首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fens are widely distributed wetlands worldwide and provide vital habitat for plant and animal species in mountainous regions. Alpine fens are rare in the Rocky Mountains and concentrated in the San Juan Mountains where broad regions at high elevation have relatively level topography and suitable climate to favor peat accumulation. Studies of montane and boreal peatlands have identified water chemistry as a main driver of vegetation composition. This study investigated whether similar drivers of vegetation composition are important for alpine and subalpine fens in the San Juan Mountains of Colorado, USA. Water chemistry variables were most important in structuring subalpine and alpine fen vegetation. However, these variables explained considerably less variation in alpine than subalpine fen vegetation. In addition, lower variance of water chemistry in alpine fens did not lead to lower beta diversity of vegetation in alpine than in subalpine fens. Although alpine and subalpine fen vegetation supports similar beta diversity, key differences occur in the environmental drivers of their vegetation composition.  相似文献   

2.
We fill a gap in understanding wetland vegetation diversity and relationship with environmental determinants in Bulgarian high mountains. A total of 615 phytosociological samples were taken from springs, mires, wet meadows and tall-forb habitats throughout Bulgaria, of which 234 relevés are from mire and spring vegetation above timberline. The vegetation was classified by TWINSPAN and the resulting vegetation types were reproduced by the formal definitions using the combination of Cocktail species groups based on phi-coefficient of joint co-occurrence of the species. Nine vegetation types of springs and fens have been clearly delimited above the timberline. All vegetation types include Balkan endemic species, the representation of which varies. Fens generally harbour more Balkan endemics than do springs, with the exception of species-poor high-altitude Drepanocladetum exannulati. The gradient structure of the vegetation was revealed by DCA and by CCA with forward selection of environmental factors. The major determinants of vegetation variation strongly differ above and below the timberline and likewise between springs and fens. The base-richness gradient controls the floristic variation of Bulgarian submontane fens, whereas the complete data set including both submontane and subalpine fens is governed by the altitude gradient from lowland and basin fens to subalpine fens rich in Balkan endemics. When focusing on sites above the timberline only, the first DCA axis separates fens from springs without organic matter. The major species turnover in springs follows the variation in water pH and mineral content in water, whereas fen vegetation variation is primarily controlled by succession gradient of peat accumulation. Altitude remains an important factor in all cases. Weak correlation between water pH and conductivity was found. This correlation was even statistically insignificant in fens above the timberline. Water pH is not influenced by mineral richness in Bulgarian high mountains, since it is buffered by decomposition of organic matter in fens. In springs, pH reaches maximum values due to strong aeration caused by water flow. The plant species richness decreases significantly with increasing altitude. The increase of species richness towards circumneutral pH, often found in mires, was not confirmed in Bulgarian high mountains. The correlation between species richness and pH was significant only when arctic-alpine species and allied European high-mountain species were considered separately. The richness of boreal species was independent on pH. Some of them had their optima shifted to more acidic fens as compared to regions below the timberline. Our results suggest that subalpine spring and fen vegetation should be analysed separately with respect to vegetation-environment correlations. Separate analysis of fens below and above timberline is quite appropriate.  相似文献   

3.
South Park is a high‐elevation, semi‐arid, treeless intermountain basin in central Colorado. A few extreme rich fens occur on the western margin and in the center of South Park where regional and local groundwater flow systems discharge to the ground surface. Over the past 40 years there has been extensive peat mining in these fens, but restoration methods have yet to be developed and successfully applied. The first part of this study compared the naturally reestablished vegetation on six mined peatlands with six pristine sites, while the second part of the study tested different revegetation techniques in 27 plots with varying depths to the water table. The six mined sites had only 30 plant species as compared with 122 species in the unmined sites; 43% of the species in the mined sites were not present in the undisturbed fens. Even after 40 years the sedges and willows that dominate the undisturbed sites were largely absent on the mined sites. The revegetation experiments seeded eight species, transplanted Carex aquatilis (water sedge) seedlings, transplanted rhizomes from six species, and transplanted four species of willow cuttings. Of the eight species seeded, only Triglochin maritima (arrowgrass) germinated and established seedlings. C. aquatilis seedlings, rhizome transplants of C. aquatilis, Kobresia simpliciuscula (elk sedge), and Juncus arcticus (arctic rush), and willow cuttings all had differing patterns of survival with respect to the annual maximum height of the water table. These results indicate that the dominant species can be successfully reintroduced to mined surfaces with the appropriate hydrologic conditions, but human intervention will be necessary to rapidly re‐establish these species. The slow rate of peat accumulation means that restoration of the mined fens will require hundreds, if not thousands, of years.  相似文献   

