首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Through non-genetic maternal effects, mothers can tailor offspring phenotype to the environment in which young will grow up. If juvenile and adult ecologies differ, the conditions mothers experienced as juveniles may better predict their offspring's environment than the adult environment of mothers. In this case maternal decisions about investment in offspring quality should already be determined during the juvenile phase of mothers. I tested this hypothesis by manipulating juvenile and adult maternal environments independently in a cichlid fish. Females raised in a poor environment produced larger young than females raised without food limitations, irrespective of the feeding conditions experienced during adulthood. This maternal boost was due to a higher investment in eggs and to faster larval growth. Apparently, mothers prepare their offspring for similar environmental conditions to those they encountered as juveniles. This explanation is supported by the distribution of these fishes under natural conditions. Juveniles live in a different and much narrower range of habitats than adults. Therefore, the habitat mothers experienced as juveniles will allow them to predict their offspring's environment better than the conditions in the adult home range.  相似文献   

2.
Rollinson N  Hutchings JA 《Oecologia》2011,166(4):889-898
Positive associations between maternal investment per offspring and maternal body size have been explained as adaptive responses by females to predictable, body size-specific maternal influences on the offspring’s environment. As a larger per-offspring investment increases maternal fitness when the quality of the offspring environment is low, optimal egg size may increase with maternal body size if larger mothers create relatively poor environments for their eggs or offspring. Here, we manipulate egg size and rearing environments (gravel size, nest depth) of Atlantic salmon (Salmo salar) in a 2 × 2 × 2 factorial experiment. We find that the incubation environment typical of large and small mothers can exert predictable effects on offspring phenotypes, but the nature of these effects provides little support to the prediction that smaller eggs are better suited to nest environments created by smaller females (and vice versa). Our data indicate that the magnitude and direction of phenotypic differences between small and large offspring vary among maternal nest environments, underscoring the point that removal of offspring from the environmental context in which they are provisioned in the wild can bias experimentally derived associations between offspring size and metrics of offspring fitness. The present study also contributes to a growing literature which suggests that the fitness consequences of egg size variation are often more pronounced during the early juvenile stage, as opposed to the egg or larval stage.  相似文献   

3.
A lack of parental care is generally assumed to entail substantial fitness costs for offspring that ultimately select for the maintenance of family life across generations. However, it is unknown whether these costs arise when parental care is facultative, thus questioning their fundamental importance in the early evolution of family life. Here, we investigated the short-term, long-term and transgenerational effects of maternal loss in the European earwig Forficula auricularia, an insect with facultative post-hatching maternal care. We showed that maternal loss did not influence the developmental time and survival rate of juveniles, but surprisingly yielded adults of larger body and forceps size, two traits associated with fitness benefits. In a cross-breeding/cross-fostering experiment, we then demonstrated that maternal loss impaired the expression of maternal care in adult offspring. Interestingly, the resulting transgenerational costs were not only mediated by the early-life experience of tending mothers, but also by inherited, parent-of-origin-specific effects expressed in juveniles. Orphaned females abandoned their juveniles for longer and fed them less than maternally-tended females, while foster mothers defended juveniles of orphaned females less well than juveniles of maternally-tended females. Overall, these findings reveal the key importance of transgenerational effects in the early evolution of family life.  相似文献   

4.
Habitat choice often has strong effects on performance and fitness. For many animals, optimal habitats differ across age or size classes, and individuals shift habitat use through ontogeny. Although many studies document ontogenetic habitat shifts for various taxa, most are observational and do not identify the causal factor of size‐specific habitat variation. Field observations of the brown anole lizard (Anolis sagrei) show that juveniles perch on shorter and thinner vegetation than adults. We hypothesized that this variation is due to adult males forcing smaller juveniles to less preferred habitat. To test this assertion, we manipulated adult male densities in mesh enclosures with artificial trees to examine the response of juvenile microhabitat choice. We found that adult male density had strong effects on juvenile perch height, perch width, and substrate use, suggesting that age‐class competition contributes to the observed ontogenetic differences in habitat choice. We also found that time of day significantly affected juvenile perch height and substrate use. In many cases, our results suggest that juveniles distance themselves from adults using different microhabitats from those used in our control ‘no‐adult’ treatment. However, these findings were often body size dependent and varied depending upon time of day. This study highlights the complexity of juvenile perching behavior and demonstrates the role of intraspecific interactions in shaping habitat use by juvenile animals.  相似文献   

