首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
G Obe  D Anderson 《Mutation research》1987,186(3):177-200
Alcoholics have a higher frequency of chromosomal aberrations and sister-chromatid exchanges (SCEs) in their peripheral lymphocytes. In human and mammalian cells in vitro, ethanol generally does not induce genetic damage, but it induces SCEs in the presence of an exogenous metabolic system. In human lymphocytes in vitro, ethanol induces SCEs in the presence of alcohol dehydrogenase. In animals in vivo, ethanol induces a variety of genetic effects, including SCEs, micronuclei, dominant lethal mutations and aneuploidy in mouse eggs. There is some indication that ethanol may lead to genetic damage in sperm. In bacteria, ethanol is at best marginally active. Ethanol leads to anomalous chromosome segregation in Aspergillus, to mutations in yeast, to chromosomal aberrations and SCEs in plant root tips and to disturbances of meiosis and micronuclei in tetrads in Zea and Tradescantia respectively. The first metabolite of ethanol, acetaldehyde is mutagenic in a variety of test systems. The mutagenic activity of acetaldehyde in bacteria is questionable, but there is no doubt of its mutagenic activity in a variety of eukaryotic test systems in vitro as well as in vivo.  相似文献   

2.
I D Adler 《Mutation research》1983,115(3):293-321
The present paper reviews the currently available in vivo systems for detection of chemically induced mutations and chromosome aberrations and summarizes the data of the relevant tests for mammalian germ-cell mutations (specific-locus test and heritable translocation test). The value of in vivo screening tests (somatic mutations and sperm abnormalities) for predicting specific-locus mutations is illustrated by comparing doubling doses. The results from the mammalian germ-cell mutation tests (specific-locus test and heritable translocation test) constitute the base-line for an assessment of predictability. Radiation and chemically induced specific-locus mutations differ in a number of respects, suggesting a need for caution in making risk estimates for chemical mutagen exposures in terms of radiation-equivalent doses. In vivo nondisjunction tests are discussed. Finally, unsolved problems and difficulties in generalizing qualitative and quantitative correlations between test systems are outlined. It is concluded that even qualitative predictions from data on somatic cells to germ cells are at best insecure because germ-cell specificity cannot be foretold, not to mention the fact that quantitative extrapolations from the results of in vivo screening tests, in general, are fraught with even more uncertainties. There is an acute need for collection of more data from studies involving germ cells.  相似文献   

3.
Studies of classical chromosome aberrations and sister-chromatid exchanges (SCES) suggest independent mechanisms for the two events despite some common features. Examination of chromosome breakage caused by X-rays, visible light, and viruses has shown that few chromatid breaks are accompanied by SCEs at the sites of breaks. No similar observations were available for chemically induced breaks, but it has been reported that rat chromosomes exposed to dimethylbenzanthracene (DMBA) contained a preponderance of both aberrations and SCEs in certain specific regions, implicating a common process in their formation. These conclusions were drawn from a comparison of breaks induced in vivo with SCEs induced in vitro. However, we used 7 chemical mutagens to induce both chromatid breaks and SCEs in "harlequin" chromosomes of cultured rat and Chinese hamster ovary (CHO) cells and found that 25% of the 914 breaks scored were associated with SCEs. The proportion of breaks accompanied by SCEs is related to the overall SCE frequency and falls into the range predicted on the basis that breaks and SCEs occur independently. The reported association between sites for SCEs and aberrations also reflects secondary factors, such as induction of SCEs and aberrations during DNA synthesis in late replicating regions of the chromosomes.  相似文献   

4.
Dose dependencies of the induction of sister chromatid exchanges (SCEs) and chromosome aberrations were studied under in vivo exposure of mouse bone marrow cells to 5 alkylating agents. The efficacy of the induction of SCEs for all the substances was 20 to 60 times higher than that of the induction of chromosome aberrations. It was demonstrated that SCEs induced by chemical mutagens in vivo and in vitro are more sensitive tests than chromosome aberrations.  相似文献   

