首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 475 毫秒
1.
The nucleotide-binding protein Go is a transducing molecule closely associated with neural structures in vertebrates. Because of the potential importance of molecules of this type during the first step of neurogenesis, we have investigated the kinetics of expression of Go in the amphibian (Pleurodeles waltl) embryo, focusing our attention on the stages corresponding to the acquisition of neural competence by presumptive ectoderm and to the process of neural induction. Using affinity-purified IgGs directed against the alpha subunit of Go, Go-like immunoreaction (GoLI) is first detected at the midblastula stage in some animal cap (future ectodermal) cells just before they have attained competence to be neuralized. At the early gastrula stage, GoLI is almost exclusively expressed by neural-competent tissue as a whole, with no obvious difference between the dorsal (prospective neural) and the ventral (prospective epidermal) ectoderm. The expression of GoLI is therefore related to the state of competence of the tissue rather than to its fate. At the early neurula stage, immediately following neural induction, the expression of GoLI persists essentially in that part of ectoderm that has been diverted from epidermal differentiation towards the neural pathway; in the ventral ectoderm, as neural competence is lost GoLI disappears. Furthermore, in the neurectoderm, only approximately 70% of the cells conserve GoLI, demonstrating that immediately following neural induction the population of neurectodermal cells is not homogeneous.  相似文献   

2.
Estrogen induced gene 121 (EIG121) and EIG121-like (EIG121L) are evolutionarily conserved genes. But, their function is still unknown. Here, we report the expression pattern of Xenopus EIG121-like (xEIG121L) during early development. Its expression was first detected at stage 9 after mid-blastula transition, attained its maximal level at the gastrula stage, and remained constant until the tadpole stage. Whole-mount in situ hybridization revealed that xEIG121L was expressed strongly in the ventral ectoderm at the gastrula stage, and in the anterior ectoderm surrounding the neural plate at the neurula stage. xEIG121L expression was especially high in the presumptive hatching gland and cement gland regions in the neurula. At the tailbud stage, xEIG121L expression was limited to the hatching gland; an inverted Y type staining, characteristic of the hatching gland, was observed. However, at the tadpole stage, xEIG121L was expressed broadly in the head, heart and fin.  相似文献   

3.
Cellular alterations of the neurectoderm after primary embryonic induction were examined by measuring several indices of shape, volume, and cytodifferentiation of the neurectodermal cells of Cynops embryos during gastrulation and early neurulation.
Results showed that cellular alterations occurs just after the 18 hr embryo stage (stage 13b). The thickness of the neurectoderm layer decreases like that of the epidermal ectoderm during early and middle gastrulation. After the 18 hr embryo stage, however, the neurectoderm thickens, mainly due to formation of columnar cells. Measurement of cell volume indicates that the neurectoderm of the early and middle gastrulae consists of a cell population of heterogeneous size. The heterogeneity diminishes sharply after the 18 hr embryo stage and the neural plate of the 36 hr embryo (stage 18) consists of cells of homogeneous size.
Stages before the 12 hr embryo (stage 12b) and after the 18 hr embryo (stage 13b) also showed differed in cell adhesion to the culture flask and in cytodifferentiating potency. Single cells dissociated from the neurectoderm of 18 hr embryos could adhere to the substratum and differentiate into both nerve-like cells and pigment cells. Both capacities increase during further development.
These results are discussed in relation to the neuralizing determination of neurectoderm after primary embryonic induction.  相似文献   

4.
An in vitro microculture system of early gastrula cells of Xenopus laevis has been developed; deep layer cells from the lateral marginal zone (prospective somite region) or ventral ectoderm (prospective epidermis region) were fully dissociated, and the desired number of each (1-100) was distributed into a microculture well and cultured under appropriate conditions. When examined with the tissue-specific Mabs (Mu1 for muscle and E3 for epidermis, respectively), a substantial portion of the deep layer cells from the two regions followed their respective normal embryonic fates. It was found that reproducible cellular differentiation was dependent on the intimate reaggregation of dissociated cells and on the size of the resultant aggregate. About 20 lateral marginal zone cells were found to be sufficient, when put into a culture well, for supporting successful muscle differentiation, whereas about 100 ventral ectoderm cells were necessary for epidermal differentiation.  相似文献   