5.
Maternal effects can have lasting fitness consequences for offspring, but these effects are often difficult to disentangle from associated responses in offspring traits. We studied persistent maternal effects on offspring survival in North American red squirrels (Tamiasciurus hudsonicus) by manipulating maternal nutrition without altering the post-emergent nutritional environment experienced by offspring. This was accomplished by providing supplemental food to reproductive females over winter and during reproduction, but removing the supplemental food from the system prior to juvenile emergence. We then monitored juvenile dispersal, settlement and survival from birth to 1 year of age. Juveniles from supplemented mothers experienced persistent and magnifying survival advantages over juveniles from control mothers long after supplemental food was removed. These maternal effects on survival persisted, despite no observable effect on traits normally associated with high offspring quality, such as body size, dispersal distance or territory quality. However, supplemented mothers did provide their juveniles an early start by breeding an average of 18 days earlier than control mothers, which may explain the persistent survival advantages their juveniles experienced.  相似文献   

6.
Abstract Evolutionary theory suggests that parental care is favoured by natural selection when the benefits to offspring fitness outweigh the costs of parental expenditure. The nature of such benefits may differ among species, however, especially in species reflecting independent evolutionary origins of parental care. Black rock skinks (Egernia saxatilis, Scincidae) of south‐eastern Australia are viviparous rock‐dwelling lizards with prolonged parent–offspring association; adult pairs vigorously defend their home range – and, when present, their offspring – against conspecifics. We addressed the hypothesis that, by remaining within their parents' (vigorously defended) home range, juveniles thereby obtain access to better‐quality habitats. Measurements of biologically significant variables (crevice size, sun exposure, vegetation cover) revealed little difference between shelter‐rocks used by solitary (‘orphan’) juveniles and those within family groups containing adults. Indeed, the only consistent differences involved larger (and therefore, less predator‐proof) crevices for juveniles within family groups than for solitary conspecifics. Our data thus falsify the hypothesis that parental care evolves because of benefits associated with habitat quality; instead, it appears that parental protection of juveniles against infanticidal conspecifics may be the most plausible benefit to parent–offspring association in this system.  相似文献   

7.
Juveniles' behaviors are often influenced by the behaviors of conspecifics. Most experimental studies of the influence of conspecific behavior vary the social environment by the presence or absence of conspecifics or investigate the impact of the outcome of social encounters (winner/loser effects) but less frequently expose individuals to variation in behavioral phenotypes present in the social environment. Based on previous work showing that juveniles of the salamander Plethodon cinereus are likely to interact frequently with non‐parental adults, I hypothesized that territorial adults in the social environment alter the future behaviors of juveniles. I measured the intracohort social behaviors of juvenile salamanders collected from two geographic areas, Michigan (MI) and Virginia (VA), before and after housing with ostensibly territorial (VA) or non‐territorial (MI) adults. There were overall effects of adult territoriality and aggression on the behavior of juveniles. However, juveniles from populations in MI were especially susceptible to behavioral modification. Compared with behaviors prior to being housed with adults, MI juveniles increased investigatory and escape behaviors in juvenile–juvenile interactions after being housed with adults that displayed territorial behaviors and decreased investigatory and escape behaviors after being housed with non‐territorial adults. This study shows that not only is a specific behavior, territoriality of adult salamanders, a social environment that modifies future juvenile behaviors, but the effects of social environment may differ between populations.  相似文献   

8.
After reproducing successfully, birds with extended parental care form family groups. Despite being the dominant social unit, such family groups have been reported to switch to alternative habitat earlier than adults without offspring, with potential negative carry‐over effects for the next breeding season. Here we test a proposed mechanism for this earlier habitat switch, namely a low foraging efficiency in juveniles. Such a test is best performed under controlled conditions because in the field families may occupy food patches of a different quality than singles or pairs without young. We studied this mechanism in Bewick's Swans Cygnus columbianus bewickii, which trample (or ‘treadle’) for food buried in the sediment. The gross intake rate of juveniles was as low as 60% of that of adults, depending on the burial depth of the food. Trampling effort did not differ between age classes, but differences in intake rate were related to body size, suggesting that larger or heavier birds were trampling more efficiently. Corresponding giving‐up densities in the field were calculated to be c. 60% higher for juveniles than for adults. Our findings are consistent with the hypothesis that the lower foraging efficiency of juveniles may be responsible for the segregation of family groups from adults without offspring.  相似文献   