5.
Studies on the induction and persistence of ethylene oxide (EO) induced chromosomal alterations in rat bone-marrow cells and splenocytes following in vivo exposure were carried out. Rats were exposed to ethylene oxide either chronically by inhalation (50-200ppm, 4 weeks, 5 days/week, 6h/day) or acutely by intraperitoneal injection (i.p.) at dose levels of 50-100ppm.Spontaneous- and induced-frequencies of micronuclei (MN), sister-chromatid exchanges (SCEs) and chromosomal aberrations were determined in rat bone-marrow cells, and in splenocytes following in vitro mitogen stimulation. Unstable chromosomal aberrations were studied in whole genome using standard Giemsa staining technique and fluorescence in situ hybridisation using probe for chromosome #2 was employed to detect chromosome translocations.Following chronic exposure, the cytogenetic analyses were carried out at days 5 and 21 in rat splenocytes, to study the induction and persistence of sister-chromatid exchanges. Following chronic exposure, ethylene oxide was effective in inducing SCEs, and markedly cells with high frequency SCEs were observed and they in-part persisted until day 21 post-exposure. However, no significant effect was observed in rat splenocytes for induction of MN and chromosomal aberrations. Following acute exposure, both SCEs and MN were increased significantly in rat bone-marrow cells as well as splenocytes.In conclusion, this study indicates that ethylene oxide at the concentrations employed by intraperitoneal injection or inhalation in adult rats is mutagenic and can induce both SCEs and MN.  相似文献   

6.
Butylated hydroxytoluene (BHT) is an effective, widely used, low cost antioxidant. A host of studies examining the potential of BHT to cause point mutations have been published. They include in vitro studies on various bacterial species and strains and on various types of mammalian cell lines as well as in vivo studies on Drosophila melanogaster, silk worms and also the mouse specific locus test (involving long-term exposure). Together these studies convincingly show the absence of a potential for BHT to cause point mutations. A great number of studies on many cell types and species have also been carried out to examine the potential of BHT to cause chromosome aberrations. In vitro studies have been published using plant cells and the WI-38, CHL, CHO, and V79 mammalian cell lines. In vivo studies have been carried out on somatic and/or germ cells of Drosophila melanogaster, rats and mice. Nearly all studies, especially those using validated test systems, indicate that BHT lacks clastogenic potential. In vitro studies on bacterial, yeast and various mammalian cell lines including DON, CHO, CHL cells and primary hepatocytes demonstrate the absence of interactions with or damage to DNA. Taking all the existing data into account, the weight of evidence suggests that BHT does not represent a relevant mutagenic/genotoxic risk to man.  相似文献   

7.
Mechanisms in metal genotoxicity: the significance of in vitro approaches   总被引:2,自引:0,他引:2  
A Léonard 《Mutation research》1988,198(2):321-326
A survey of the literature published on the ability of metal salts to produce, in vitro, gene mutations, structural chromosome aberrations, sister-chromatid exchanges, to interfere with the chromosome distribution or to induce mammalian cell transformation demonstrates that the carcinogenicity of inorganic compounds is clearly associated with their genotoxicity. The induction of structural aberrations, SCEs and forward gene mutations represents the most sensitive and specific assay to assess the carcinogenic potential of metal salts.  相似文献   

8.
The induction of chromosome aberrations, micronuclei and SCEs was studied in hepatocytes of F344 rats exposed in vivo to hepatocarcinogens. Hepatocytes were isolated and allowed to proliferate in Williams' medium E supplemented with epidermal growth factor. Cells were fixed after a culture period of 48 h. Oral administration of dimethylnitrosamine at doses of 2.5-20 mg/kg body weight (bw) induced (1) chromosome aberrations in up to 27% of the metaphase cells 2-48 h after its administration, (2) SCEs with a frequency of up to 0.9 per chromosome 2-48 h after its administration, and (3) micronuclei in up to 2.9% of the cells 16-48 h after its administration. Oral administration of 2-acetylaminofluorene at doses of 6.25-200 mg/kg bw induced (1) chromosome aberrations in up to 35% of the metaphase cells after 2-48 h, (2) SCEs at up to 0.9 per chromosome and (3) micronuclei in up to 2.5% of the cells with a maximum after 4 h. Oral administration of CCl4, a non-genotoxic hepatocarcinogen, at a dose of 1600 mg/kg bw did not induce chromosome aberrations, SCEs or micronuclei within 4-72 h. Intraperitoneal injections of Trp-P-1, Glu-P-1, MeIQx, IQ and nitro-IQ resulted in chromosome aberrations in up to 16% of the metaphase cells and SCEs at up to 0.9 per chromosome, while injections of Trp-P-2 and Glu-P-2 produced SCEs at up to 0.7 and 1.1 per chromosome, respectively. The present method of in vivo cytogenetic assay using rats without partial hepatectomy or mitogen treatment in vivo should be useful for evaluating the tumor-initiating activities of hepatocarcinogens.  相似文献   