4.
Seven bryophyte and three vascular plant community types were described from eight small fens in the Vechtplassen area (prov. of Utrecht, the Netherlands). Clear relationships between the species composition of the bryophyte and vascular plant layer were found. The bryophyte species composition shows a gradual change from quaking fens dominated by Calliergon cordifolium to fens dominated by several species of Sphagnum . Fens dominated by C. cordifolium have relatively high pH and conductivity values and are strongly quaking, whereas fens dominated by Sphagnum have relatively low pH and conductivity values and the peat layer is continuous down to the bottom sediment. A comparison of the present-day vegetation with an earlier successional scheme for this vegetation type (Segal 1966) indicates a raise in nutrient levels and a decrease in the amount of seepage water welling up at the sites, both due to human activities. We suggest that in early successional phases bryophytes react faster to these changes, whereas in later phases vascular plants react faster.  相似文献   

5.
The historical development of the hydroseral vegetation of three humic lakes was studied. We applied a combination of methods to reconstruct the past vegetation (plant macroscopic remains, peat decomposition, sediment chemistry and radiocarbon dating). The contemporary environment of these lakes was assessed by vegetation and water chemistry analyses. The oldest foreshore sediments were formed 13075–12700 cal BP (Lake Suchar VI), 10115–9670 cal BP (Lake Suchar III) and 8747–8479 cal BP (Lake Widne). The differences in contemporary vegetation are reflected in the subfossil plant assemblages. From the beginning, poor fens and bogs occurred beside Lake Suchar III, moderately rich and poor fens were developed at Lake Suchar VI, while reedswamps and moderately rich fens occurred at Lake Widne. The foreshore vegetation changed over time but only within a restricted range, specific for each lake corresponding to the hydrochemical differences between the lakes. Lakes are classified as humic if some features are combined, such as the specific vegetation and water parameters. However, over the past few decades escalating climatic and anthropogenic changes could transform the character of these water bodies. The application of multidisciplinary methods permitted comparison of the development of three apparently similar lakes and identification of significant ecological differences.  相似文献   

6.
In the Netherlands, fens that are fed by polluted river water are often eutrophic, whereas fens fed by calcium-rich groundwater often are mesotrophic. Differences in trophic status can not always be attributed to differences in the nutrient load of the water. In this paper we try to determine if the inflow of river water in fens, in fact, accelerates the soil nutrient release, thereby creating more eutrophic conditions (‘internal eutrophication’). For this purpose, we compared nutrient release rates (N, P and K) in soil cores fromSphagnum peat andCarex peat saturated with different media, that were artificially created to mimic the three basic water sources: polluted river water, unpolluted calcium-rich groundwater and rainwater. In addition, we studied the effect of temperature and water level on nutrient release rates. The experiments proved thatSphagnum peat released much more P and ammonium thanCarex peat. The strong site effect proved consistent throughout the water chemistry treatments, which indicates that soil quality may be the most important agent determining nutrient release rates. Nevertheless, it was established that water chemistry and water level are of significant influence on nutrient release rates in peat soils. In particular, river water stimulated P release by the peat, most notably in theSphagnum peat. P-release in both soils was only minor when the soils were incubated in clean Ca-rich groundwater. It is suggested that P release is strongly associated with soil chemical processes, and that high P release rates after incubation in river water are due to the high sulphate content of the water. The net release from the soil of ammonium, potassium and phosphate increased with increasing temperature. A freezing treatment significantly increased nutrient availability. The results of the experiments are examined in the context of hydrologic management strategies for the conservation of fens in agricultural landscapes.  相似文献   

