首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Danon  S P Mayfield 《The EMBO journal》1991,10(13):3993-4001
Genetic analysis has revealed a set of nuclear-encoded factors that regulate chloroplast mRNA translation by interacting with the 5' leaders of chloroplastic mRNAs. We have identified and isolated proteins that bind specifically to the 5' leader of the chloroplastic psbA mRNA, encoding the photosystem II reaction center protein D1. Binding of these proteins protects a 36 base RNA fragment containing a stem-loop located upstream of the ribosome binding site. Binding of these proteins to the psbA mRNA correlates with the level of translation of psbA mRNA observed in light- and dark-grown wild type cells and in a mutant that lacks D1 synthesis in the dark. The accumulation of at least one of these psbA mRNA-binding proteins is dependent upon chloroplast development, while its mRNA-binding activity appears to be light modulated in developed chloroplasts. These nuclear encoded proteins are prime candidates for regulators of chloroplast protein synthesis and may play an important role in coordinating nuclear-chloroplast gene expression as well as provide a mechanism for regulating chloroplast gene expression during development in higher plants.  相似文献   

2.
《The Journal of cell biology》1994,127(6):1537-1545
Translational regulation is a key modulator of gene expression in chloroplasts of higher plants and algae. Genetic analysis has shown that translation of chloroplast mRNAs requires nuclear-encoded factors that interact with chloroplastic mRNAs in a message-specific manner. Using site-specific mutations of the chloroplastic psbA mRNA, we show that RNA elements contained within the 5' untranslated region of the mRNA are required for translation. One of these elements is a Shine- Dalgarno consensus sequence, which is necessary for ribosome association and psbA translation. A second element required for high levels of psbA translation is located adjacent to and upstream of the Shine-Dalgarno sequence, and maps to the location on the RNA previously identified as the site of message-specific protein binding. This second element appears to act as a translational attenuator that must be overcome to activate translation. Mutations that affect the secondary structure of these RNA elements greatly reduce the level of psbA translation, suggesting that secondary structure of these RNA elements plays a role in psbA translation. These data suggest a mechanism for translational activation of the chloroplast psbA mRNA in which an RNA element containing the ribosome-binding site is bound by message- specific RNA binding proteins allowing for increased ribosome association and translation initiation. These elements may be involved in the light-regulated translation of the psbA mRNA.  相似文献   

3.
4.
5.
Cytoplasmic serine hydroxymethyltransferase (cSHMT) enzyme levels are elevated by the expression of the heavy chain ferritin (H ferritin) cDNA in cultured cells without corresponding changes in mRNA levels, resulting in enhanced folate-dependent de novo thymidylate biosynthesis and impaired homocysteine remethylation. In this study, the mechanism whereby H ferritin regulates cSHMT expression was determined. cSHMT translation is shown to be regulated by an H ferritin-responsive internal ribosome entry site (IRES) located within the cSHMT mRNA 5'-untranslated region (5'-UTR). The cSHMT 5'-UTR exhibited IRES activity during in vitro translation of bicistronic mRNA templates, and in MCF-7 and HeLa cells transfected with bicistronic mRNAs. IRES activity was depressed in H ferritin-deficient mouse embryonic fibroblasts and elevated in cells expressing the H ferritin cDNA. H ferritin was shown to interact with the mRNA-binding protein CUGBP1, a protein known to interact with the alpha and beta subunits of eukaryotic initiation factor eIF2. Small interference RNA-mediated depletion of CUGBP1 decreased IRES activity from bicistronic templates that included the cSHMT 3'-UTR in the bicistronic construct. The identification of this H ferritin-responsive IRES represents a mechanism that accounts for previous observations that H ferritin regulates folate metabolism.  相似文献   

6.
7.
Translational regulation has been identified as one of the key steps in chloroplast-encoded gene expression. Genetic and biochemical analysis with Chlamydomonas reinhardtii has implicated nucleus-encoded factors that interact specifically with the 5' untranslated region of chloroplast mRNAs to mediate light-activated translation. F35 is a nuclear mutation in C. reinhardtii that specifically affects translation of the psbA mRNA (encoding D1, a core polypeptide of photosystem II), causing a photosynthetic deficiency in the mutant strain. The F35 mutant has reduced ribosome association of the psbA mRNA as a result of decreased translation initiation. This reduction in ribosome association correlates with a decrease in the stability of the mRNA. Binding activity of the psbA specific protein complex to the 5' untranslated region of the mRNA is diminished in F35 cells, and two members of this binding complex (RB47 and RB55) are reduced compared with the wild type. These data suggest that alteration of members of the psbA mRNA binding complex in F35 cells results in a reduction in psbA mRNA-protein complex formation, thereby causing a decrease in translation initiation of this mRNA.  相似文献   

8.
Translation is tightly regulated in cells for keeping adequate protein levels, this task being notably accomplished by dedicated mRNA-binding proteins recognizing a specific set of mRNAs to repress or facilitate their translation. To select specific mRNAs, mRNA-binding proteins can strongly bind to specific mRNA sequences/structures. However, many mRNA-binding proteins rather display a weak specificity to short and redundant sequences. Here we examined an alternative mechanism by which mRNA-binding proteins could inhibit the translation of specific mRNAs, using YB-1, a major translation regulator, as a case study. Based on a cooperative binding, YB-1 forms stable homo-multimers on some mRNAs while avoiding other mRNAs. Via such inhomogeneous distribution, YB-1 can selectively inhibit translation of mRNAs on which it has formed stable multimers. This novel mechanistic view on mRNA selection may be shared by other proteins considering the elevated occurrence of multimerization among mRNA-binding proteins. Interestingly, we also demonstrate how, by using the same mechanism, YB-1 can form multimers on specific DNA structures, which could provide novel insights into YB-1 nuclear functions in DNA repair and multi-drug resistance.  相似文献   