9.
The incidence of Sister-Chromatid Exchanges (SCEs) due to beta-radiation was investigated in cultured human lymphocytes using the BrdU/Giemsa technique. Cultures treated continuously with 0.001 and 0.01 microCi of [3H]uridine showed no increase in either chromosome abnormalities or SCEs. Continuous treatment with 0.1 microCi resulted in a significant increase in chromosome aberrations but no increase in SCEs, while treatment with 0.2 microCi gave both an increase in chromosome aberrations and SCEs. Cultures given a 4-h pulse with 1.0 microCi showed a significant increase in both SCEs and chromosome aberrations. The results indicate that low levels of beta-radiation do not cause an increase in SCEs in human lymphocytes, and, that a number, if not all the exchanges observed at low levels of beta-radiation with autoradiography, may be spontaneous events.  相似文献   

10.
《Mutation Research Letters》1994,323(1-2):69-74
Ascorbingen, which occurs naturally in the human diet, and a synthetic analogue (1′-methylascorbigen), were assayed for cytotoxic and clastogenic activities in a SV40-transformed Indian Muntjac cell line (SVM), and for mutagenic activity in the Ames test using Salmonella typhimurium strains TA98 and TA100. Ascorbigen had no effect upon the clonal survival of SVM at concentrations below 0.21 mg/ml and did not induce either chromosome aberrations or sister-chromatid exchanges (SCEs) at any concentration tested up to the maximum compatible with the assay conditions; nor did it induce mutations in either Salmonella strain. In contrast, 1′-methylascorbigen was an order of magnitude more cytotoxic, demonstrating a Dq of 0.03 mg/ml, and whilst it too was not found to induce chromosome aberrations it did induce SCEs in SVM (although only at higly cytotoxic doses) and mutations in the Ames test.  相似文献   

11.
Cytogenetical consequences of high oxygen pressure action (HOB) have been studied in professional and nonprofessional divers after deepening. Blood samples of subject from both groups were treated with HBO in vitro to compare individual reaction of the somatic cells genome to HOB. The present study reveals that HBO increases the level of chromosome aberrations, and individual response to HBO differs. There is a correlation between the level of chromosome aberrations in vivo and in vitro. This indicates that blood treatment in vitro can reveal the sensitivity of the genome in human before HBO treatment. According to the data in vitro 2 groups of the genome response to HBO: up to 20% and higher than 20% aberrations are distinguished.  相似文献   

12.
Peroxyacetyl nitrate (PAN) is one of a class of common air pollutant formed by the action of sunlight on volatile organic compounds and nitrogen oxides. PAN has been shown to be a bacterial mutagen. To determine if PAN can cause DNA damage in mammalian cells, we exposed murine peripheral blood lymphocytes (PBLs) to various volumes of PAN in vitro and analyzed the cells for chromosome aberrations (CAs), sister chromatid exchanges (SCEs), and DNA damage using the single cell gel (SCG) assay. At in vitro concentrations of PAN that were cytotoxic (inhibited cell division), an increase in DNA damage was noted in the SCG assay. At lower exposure levels that permitted cell division, no increases in SCEs, CAs, or DNA damage were evident. For in vivo studies, male mice were exposed nose-only by inhalation for 1 h to 0, 15, 39 or 78 ppm PAN, and their lung cells removed and cultured for the scoring of SCEs and CAs. In addition, PBLs and lung cells were analyzed by the SCG assay. No dose-related effects were found in any of the assays. These data indicate that PAN does not appear to be a potent clastogen or DNA damaging agent in mammalian cells in vivo or in vitro.  相似文献   

