by purified Ml actin or by muscle actin alone. Activation required the presence of a cellular fraction as a cofactor in addition to the actin, when Mg2+ATPase was stimulated as much as 20-fold. The cofactor was partially purified and characterized. 1) Its molecular weight was estimated as 45,000 to 55,000 daltons by gel filtration and as 45,000 daltons by SDS polyacrylamide gel electrophoresis. 2) The cofactor was a light chain kinase that phosphorylated both the L1 and L2 light chains of the Ml cell myosin, but not the L3 or heavy chain.  相似文献   

10.
It has been shown that in the absence of KCl, the actin-stimulated Mg2+-ATPase activity of rabbit skeletal myosin minifilaments with phosphorylated regulatory lights chains (LC2) exceeds 3-4-fold that of myosin minifilaments with dephosphorylated LC2. Addition of KCl leads to a decrease in the difference between the two ATPase activities. LC2 phosphorylation considerably increases the rate of ATPase reaction and only slightly decreases the affinity of myosin minifilaments for F-actin. It is suggested that the unusual effect of LC2 phosphorylation on the kinetic parameters of the actin-stimulated ATPase reaction of myosin minifilaments can be accounted for by its influence on the interaction between myosin heads which results in the ordered self-assembly of minifilaments.  相似文献   

11.
Vertebrate nonmuscle myosins contain two phosphorylatable light chains. The maximum rate, Vmax, of the actin-activated adenosinetriphosphatase (ATPase) of unphosphorylated calf thymus myosin was found to be about 100 nmol/(min X mg), the same as that of thymus myosin with two phosphorylated light chains. However, the Kapp (actin concentration required to achieve 1/2 Vmax) of the unphosphorylated myosin was 15-20-fold greater than that of the phosphorylated myosin. When actin complexed with either skeletal muscle tropomyosin or calf thymus tropomyosin was used, the values for Vmax were about the same as those obtained with F-actin. In the presence of skeletal muscle tropomyosin, the Kapp of the unphosphorylated myosin was only 2-3-fold greater than that of the phosphorylated myosin, and in the presence of thymus tropomyosin, there was about a 5-fold difference in their Kapp values. Thus, light chain phosphorylation regulates the actin-activated ATPase of thymus myosin not by increasing Vmax but rather by decreasing the Kapp of this myosin for actin. These rather small differences in Kapp suggest that other proteins may be involved in the regulation of the actin-activated ATPase of thymus myosin. Regulated actin (actin plus skeletal muscle troponin-tropomyosin) was used to examine possible effects of thin-filament regulatory proteins. In the presence of calcium, phosphorylation caused only a slight increase in Vmax and a 2-fold decrease in Kapp of the regulated actin-activated ATPase of thymus myosin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A new, simple method for the isolation of actin from myxomycete plasmodia has been developed. Plasmodium myosin B was incubated at 55 degrees C for 15 min in the presence of ATP or was treated with 90% acetone. By this treatment myosin was denatured completely. Actin was then extracted with a dilute ATP and cysteine solution from the heat- or acetone-treated myosin B. The method is simple and almost pure actin was obtained in high yield. The purified G-actin polymerized to F-actin on addition of 0.1 M KCl or 2 mM MgCl2. The viscosity of the purified F-actin was 8-10 dl/g. The F-actin activated muscle myosin ATPase, and actomyosin synthesized from the F-actin and muscle myosin showed superprecipitation on addition of ATP.  相似文献   

13.
Myosin from rabbit white skeletal muscle was treated with 10 mM EDTA in 150 mM phosphate buffer. After precipitation of myosin by dialysis against a 14-fold volume of water, EDTA-treated myosin, myosin before treatment and the supernatant from the treatment of myosin with EDTA were examined on sodium dodecyl sulphate-polyacrylamide gels by electrophoresis. It has been found that the quantity of LC2 light chains diminished after treatment with EDTA, and the supernatant contained the LC2 light chains. Treatment of myosin with EDTA in the presence of Mg2+ does not change the stoichiometry of the LC2 light chain and the supernatant is free from LC2 light chains. The treatment of myosin with p-chloromercuri-benzoate leads to dissociation of the same amount of LC2 light chains. It is suggested that divalent cations and thiol groups are engaged in the attachment of LC2 light chain to the myosin molecule.  相似文献   

14.
The mechanism of the ATPase [EC 3.6.1.3] reaction of porcine platelet myosin and the binding properties of platelet myosin with rabbit skeletal muscle F-actin were investigated. The kinetic properties of the platelet myosin ATPase reaction, that is, the rate, the extent of fluorescence enhancement of myosin, the size of the initial P1 burst of myosin, and the amount of nucleotides bound to myosin during the ATPase reaction, were very similar to those found for other myosins. Strong binding of platelet myosin with rabbit skeletal muscle F-actin, as found for smooth muscle myosin, was suggested by the following results. The rate of the ATP-induced dissociation of hybrid actomyosin, reconstituted from platelet myosin and skeletal muscle F-actin, was very slow. The amount of ATP necessary for complete dissociation of hybrid actomyosin was 2 mol/mol of myosin, although skeletal muscle actomyosin is known to dissociate completely upon addition of 1 mol ATP per mol of myosin. Unlike skeletal muscle myosin, the EDTA(K+)-ATPase activity of platelet myosin was inhibited by skeletal muscle F-actin. These observations indicate that ATP hydrolysis by vertebrate nonmuscle myosin follows the same mechanism as with other myosins and that the binding properties of nonmuscle myosin with F-actin are similar to those of smooth muscle myosin but not to those of skeletal muscle myosin.  相似文献   