9.
10.
The human gene RPMS12 encodes a protein similar to bacterial ribosomal protein S12 and is proposed to represent the human mitochondrial orthologue. RPMS12 reporter gene expression in cultured human cells supports the idea that the gene product is mitochondrial and is localized to the inner membrane. Human cells contain at least four structurally distinct RPMS12 mRNAs that differ in their 5'-untranslated region (5'-UTR) as a result of alternate splicing and of 5' end heterogeneity. All of them encode the same polypeptide. The full 5'-UTR contains two types of sequence element implicated elsewhere in translational regulation as follows: a short upstream open reading frame and an oligopyrimidine tract similar to that found at the 5' end of mRNAs encoding other growth-regulated proteins, including those of cytosolic ribosomes. The fully spliced (short) mRNA is the predominant form in all cell types studied and is translationally down-regulated in cultured cells in response to serum starvation, even though it lacks both of the putative translational regulatory elements. By contrast, other splice variants containing one or both of these elements are not translationally regulated by growth status but are translated poorly in both growing and non-growing cells. Reporter analysis identified a 26-nucleotide tract of the 5'-UTR of the short mRNA that is essential for translational down-regulation in growth-inhibited cells. Such experiments also confirmed that the 5'-UTR of the longer mRNA variants contains negative regulatory elements for translation. Tissue representation of RPMS12 mRNA is highly variable, following a typical mitochondrial pattern, but the relative levels of the different splice variants are similar in different tissues. These findings indicate a complex, multilevel regulation of RPMS12 gene expression in response to signals mediating growth, tissue specialization, and probably metabolic needs.  相似文献   

11.
Nucleotide sequence changes increasing the number of paired bases without producing stable secondary structure elements in the 5'-untranslated region (5'-UTR) of the beta-globin mRNA had a slight effect on its translation in rabbit reticulocyte lysate at its low concentration and dramatically decreased translation efficiency at a high concentration. The removal of paired regions restored translation. Addition of purified eIF2 to the lysate resulted in equal translation efficiencies of templates differing in structure of 5'-UTR. A similar effect was observed for p50, a major mRNP protein. Other mRNA-binding initiation factors, eIF4F and eIF3B, had no effect on the dependence of translation efficiency on mRNA concentration. Analysis of the assembly of the 48S initiation complex from its purified components showed that less eIF2 is required for translation initiation on the beta-globin mRNA than on its derivative containing minor secondary structure elements in 5'-UTR. According to a model proposed, eIF2 not only delivers Met-tRNA, but it also stabilizes the complex of the 40S ribosome subunit with 5'-UTR, which is of particular importance for translation initiation on templates with structured 5'-UTR.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Cell cycle re-entry during vertebrate oocyte maturation is mediated through translational activation of select target mRNAs, culminating in the activation of mitogen-activated protein kinase and cyclin B/cyclin-dependent kinase (CDK) signaling. The temporal order of targeted mRNA translation is crucial for cell cycle progression and is determined by the timing of activation of distinct mRNA-binding proteins. We have previously shown in oocytes from Xenopus laevis that the mRNA-binding protein Musashi targets translational activation of early class mRNAs including the mRNA encoding the Mos proto-oncogene. However, the molecular mechanism by which Musashi function is activated is unknown. We report here that activation of Musashi1 is mediated by Ringo/CDK signaling, revealing a novel role for early Ringo/CDK function. Interestingly, Musashi1 activation is subsequently sustained through mitogen-activated protein kinase signaling, the downstream effector of Mos mRNA translation, thus establishing a positive feedback loop to amplify Musashi function. The identified regulatory sites are present in mammalian Musashi proteins, and our data suggest that phosphorylation may represent an evolutionarily conserved mechanism to control Musashi-dependent target mRNA translation.  相似文献   

19.
20.
Expression of vascular endothelial growth factor (VEGF) is tightly regulated, particularly at the level of its mRNA stability, which is essentially mediated through the 3'-untranslated region (3'-UTR) of VEGF mRNA. To identify new protein partners regulating VEGF mRNA stability, we screened a cDNA expression library with an RNA probe corresponding to the entire VEGF mRNA 3'-UTR. We identified the "poly(A)-binding protein-interacting protein 2" (PAIP2) as a new VEGF mRNA 3'-UTR interacting protein. By RNA electromobility shift assays, we showed that PAIP2 binds to two distinct regions of a domain encompassing base 1 to 1280 of the VEGF 3'-UTR. Such in vitro interaction was confirmed using cell extracts in which PAIP2 expression is induced by tetracycline (Tet-on cells). Moreover, we demonstrated by RNA affinity purification as well as by ribonucleoprotein complexes immunoprecipitation, that PAIP2 interacts with VEGF mRNA in vivo. Using an in vitro RNA degradation assay, the half-life of VEGF 3'-UTR was found to be increased by overexpressing PAIP2. PAIP2 stabilizes endogenous VEGF mRNA in Tet-on cells, leading to increased VEGF secretion. Moreover, RNAi-mediated knock-down of PAIP2 significantly reduces the steady-state levels of endogenous VEGF mRNA. We also showed, by in vitro protein-protein interactions and co-immunoprecipitation experiments, that PAIP2 interacts with HuR, an already known VEGF mRNA-binding protein, suggesting cooperation of both proteins for VEGF mRNA stabilization. Hence, PAIP2 appears to be a crucial regulator of VEGF mRNA and as a consequence, any variation in its expression could modulate angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号