9.
Ocean warming and other anthropogenic stresses threaten the symbiosis between tropical reef cnidarians and their dinoflagellate endosymbionts (Symbiodinium). Offspring of many cnidarians acquire their algal symbionts from the environment, and such flexibility could allow corals to respond to environmental changes between generations. To investigate the effect of both habitat and host genotype on symbiont acquisition, we transplanted aposymbiotic offspring of the common Caribbean octocoral Briareum asbestinum to (1) an environmentally different habitat that lacked B. asbestinum and (2) an environmentally similar habitat where local adults harbored Symbiodinium phylotypes that differed from parental colonies. Symbiont acquisition and establishment of symbioses over time was followed using a within-clade DNA marker (23S chloroplast rDNA) and a within-phylotype marker (unique alleles at a single microsatellite locus). Early in the symbiosis, B. asbestinum juveniles harbored multiple symbiont phylotypes, regardless of source (parent or site). However, with time (~4 yr), offspring established symbioses with the symbiont phylotype dominant in the parental colonies, regardless of transplant location. Within-phylotype analyses of the symbionts revealed a similar pattern, with offspring acquiring the allelic variant common in symbionts in the parental population regardless of the environment in which the offspring was reared. These data suggest that in this host species, host–symbiont specificity is a genetically determined trait. If this level of specificity is widespread among other symbiotic cnidarians, many cnidarian–algal symbioses may not be able to respond to rapid, climate change-associated environmental changes by means of between-generation switching of symbionts.  相似文献   

10.
Analysis of social relations between adult males and immatures of known paternity in a captive group of rhesus monkeys (Macaca mulatta) revealed that fathers and offspring associated significantly more than other male-immature dyads. This association was highly variable, however, and there was no evidence of active preference for or investment in offspring by fathers. The tendency of offspring to approach fathers more often than other males appeared to account for the pattern of selective association. Preferential father-offspring association occurred whether or not mothers were in proximity to fathers, but mothers' associations with males did predict their offspring's, especially for the younger juveniles and the infants. It is possible that long-term social relationships between mothers and fathers lead to father-offspring association, but a year-to-year pattern of shifting mating preferences in the group weakens this hypothesis.  相似文献   

11.
12.
During early life, prolactin (PRL) ingested by the pups through the milk participates in the development of neuroendocrine, immunological and reproductive systems. The present study tested whether a deficiency in PRL in the dam's milk during early lactation affected the offspring in terms of the maternal responsiveness in the sensitization paradigm and behavioral response to a novel environment in the offspring. Thus, lactating rats were injected (sc) on postnatal days (PND) 2–5 with bromocriptine (125 μg/day), bromocriptine + ovine PRL (125 μg + 300 μg/day), or vehicle. As juveniles (at PND 24) or adults (PND 90–100), one female from each litter was exposed to 5 foster pups continuously for 8 days and their maternal responsiveness was recorded. Female offspring were also tested in an open field arena. Adult, but not juvenile, female offspring of bromocriptine-treated mothers showed an increased latency to become maternal, in comparison to latencies displayed by the offspring of control mothers. Furthermore, the proportion of adult, but not juvenile, offspring of bromocriptine-treated mothers that became maternal was lower than that showed by the offspring of vehicle-treated mothers. In comparison to female offspring of vehicle-treated mothers, female offspring of bromocriptine-treated mothers spent less time hovering over the pups (as juvenile females), body licking (as both juvenile and adult females), and in close proximity to pups (as adult females) during the maternal behavior test. Simultaneous administration of ovine PRL and bromocriptine reversed almost all the negative effects of bromocriptine. These data suggest that maternally-derived PRL participates during the early postnatal period in the development of neural systems that underlie the control of maternal behavior.  相似文献   

13.
Genetic theories of sexual selection predict that most ornamental secondary sexual traits provide reliable indication of the genetic quality of their bearers. Accordingly, also the offspring of mates with elaborate mating display should perform better than those of less conspicuous counterparts. In this study, we used Arctic charr (Salvelinus alpinus) as a model species to investigate whether the variation in a carotenoid-based red breeding coloration (a sexually dichromatic trait) in different sexes would reflect differences in individual genetic variability, one measure of individual quality, and/or indirectly, be manifested in variation in the offspring’s early viability and growth. We created maternal half-sibling families by artificially fertilizing the eggs with milt from bright- and pale-coloured males and then held the resulting progenies under identical hatchery conditions. The expression of red coloration among parental fish was not associated with their genetic diversity estimates in either sex nor did offspring sired by bright males consistently differ in terms of embryo survival or endogenous growth efficiency from offspring sired by pale males. By contrast, maternal effects were notably strong and, additionally, the degree of female coloration was negatively linked to their reproductive potential. The more intensely coloured females had a smaller relative fecundity and they also produced offspring of lower viability, implying a significant trade-off in resource allocation between ornamentation and offspring. Our results indicate that the red breeding ornamentation of Arctic charr is likely to be informative rather among females than males when the reproductive quality is predicted on grounds of the number of offspring produced. Nevertheless, this study does not support the direct selection hypothesis in explaining the evolution of female ornamentation, but rather suggests that the less intense coloration of female charr compared to males may reflect inter-sexual differences in the trade-off between natural and sexual selection.  相似文献   