7.
Wetlands are the largest natural source of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 instantaneous measurements from 71 wetland sites located across subtropical, temperate, and northern high latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature, water table, and vegetation, but also show that these relationships are modified depending on wetland type (bog, fen, or swamp), region (subarctic to temperate), and disturbance. Fen methane flux was more sensitive to vegetation and less sensitive to temperature than bog or swamp fluxes. The optimal water table for methane flux was consistently below the peat surface in bogs, close to the peat surface in poor fens, and above the peat surface in rich fens. However, the largest flux in bogs occurred when dry 30‐day averaged antecedent conditions were followed by wet conditions, while in fens and swamps, the largest flux occurred when both 30‐day averaged antecedent and current conditions were wet. Drained wetlands exhibited distinct characteristics, e.g. the absence of large flux following wet and warm conditions, suggesting that the same functional relationships between methane flux and environmental conditions cannot be used across pristine and disturbed wetlands. Together, our results suggest that water table and temperature are dominant controls on methane flux in pristine bogs and swamps, while other processes, such as vascular transport in pristine fens, have the potential to partially override the effect of these controls in other wetland types. Because wetland types vary in methane emissions and have distinct controls, these ecosystems need to be considered separately to yield reliable estimates of global wetland methane release.  相似文献   

8.
Pig disturbances are recognized as key factors influencing the structure of ecosystems. Cage-free domestic pig (Sus scrofa domestica) searching for food by uprooting vegetation is emerging as a threat to wetlands located in Qinghai-Tibet Plateau. As a unique and fragile ecosystem, the ecological impacts of pig uprooting (PR) here remain unclear. Here, we examined vegetation and soil properties under PR in the meadows of a plateau wetland, Napahai. Quadrat surveys and sampling were taken during the late growing season (September) of 2014 at three sites: one was seasonally flooded (wet meadow) and the other two were unflooded (dry meadows). Compared to controls (pig-undisturbed patches), plant biomass and density decreased (p < 0.001), while soil bulk density increased (p < 0.05) for all sites under PR. In addition, divergent responses to pig disturbances were observed in different sites. In the wet meadow, PR caused a shift in vegetation from Blysmus sinocompyessus, a dominant perennial herb towards the annual hydrophyte Polygonum hydropiper. In the two dry meadows, the dominant species remained unchanged, but nutrients stored in soils were severely reduced by PR, accelerating the soil impoverishment when compared to the wet meadow. Overall, PR impacts on local ecosystems are largely dependent on the moisture characteristics of micro-habitats, and proper management should be taken to counteract ecosystem degradation, especially in dry meadows.  相似文献   

9.
Question: Recognizing water table dynamics in wetlands is crucial for understanding species‐environment relationships, ecosystem function and changes during restoration. The PVC tape discolouration method enables spatially and temporally extensive studies of reductive conditions associated with long‐term water table dynamics in peat soils. The reliability of the method has been verified only for ombrotrophic bogs, even though wide usage can be expected in minerotrophic fens. Location: T?reboň basin, Czech Republic. Methods: Using data from 49 plots in six poor and moderately rich fens, we correlated the directly measured lowest, highest and mean water table depths and the same variables indicated by discolouration of PVC tape attached to green bamboo stakes installed vertically in the soil profile. Results: The depth to the first sign of PVC discolouration was highly correlated with the directly measured position of the highest water table, the correlation between the depth of complete discolouration and the directly measured position of the lowest water table was poorer. The accuracy of the minimum water table measurement depended on the depth of the peat layer. Surprisingly, the depth at which the green bamboo stakes turned brown correlated highly with the minimum water table. Conclusions: The PVC tape discolouration method reliably indicates water table maxima in fens, but minima are not accurately indicated. The depth of the green bamboo discolouration is suggested as a new alternative indicator of the minimum water table, even in fens and mineral soils. Combining both methods enables efficient monitoring of water table dynamics at a large number of mire sites.  相似文献   

10.
Fens in Central Europe are characterised by waterlogged organic substrate and low productivity. Human-induced changes due to drainage and mowing lead to changes in plant species composition from natural fen communities to fen meadows and later to over-drained, degraded meadows. Moderate drainage leads to increased vegetation productivity, and severe drainage results in frequent soil disturbances and less plant growth. In the present article, we analyse changes in plant trait combinations in the vegetation and the soil seed bank as well as changes in the seed bank types along gradient of drainage intensity. We hypothesize that an increase in productivity enhances traits related to persistence and that frequent disturbance selects for regeneration traits. We use multivariate statistics to analyse data from three disturbance levels: undisturbed fen, slightly drained fen meadow and severely drained degraded meadow. We found that the abundance of plants regenerating from seeds and accumulating persistent seed banks was increasing with degradation level, while plants reproducing vegetatively were gradually eliminated along the same trajectory. Plants with strong resprouting abilities increased during degradation. We also found that shifts in trait combinations were similar in the aboveground vegetation and in soil seed banks. We found that the density of short-term persistent seeds in the soil is highest in fen meadows and the density of long-term persistent seeds is highest in degraded meadows. The increase in abundance of species with strong regeneration traits at the cost of species with persistence-related traits has negative consequences for the restoration prospects of severely degraded sites.  相似文献   