13.
Stability of genome is one of the evolutionary important trait of cells. Various mutations (gene, chromosomal, genomic) as well as artificial manipulations with genomes (inbreeding, DNA transfection, introduction of Br-DU in DNA) cause the genetic instability. Ionizing radiation is known as the factor which induced instability of genome in late mitotic descendants of cells after in vitro and in vivo exposure. Radiation induced genetic instability can be transmitted through germline cells. On the cell level both types of radiation induced genomic instability are manifested in elevated frequency of mutations, chromosome aberrations, micronuclei, increased radiosensitivity, disappearance of adaptive response, changes in gene expression. In studies of 1970-1980 years clear evidences on the different morphological and functional injuries in tissues of irradiated organisms as well as in tissues of the progeny of exposed parents were obtained. On the organism level the instability of mitotic and of meiotic progeny of irradiated cells is resulted in increased risk of cancer and of other somatic diseases. It seems to be useful to review the earlier radiobiology literature where delayed and transgenerational effects of ionizing radiation on tissues and on organisms level were clearly shown in animals. For the estimation of pathogenic role of radiation induced genomic instability in humans, particularly in children of exposed parents the parallel study of the same human cohorts using clinical parameters and various characteristic of genomic instability seems to be very important.  相似文献   

14.
A group of 21 workers occupationally exposed to vinyl chloride and 6 controls were examined for the presence of chromosomal aberrations or sisterchromatid exchanges in their peripheral lymphocytes. These people comprised a second sampling from a group of exposed workers and controls first examined 18 months earlier. The vinyl chloride exposed workers showed levels of chromosomal aberrations elevated above those of the controls, but there was only a slight increase in sister-chromatid exchanges (per cell or per chromosome) and this increase was not statistically significant. Sister-chromatid exchanges (SCEs) were also examined from in vitro cultures of lymphocytes exposed in G0/early G1 and late G1/early S phase to vinyl chloride, both with and without metabolic activation. There was no increase in SCEs in vitro without metabolic activation but there was a marked increase with metabolic activation and this increase was shown to be independent of cell-cylce phase. It thus was apparent that the small increases of SCEs in workers were not due to the inability of vinyl chloride to induce SCEs in human lymphocytes but were probably because of low exposures and SCE levels could have returned to normal relatively quickly after exposure. The present study suggested that the analysis of longer-living conventional chromosomal aberrations appeared to be a more sensitive monitor of exposure to vinyl chloride in exposed workers than the estimation of SCEs; however, it should be noted that in a 3rd sampling taken 24 months later the exposed workers had chromosomal aberration levels similar to the controls.  相似文献   

15.
A new synthesized acridine derivative, 3,6-diamino-10-methyl-9, 10-dihydroacridine (AcrH), was tested for in vitro reverse mutations with Salmonella TA strains, chromosome aberrations and sister chromatid exchanges (SCE) in human lymphocytes, and for in vivo chromosome aberrations in bone marrow of mice. Using the classic plate incorporation method, mutagenicity of AcrH in bacterial cells (TA97a, TA98, TA100 and TA102) was observed in the experiments performed with, and without, rat liver S9 metabolic activation. The reverse mutation assay showed no difference in mutagenic activity between AcrH and acriflavine (Acr(+)) in the test with TA97. The results of in vitro chromosome aberrations assay revealed potential clastogenicity. The test using macroculture of human lymphocytes induced mainly chromatid gaps. The experiments with human lymphocytes revealed SCE-inducing effect of AcrH and Acr(+). In an in vivo study, AcrH given intraperitoneally to Balb/c mice did not cause any significant increase in the percentage of cells with aberrations compared to the negative control.  相似文献   