14.
The majority of reef-building corals acquire their obligate algal symbionts ( Symbiodinium ) from the environment. However, factors shaping the initial establishment of coral–algal symbioses, including parental effects, local environmental conditions and local availability of symbionts, are not well understood. This study monitored the uptake and maintenance of Symbiodinium in juveniles of two common corals, Acropora tenuis and Acropora millepora , that were reciprocally explanted between sites where adult colonies host different types of Symbiodinium . We found that coral juveniles were rapidly dominated by type D Symbiodinium , even though this type is not found in adult colonies (including the parental colonies) in four out of the five study populations. Furthermore, type D Symbiodinium was found in less than one-third of a wide range of coral species ( n  > 50) sampled at the two main study sites, suggesting that its dominance in the acroporid juveniles is not because it is the most abundant local endosymbiotic type. Moreover, dominance by type D was observed irrespective of the light intensity to which juveniles were exposed in a field study. In summary, despite its relatively low abundance in coral assemblages at the study sites and irrespective of the surrounding light environment, type D Symbiodinium is the main symbiont type initially acquired by juveniles of A. millepora and A. tenuis . We conclude that during early ontogeny in these corals, there are few barriers to the uptake of Symbiodinium types which differ from those found in parental colonies, resulting in dominance by a highly infectious and potentially opportunistic symbiont.  相似文献   

15.
Adaptive evolution is often strongly influenced by maternal inheritance that transfers the parental strategies across generations. The consequences of maternal effects for the offspring generation depend on the between-generation similarity in environments and on the evolved sensitivity of the offspring's ontogeny to maternal effects. When these factors differ between sons and daughters, maternal effects can influence the evolution of sexual dimorphism. The establishment of house finch populations across western Montana during the last 30 years was accompanied by rapid evolutionary change in sexual size dimorphism. Here I show that traits that changed the most across generations were most influenced by maternal effects in males but not females. Maternal effects differentially affected sons' and daughters' survival; greater maternal effects were commonly associated with higher survival of sons, especially when maternal and offspring environments were similar. Stronger maternal effects extended preselection phenotypic variance in morphological traits of males, thereby producing some locally adaptive phenotypes and lessening juvenile mortality. Thus, the observed sex-specific maternal effects and their contribution to the evolution of sexual size dimorphism are likely a passive consequence of the distinct sensitivity of sons and daughters to maternal adaptations to breeding in ecologically distinct parts of the house finch's expanding range.  相似文献   

16.
Together with the avoidance of any negative impact of inbreeding, preservation of genetic variability for life‐history traits that could undergo future selective pressure is a major issue in endangered species management programmes. However, most of these programmes ignore that, apart from the direct action of genes on such traits, parents, as contributors of offspring environment, can influence offspring performance through indirect parental effects (when parental genotype and phenotype exerts environmental influences on offspring phenotype independently of additive genetic effects). Using quantitative genetic models, we estimated the additive genetic variance for juvenile survival in a population of the endangered Cuvier's gazelle kept in captivity since 1975. The dataset analyzed included performance recording for 700 calves and a total pedigree of 740 individuals. Results indicated that in this population juvenile survival harbors significant additive genetic variance. The estimates of heritability obtained were in general moderate (0.115–0.457) and not affected by the inclusion of inbreeding in the models. Maternal genetic contribution to juvenile survival seems to be of major importance in this gazelle's population as well. Indirect genetic and indirect environmental effects assigned to mothers (i.e., maternal genetic and maternal permanent environmental effects) roughly explain a quarter of the total variance estimated for the trait analyzed. These findings have major evolutionary consequences for the species as show that offspring phenotypes can evolve strictly through changes in the environment provided by mothers. They are also relevant for the captive breeding programme of the species. To take into account, the contribution that mothers have on offspring phenotype through indirect genetic effects when designing pairing strategies might serve to identify those females with better ability to recruit, and, additionally, to predict reliable responses to selection in the captive population.  相似文献   