15.
Actin, myosin, and a high molecular weight actin-binding protein were extracted from rabbit alveolar macrophages with low ionic strength sucrose solutions containing ATP, EDTA, and dithiothreitol, pH 7.0. Addition of KCl, 75 to 100 mM, to sucrose extracts of macrophages stirred at 25 degrees caused actin to polymerize and bind to a protein of high molecualr weight. The complex precipitated and sedimented at low centrifugal forces. Macrophage actin was dissociated from the binding protein with 0.6 M KCl, and purified by repetitive depolymerization and polymerization. Purified macrophage actin migrated as a polypeptide of molecular weight 45,000 on polyacrylamide gels with dodecyl sulfate, formed extended filaments in 0.1 M KCl, bound rabbit skeletal muscle myosin in the absence of Mg-2+ATP and activated its Mg-2+ATPase activity. Macrophage myosin was bound to actin remaining in the macrophage extracts after removal of the actin precipitated with the high molecular weight protein by KCl. The myosin-actin complex and other proteins were collected by ultracentrifugation. Macrophage myosin was purified from this complex or from a 20 to 50% saturated ammonium sulfate fraction of macrophage extracts by gel filtration on agarose columns in 0.6 M Kl and 0.6 M Kl solutions. Purified macrophage myosin had high specific K-+- and EDTA- and K-+- and Ca-2+ATPase activities and low specific Mg-2+ATPase activity. It had subunits of 200,000, 20,000, and 15,000 molecular weight, and formed bipolar filaments in 0.1 M KCl, both in the presence and absence of divalent cations. The high molecular weight protein that precipitated with actin in the sucrose extracts of macrophages was purified by gel filtration in 0.6 M Kl-0.6 M KCl solutions. It was designated a macrophage actin-binding protein, because of its association with actin at physiological pH and ionic strength. On polyacrylamide gels in dodecyl sulfate, the purified high molecular weight protein contained one band which co-migrated with the lighter polypeptide (molecular weight 220,000) of the doublet comprising purified rabbit erythrocyte spectrin. The macrophage protein, like rabbit erythrocyte spectrin, was soluble in 2 mM EDTA and 80% ethanol as well as in 0.6 M KCl solutions, and precipitated in 2 mM CaCl2 or 0.075 to 0.1 M KCl solutions. The macrophage actin-binding protein and rabbit erythrocyte spectrin eluted from agarose columns with a KAV of 0.24 and in the excluded volumes. The protein did not form filaments in 0.1 M KCl and had no detectable ATPase activity under the conditions tested.  相似文献   

16.
AMP deaminase was completely solubilized from rat skeletal muscle with 50 mM Tris-HCl buffer (pH 7.0) containing KCl at a concentration of 0.3 M or more. The purified enzyme was found to be bound to rat muscle myosin or actomyosin, but not to F-actin at KCl concentrations of less than 0.3 M. Kinetic analysis indicated that 1 mol of AMP deaminase was bound to 3 mol of myosin and that the dissociation constant (Kd) of this binding was 0.06 micrometer. It was also shown that AMP deaminase from muscle interacted mainly with the light meromyosin portion of the myosin molecule. This finding differs from that of Ashby and coworkers on rabbit muscle AMP deaminase, probably due to a difference in the properties of rat and rabbit muscle AMP deaminase. AMP deaminase isozymes from rat liver, kidney and cardiac muscle did not interact with rat muscle myosin. The physiological significance of this binding of AMP deaminase to myosin is discussed.  相似文献   

17.
Myosin and F-actin were prepared from bovine carotid arterial smooth muscle and the properties of the binding of myosin to F-actin were compared with those of the binding of skeletal muscle myosin to F-actin. The following differences were observed between skeletal and smooth muscle myosins. 1. The rate of ATP-induced dissociation of arterial actomyosin was equal to that of hybrid actomyosin reconstituted from arterial myosin and skeletal muscle F-actin, but was much lower than those of skeletal muscle actomyosin and of hybrid actomyosin reconstituted from skeletal muscle myosin and arterial F-actin. 2. The amount of ATP necessary for complete dissociation of arterial actomyosin was 2 mol/mol of myosin, although it is well known that skeletal muscle actomyosin is dissociated completely by the addition of 1 mol ATP per mol of myosin. 3. Arterial actomyosin and hybrid actomyosin reconstituted from arterial myosin and skeletal muscle F-actin did not dissociate upon addition of 0.1 mM PPi, while skeletal muscle actomyosin dissociated completely. 4. In the absence of Mg2+, neither dissociation by ATP nor ATPase [EC 3.6.1.3] activity was observed with arterial actomyosin and hybrid actomyosin reconstituted from arterial myosin and skeletal muscle F-actin. On the other hand, skeletal muscle actomyosin dissociated almost completely upon addition of ATP and showed a considerably high ATPase activity. These observations reveal marked differences between myosins from skeletal and smooth muscles in their binding properties to F-actin.  相似文献   