11.
12.
Following a summer drought, intact cores of peat soil from two cool temperate peatlands (a rain-fed bog and a groundwater-fed swamp) were exposed experimentally to three different water table levels. The goal was to examine recovery of anaerobic methanogenesis and to evaluate peat soil decomposition to methane (CH4), carbon dioxide (CO2), and dissolved organic carbon (DOC) upon rewetting. Methane emission from soils to the atmosphere was greatest (mean = 80 μmol m?2 s?1) when the entire peat core was rewetted quickly; emission was negligible at low water level and when peat cores were rewetted gradually. Rates of CO2 emission (mean = 1.0 μmol m?2 s?1) were relatively insensitive to water level. Concentrations of CH4 in soil air spaces suggest that onset of methanogenesis induces, but later represses, aerobic oxidation of CH4 above the water table. Concentrations of CO2 suggest production at the soil surface of swamp peat versus at greater depths in bog peat. Portions of peat soil incubated in vitro without oxygen (O2) exhibited a lag before the onset of methanogenesis, and the lag time was less in peat from the cores rewetted quickly. The inhibition of methanogenesis by the selective inhibitor 2-bromoethanesulfonic acid (BES) decreased CO2 production by 20 to 30% but resulted in an increase in concentrations of DOC by 2 to 5 times. The results show that methanogens in peat soils tolerate moderate drought, and recovery varies among different peat types. In peat soils, the inhibition of methanogenesis might enhance DOC availability.  相似文献   

13.
Fens and concomitantly the associated species assemblages have undergone dramatic declines in recent decades. Given that many remaining or restored fens are currently lying fallow, an important question is which management regime, if any, is most effective in preserving fen biodiversity. Against this background we here investigate the effects of five management regimes (intensive grassland, moist meadows, summer harvested sites, winter harvested sites, fallows) on three insect taxa (butterflies, grasshoppers, carabid beetles) in riverine fens in north-eastern Germany. Butterflies and grasshoppers showed highest species numbers, diversity and numbers of threatened species on moist meadows and were detrimentally affected by high vegetation. In contrast, ground dwelling carabid beetles were less strongly affected by different management regimes, but responded very sensitive to drainage. Winter harvested sites and fallows seemed to be particularly beneficial to carabid beetles. Overall, drained, intensive grassland was not suitable for preserving fen-specific communities, while extensively managed moist meadows harboured overall the highest numbers of threatened species. We conclude that in terms of management maintaining high water tables is most important. Furthermore, some management seems necessary to maintain stands with lower vegetation turf for associated species. However, care is needed to also maintain fallows and to consider the specific demands of some highly endangered, management-sensitive species.  相似文献   

14.
Recent salt marsh and barrier island restoration efforts in the northern Gulf of Mexico have focused on optimizing self-sustaining attributes of restored marshes to provide maximum habitat value and storm protection to vulnerable coastal communities. Salt marshes in this region are dominated by Spartina alterniflora and Avicennia germinans, two species that are valued for their ability to stabilize soils in intertidal salt marshes. We conducted a controlled greenhouse study to investigate the influences of substrate type, nutrient level, and marsh elevation on the growth and biomass allocation of S. alterniflora and A. germinans, and the consequent effects on soil development and stability. S. alterniflora exhibited optimal growth and survival at the lowest elevation (? 15 cm below the water surface) and was sensitive to high soil salinities at higher elevations (+ 15 cm above the water surface). A. germinans performed best at intermediate elevations but was negatively affected by prolonged inundation at lower elevations. We found that although there was not a strong effect of substrate type on plant growth, the development of stressful conditions due to the use of suboptimal materials would likely be exacerbated by placing the soil at extreme elevations. Soil shear strength was significantly higher in experimental units containing either S. alterniflora or A. germinans compared to unvegetated soils, suggesting that plants effectively contribute to soil strength in newly placed soils of restored marshes. As marsh vegetation plays a critical role in stabilizing shorelines, salt marsh restoration efforts in the northern Gulf of Mexico and other storm impacted coasts should be designed at optimal elevations to facilitate the establishment and growth of key marsh species.  相似文献   