16.
The compound N-methyl-amino-2-nitro-4-N', N'-bis(2-hydroxyethyl)-aminobenzene was tested for mutagenic activity in the sex-linked recessive lethal test with Drosophila melanogaster, the induction of chromosomal aberrations and sister-chromatid exchanges (SCEs) with Chinese hamster ovary (CHO) cells in vitro, and the micronucleus test with mouse bone-marrow cells in vivo. Consistently negative results were obtained with the 3 tests. The SCE tests gave positive results with prolonged treatments. It is concluded that reliable decisions about mutagenic activity cannot be based on the induction, in vitro, of SCEs alone.  相似文献   

17.
'Gudakhu' is a paste-like tobacco preparation used widely in Orissa and neighbouring states of India. During use it is rubbed over the teeth and gum with a finger tip. Besides tobacco, it contains molasses, lime, red soil and water. The genotoxic potential of acetone extract of gudakhu was evaluated in mice in vivo using the chromosome aberration assay, micronucleus test and SCE analysis following single as well as long-term repeated treatment. The animals received an aqueous suspension of the extract via the oral route. Gudakhu extract induced significantly high frequencies, compared to controls, of chromosome aberrations, micronuclei (MN) and SCEs. Single treatment with different doses clearly revealed a distinct dose-dependent increase of the effects in all the assays. Analysis of MN in regenerated hepatocytes also indicated a significant positive correlation between time-course of chronic treatment and frequencies of micronucleated cells. But incidences of chromosome aberrations, MN and SCEs in bone marrow cells following repeated treatment for different periods did not differ greatly from each other; and these repeated treatment data, particularly in the MNT in bone marrow cells and the SCE assay, also did not differ markedly from the respective single treatment data for the same dose. This was probably due to the proliferative nature of the bone marrow cells.  相似文献   

18.
Effects of vanillin on the induction of sister-chromatid exchanges (SCEs) and structural chromosome aberrations by mitomycin C (MMC) were investigated in cultured Chinese hamster ovary cells. Vanillin induced neither SCEs nor chromosome aberrations by itself. However, an obvious increase in the frequency of SCEs was observed when MMC-treated cells were cultured in the presence of vanillin. The effect of vanillin was S-phase-dependent. On the contrary, the frequency of cells with chromosome aberrations was significantly decreased by the post-treatment with vanillin at G2 phase.  相似文献   

19.
G Abel  O Schimmer 《Mutation research》1986,169(1-2):51-54
Heraclenin, a furocoumarin with an epoxide group in its side chain, was analyzed to see if it induced structural chromosome aberrations and sister-chromatid exchanges (SCEs) in human lymphocytes in vitro. The results were compared directly with those of imperatorin, which differs from heraclenin only in lacking an epoxide group. An equally strong clastogenic effect was found for both heraclenin and imperatorin: the number of metaphases with breaks was increased in both cases by approximately a factor of 6. Heraclenin produced a considerable dose-dependent increase in the SCE rate, i.e., by about 60 induced SCEs/metaphase, whereas imperatorin induced only about 4 SCEs/metaphase. The results are discussed with respect to the occurrence of structural aberrations, which are primarily due to the basic furocoumarin structure itself, whereas the large increase in the SCE rate produced by heraclenin is most probably significantly influenced by its epoxide group.  相似文献   

20.
In vivo cytogenetic effects of cooked food mutagens   总被引:3,自引:0,他引:3  
Using a variety of in vivo cytogenetic endpoints, we have investigated the effects of several compounds formed during the cooking of meat. C57Bl/6 mice were used to test for an increase in the frequency of sister-chromatid exchanges (SCEs), chromosomal aberrations, and micronucleated erythrocytes by 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx). 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). MeIQx and DiMeIQx did not induce SCEs in mouse bone marrow cells. PhIP induced sister-chromatid exchanges, but not chromosomal aberrations in bone marrow. In peripheral blood lymphocytes, PhIP did induce aberrations at 100 mg/kg, the highest dose tested. PhIP induced a low but significantly increased frequency of micronuclei in normochromatic but not polychromatic erythrocytes in bone marrow and peripheral blood. However, dose responses were not observed. With the exception of the SCEs induced by PhIP, these results contrast with observations made in vitro, where these compounds were found to have significant genotoxicity in mammalian cells and a very high mutation frequency in prokaryotic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号