18.
Myosin was purified from rat tumour sarcoma-45 whose properties (effects of cations on ATPase activity, substrate specificity, temperature- and pH-optima, thermal stability, sensitivity of Mg2(+)-ATPase to F-actin, molecular mass, subunit composition) are similar to those of fast skeletal muscle myosin. Some parameters of the protein, namely, the levels of Ca2(+)- and K+, EDTA-ATPase activity, relative content of myosin light chains with Mr 16500 and the degree of tumoural myosin Mg2(+)-ATPase activation by F-actin, were significantly lower than those of skeletal muscle myosin.  相似文献   

19.
The Ca-regulatory system in squid mantle muscle was studied. The findings were as follows. (a) Squid mantle myosin B (squid myosin B) was Ca-sensitive, and its Ca-sensitivity was unaffected by addition of a large amount of rabbit skeletal myosin (skeletal myosin) or rabbit skeletal F-actin (skeletal F-actin). (b) Squid myosin was prepared from the mantle muscle. It showed a heavy chain component and two light chain components in the SDS-gel electrophoretic pattern: the molecular weights of the latter two were 17,000 and 15,000. Actomyosin reconstituted from squid myosin and skeletal (or squid) actin showed Ca-sensitivity in superprecipitation and Mg-ATPase assays. EDTA- treatment had no effect on the Ca-sensitivity of squid myosin. (c) Squid mantle actin (squid actin) was prepared by the method of Spudich and Watt. Hybrid actomyosin reconstituted by using the pure squid actin preparation with skeletal myosin showed no Ca-sensitivity in Mg-ATPase assay, whereas that reconstituted using crude squid actin showed marked Ca-sensitivity. The crude squid actin contained four protein components which were capable of associating with F-actin in 0.1 M KCl, 1 mM MgCl2 and 20 mM Tris-maleate (pH7.5). (d) Native tropomyosin was prepared from squid mantle muscle, and it conferred Ca-sensitivity on skeletal actomyosin as well as on a hybrid actomyosin reconstituted from squid actin and skeletal myosin. (e) Squid native tropomyosin was separated into troponin and tropomyosin fractions by placing it in 0.4 M LiCl at pH 4.7. The troponin fraction was further purified by DEAE-cellulose chromatography. Squid troponin thus obtained was different in mobility from rabbit skeletal or carp dorsal troponin; three bands of squid troponin corresponded to molecular weights of 52,000, 28,000, and 24,000 daltons. It could confer Ca-sensitivity in the presence of tropomyosin on skeletal actomyosin as well as on a hybrid reconstituted from squid actin and skeletal myosin. (f) Squid myosin B, and two hybrid actomyosins were compared as regards Ca and Sr requirements for their Mg-ATPase activities. The myosin-linked regulatory system rather than the thin-filament-linked regulatory system was predominant in squid myosin B. Squid myosin B required higher Ca2+ and Sr2+ concentrations for Mg-ATPase activity; half-maximal activation of Mg-ATPase was obtained at 0.8 micron Ca2+ and 28 micron Sr2+ with skeletal myosin B, and at 2.5 micron Ca2+ and 140 micron Sr2+ with squid myosin B.  相似文献   

20.
Acanthamoeba myosin IB is a single-headed enzyme containing one heavy chain of 125,000 daltons, one light chain of 27,000 daltons, and one light chain of 14,000 daltons. The 125,000- and 27,000-dalton polypeptides are consistently found in a molar ratio of 1:1. The content of the 14,000-dalton peptide is usually only 0.1 to 0.2, and always less than 0.5, relative to the other two chains and might be a contaminant or a degradation product of one of the other chains. The specific activities of the Ca2+-ATPase, (K+, EDTA)-ATPase, and (after phosphorylation of its heavy chain by a specific kinase) actin-activated Mg2+-ATPase of Acanthamoeba myosin IB are similar to those of rabbit skeletal muscle myosin. After treatment of the enzyme with 2 M LiCl, the 125,000-dalton heavy chain of Acanthamoeba myosin Ib can be obtained, by chromatography on Sephadex G-200, essentially free of the 14,000-dalton peptide and more than 90% free of the 27,000-dalton peptide. This isolated heavy chain has the same specific ATPase activities as the original enzyme. Therefore, the heavy chain of Acanthamoeba myosin IB contains the ATPase catalytic site, the actin-binding site, and the phosphorylation site and is fully active enzymatically in the absence of light chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号