15.
This study clarifies the area distribution of Estonian peat soils by three factors: main peat soil groups, peat thickness and peat decomposition degree. A digital soil map (1:10,000) and supplementary database were used for summarizing the distribution of peat soils. From the combined database with 859,701 polygons the soil mapping unit code, formula of soil texture (including peat) and formula of epipedon fabric were compiled using the MapInfo software. Peat soils form altogether 10,038 km2 or 23.5% of the total Estonian soil cover. From the peat soils the fen soils form 59.0%, bog soils 21.7% and transitional bog soils 14.7%. 45% of peat soils are well, 26% moderately and 29% slightly decomposed, by the peat thickness 13% are very shallow, 21% shallow and 66% thick. The general ecological characterization of peat soils and their mutual relationship with plant cover are given for the main peat soil taxa. The dominant natural ecosystems formed on peatlands are: (1) mixed birch, alder, spruce and pine forests on thin (<100 cm) well decomposed eutrophic fen soils, and (2) a sparse pine forests and hummock-ridge-hollow raised bogs wooded sparsely by pine on thick (>100 cm) slightly decomposed oligotrophic bog soils. The accumulation of organic carbon in peatlands soil cover (0–50 cm) totals 269.4±12.7 Tg and in epipedon layer (as superficial part of soil cover; 0–30 cm) 129.9±5.8 Tg. The former is sequestrated into 543.7 Tg of peat, which forms 22.9% of the total Estonian peat resources (2.37 Pg).  相似文献   

16.
Dynamic hydrochemical and vegetation gradients in fens   总被引:1,自引:0,他引:1  
The mixing of groundwater, river water and precipitation was studied in a discharge and a recharge fen in the Vechtplassen area, the Netherlands. The aim of the study was to characterize relationships between vegetation in fens, the chemical composition of the fen water, and the hydrologic regimes. We were particularly interested in the influence of polluted water from the river Vecht on vegetation and nutrient dynamics. Analyses were made for Ionic Ratio (IR = 2[Ca]/(2[Ca] + [Cl]), molar concentrations) and Electrical Conductivity (EC), all indices of the relative importance of each of the three main water sources: groundwater, river water and precipitation.During winter, water in the discharge fen was strongly influenced by calcium-rich groundwater (high IR, moderate EC), while the recharge fen was entirely fed by precipitation (low IR and EC). During summer, river water with a moderate IR and high EC infiltrated the fens and caused a dramatic change in the chemical composition of the fen water. In the discharge fen, infiltration occurred predominantly as sheetflow, causing inundation of the entire fen surface. River water infiltration affected the surface peat of this fen more severely than deeper peat layers. Spatial variation in water chemistry along the transect was small, and only one type of plant community was found. In the recharge fen, river water infiltration occurred in subsurface water, and rainwater that had accumulated during the winter persisted in the central parts of the fen. Gradients in fen water chemistry were correlated with the observed distribution of three plant associations. Differences in water chemistry could also be attributed to intra-site variation in the relative importance of the three water sources. In both fens, there was considerable temporal variation in the chemical composition of the fen water, clearly related to dynamics of the hydrologic regime, particularly infiltration of river water. There are indications that characteristic mesotraphent fen plant communities are negatively affected by water from the river Vecht. River water supply should therefore be avoided as much as possible if these fen plant communities are to be maintained.  相似文献   

17.
In a typical Dutch polder landscape the effects of nutrient transport from cultivated grassland to mesotrophic fen communities were studied. In a comparative approach, biomass production and nutrient (N, P and K) uptake were determined monthly in four fens and a hayfield differeing in productivity and species composition. The interstitial ground water was sampled every two weeks for determinations of inorganic nutrient concentrations.The differences in productivity between the fens were clearly reflected in the amount of N, P and K taken up in the above-ground vegetation. N and P proved to be limiting plant growth in the fens, whereas K was the main limiting factor in the hayfield. The ground water welling up from the sandy bottom into the fens proved to be rich in ammonia (3–5 ppm). There are strong indications that this continual seepage leads to a considerable input of N into the fens but not to a higher productivity, as the ammonia is absorbed by the lowermost peat layers covering the sand.At this moment, the differences in productivity between the fens must be caused by differences in the rates of mineralization of the superficial peat layer. The degree of fixation of the floating vegetation mat, determining whether or not low water levels lead to an aerated soil top layer, is important in this respect. Within a period of decades, however, the continuous inflow of ammonia may eventually cause an increase in the productivity and a change in the species composition of the fens.  相似文献   