17.
Environmental factors during early development may have profound effects on subsequent life-history traits in many bird species. In wild birds, sex-specific effects of early ontogeny on natal dispersal and future reproduction are not well understood. The objective of this work was to determine whether hatching date and pre-fledging mass and condition of free-living Great Tits Parus major have any subsequent effect on individuals’ natal dispersal and reproductive performance at first breeding. Both males and females dispersed longer distances in coniferous than in deciduous forests, while dispersal was condition-dependent only in males (heavier as nestlings dispersed farther). In females, mass and condition at pre-fledging stage correlated significantly with clutch size, but not with subsequent reproductive performance as measured by fledging success or offspring quality. In contrast, heavier males as nestlings had higher future fledging success and heavier offspring in their broods compared with those in worse condition as nestlings. The hatching date of female as well as male parents was the only parental parameter related to the number of eggs hatched at first breeding. These results indicate that pre-fledging mass and condition predict subsequent fitness components in this bird species. We suggest that sex-specific relationships between a disperser’s condition and its selectivity with respect to breeding habitat and subsequent performance need to be considered in future models of life-history evolution.  相似文献   

18.
Geographical variation in offspring size effects across generations   总被引:2,自引:0,他引:2  
Dustin J. Marshall 《Oikos》2005,108(3):602-608
Offspring size is thought to strongly affect offspring fitness and many studies have shown strong offspring size/fitness relationships in marine and terrestrial organisms. This relationship is strongly mitigated by local environmental conditions and the optimal offspring size that mothers should produce will vary among different environments. It is assumed that offspring size will consistently affect the same traits among populations but this assumption has not been tested. Here I use a common garden experiment to examine the effects of offspring size on subsequent performance for the marine bryozoan Bugula neritina using larvae from two very different populations. The local conditions at one population (Williamstown) favour early reproduction whereas the other population (Pt. Wilson) favours early growth. Despite being placed in the same habitat, the effects of parental larval size were extremely variable and crossed generations. For larvae from Williamstown, parental larval size positively affected initial colony growth and larval size in the next generation. For larvae from the other population, parental larval size positively affected colony fecundity and negatively affected larval size in the next generation. Traditionally, exogenous factors have been viewed as the sole source of variation in offspring size/fitness relationship but these results show that endogenous factors (maternal source population) can also cause variation in this crucial relationship. It appears offspring size effects can be highly variable among populations and organisms can adapt to local conditions without changing the size of their offspring.  相似文献   

19.
Crespi EJ  Lessig H 《Oecologia》2004,138(2):306-311
In the terrestrial salamander (Plethodon cinereus), previous work has shown that mothers body size is positively correlated to offspring size at the time of hatching even after controlling for the effects of egg size. This study was designed to determine whether maternal body size affects offspring size via pre-oviposition factors (e.g., yolk quality, jelly coat composition, or maternal genes) or post-oviposition factors (e.g., parental care behaviors, parental modification of environment). Gravid females were captured and induced to lay eggs in experimental chambers in which the environment was standardized. Fifteen clutches were exchanged, or cross-fostered, between female pairs differing in body size. Ten females whose eggs were taken away and then returned served as controls for the crossing treatment. Foster mothers did not significantly differ from control mothers in the time spent with eggs, body position, or number of egg movements during brooding. Average egg mass measured midway through development was not significantly correlated to the body size of either the genetic or foster mother, but was correlated to pre-oviposition oocyte size. At hatching, offspring body length was positively correlated to egg size and the foster mothers body size. This correlation suggests that in P. cinereus post-oviposition maternal effects have a greater impact on offspring size than other maternal factors incorporated into the egg prior to oviposition. While our study showed that larger mothers moved their eggs less often and tended to spend more time in contact with their eggs, further work needs to be done to identify the specific mechanisms through which larger mothers influence the body size of their offspring. This is the first experimental demonstration of post-oviposition maternal effects for any amphibian with parental care.  相似文献   

20.
Phenotypic plasticity may increase the performance and fitness and allow organisms to cope with variable environmental conditions. We studied within‐generation plasticity and transgenerational effects of thermal conditions on temperature tolerance and demographic parameters in Drosophila melanogaster. We employed a fully factorial design, in which both parental (P) and offspring generations (F1) were reared in a constant or a variable thermal environment. Thermal variability during ontogeny increased heat tolerance in P, but with demographic cost as this treatment resulted in substantially lower survival, fecundity, and net reproductive rate. The adverse effects of thermal variability (V) on demographic parameters were less drastic in flies from the F1, which exhibited higher net reproductive rates than their parents. These compensatory responses could not totally overcome the challenges of the thermally variable regime, contrasting with the offspring of flies raised in a constant temperature (C) that showed no reduction in fitness with thermal variation. Thus, the parental thermal environment had effects on thermal tolerance and demographic parameters in fruit fly. These results demonstrate how transgenerational effects of environmental conditions on heat tolerance, as well as their potential costs on other fitness components, can have a major impact on populations’ resilience to warming temperatures and more frequent thermal extremes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号