18.
Abstract. Plant species-rich Calthion meadows on mesotrophic fen peat soil extensively cut for hay are among the endangered semi-natural vegetation types in northwestern Europe. They are often badly affected by lowering the groundwater table (drainage) and fertilization. In a comparative study of an undrained site with a Calthion meadow and an adjacent drained site, availability of N, P and K was biologically assessed under field conditions (for two years) as well as in a greenhouse (for 18 weeks) by measuring shoot responsiveness. Also, experimental wetting of intact turf samples taken from both sites was applied in order to study the interaction between nutrient supply and anaerobic soil conditions. It was concluded that the above-ground phytomass yield in the undrained site was restricted by a major shortage of N-supply and a moderate shortage of K-supply by the fen peat soil. The above-ground phytomass yield of the drained site was only reduced by a strongly limited supply of K by the soil. The extent of K-deficiency was larger for the drained site. No P-deficiency was observed in any of the drained or undrained sites. Rewetting turf samples, taken from the drained site, did not change above-ground phytomass yields, suggesting that nutrient supplies were not affected by rewetting. Leaching has likely resulted in a strong reduction of K-supply in the drained site. It is assumed that a shortage in K-supply from the peat soil may have become an important environmental constraint for characteristic plant species of Calthion meadows. This may hamper the development of this meadow type on drained peat soils after rewetting by groundwater discharge.  相似文献   

19.
Brown moss-dominated rich fens are characterized by minerotrophic conditions, in which calcium (Ca) and iron (Fe) concentrations show large variations. We examined the relative importance of Ca and Fe in relation to the occurrence of three typical brown moss species: Scorpidium scorpioides, Scorpidium cossonii, and Hamatocaulis vernicosus. Peat chemistry was examined in 24 stands of brown moss-dominated rich fens: 12 in the Netherlands and 12 in central Sweden. Ca and Fe turned out to be important drivers of brown moss composition. Fens dominated by Scorpidium scorpioides or Scorpidium cossonii were characterized by high pore water Ca-concentrations and total soil Ca-contents, but low P-availability. In these Ca-rich, but Fe-poor fens, foliar N:P ratios of vascular vegetation exceeded 20?g?g?1, indicating phosphorus (P)-limitation due to Ca-P precipitation or low P-sorption capacity due to low Fe-levels. In contrast, fens dominated by Hamatocaulis vernicosus were characterized by high pore water Fe-concentrations and total soil Fe-contents, but also relatively high P-availability. N:P ratios in these fens were below 13.5?g?g?1, indicating potential nitrogen (N)-limitation. We conclude that the relative roles of Ca and Fe, as related to the geohydrological conditions present, strongly determine the brown moss composition in rich fens through their differential effects on plant P-availability.  相似文献   

20.
Kooijman  A. M.  Cusell  C.  Hedenäs  L.  Lamers  L. P. M.  Mettrop  I. S.  Neijmeijer  T. 《Plant and Soil》2020,447(1-2):219-239
Aim

To further unravel P availability in mineral-rich fens, and test whether high Fe in the soil would lead to low P availability to the vegetation.

Methods

Mesotrophic fens were selected over gradients in Ca and Fe in central Sweden and the Netherlands, to study characteristics of vegetation, pore water and peat soil, including inorganic and organic forms of P, Fe and Al.

Results

Soil Fe was more important than region or soil Ca, and P availability to the vegetation increased from Fe-poor to Fe-rich fens. Contrary to expectations, precipitation of iron phosphates played a minor role in Fe-rich fens. Fe-rich fens were P-rich for three reasons: (1) high P sorption capacity, (2) relatively weak sorption to Fe-OM complexes and (3) high amounts of sorbed organic P, which probably consists of labile P. Also, nonmycorrhizal wetland plants probably especially take up weakly sorbed (organic) P. However, high P did not lead to high biomass or low plant diversity. Fe-rich fens were limited by other nutrients, and high P may help protect the vegetation against Fe-toxicity.

Conclusions

Fe-poor fens are P-poor, irrespective of Ca, and Fe-rich fens P-rich even under mesotrophic conditions. However, high P itself does not endanger Fe-rich fens.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号