5.
The appearance and localization of N-CAM during neural induction were studied in Pleurodeles waltl embryos and compared with recent contradictory results reported in Xenopus laevis. A monoclonal antibody raised against mouse N-CAM was used. In the nervous system of Pleurodeles, it recognized two glycoproteins of 180 and 140x10(3) M(r) which are the Pleurodeles equivalent of N-CAM-180 and -140. Using this probe for immunohistochemistry and immunocytochemistry, we showed that N-CAM was already expressed in presumptive ectoderm at the early gastrula stage. In late gastrula embryos, a slight increase in staining was observed in the neurectoderm, whereas the labelling persisted in the noninduced ectoderm. When induced ectodermal cells were isolated at the late gastrula stage and cultured in vitro up to 14 days, a faint polarized labelling of cells was observed initially. During differentiation, the staining increased and became progressively restricted to differentiating neurons.  相似文献   

6.
7.
Residual deformation of fragments of the embryonic tissues preserved after relaxation of the stretching force serve as a criterion of active redistribution of their cells caused by this stretching. We measured residual deformations of the Xenopus laevis ventral and dorsal ectoderm at the early gastrula and lateral ectoderm at the late gastrula-early neurula after stretching of varying time and force. While the samples responded to moderate (up to 40%) short-term stretching as elastic bodies (residual deformations were absent), residual deformation appeared in the early gastrula tissues after 30-60-min stretching, which were more pronounced in the ventral tissues than in the dorsal ones. On the contrary, a contractile reaction developed in the late gastrula-early neurula tissues in response to 60-min stretching, which almost relaxed residual deformation within 20 min after unloading. A conclusion was drawn that gastrulation and neurulation proceed under the conditions of relaxing and nonrelaxing mechanical tensions, respectively. Mechanical bases and morphogenetic role of the described reactions is discussed.  相似文献   

8.
The development of phenoloxidase during amphioxus embryogenesis was spectrophotometrically and histochemically studied for the first time in the present study. It was found that (1) PO activity initially appeared in the general ectoderm including the neural ectoderm and the epidermal ectoderm at the early neurula stage but not in the mesoderm or the endoderm, and (2) PO activity disappeared in the neural plate cells but remained unchanged in the epidermal cells when the neural plate was morphologically quite distinct from the rest of the ectoderm. It is apparent that PO could serve as a marker enzyme for differentiation of the neural ectoderm from the epidermal ectoderm during embryonic development of amphioxus.  相似文献   

9.
The FGF pathway regulates a variety of developmental processes in animals through activation and/or repression of numerous target genes. Here we have identified a Xenopus homolog of potassium channel tetramerization domain containing 15 (KCTD15) as an FGF-repressed gene. Kctd15 expression is first detected at the gastrula stage and gradually increases until the tadpole stage. Whole-mount in situ hybridization reveals that the spatial expression of kctd15 is tightly regulated during early embryogenesis. While kctd15 is uniformly expressed throughout the presumptive ectoderm at the early gastrula stage, its expression becomes restricted to the non-neural ectoderm and is excluded from the neural plate at the early neurula stage. At the mid-neurula stage, kctd15 shows a more restricted distribution pattern in regions that are located at the anterior, lateral or medial edge of the neural fold, including the preplacodal ectoderm, the craniofacial neural crest and the prospective roof plate. At the tailbud stage, kctd15 expression is mainly detected in neural crest- or placode-derived tissues that are located around the eye, including the mandibular arch, trigeminal ganglia and the olfactory placode. FGF represses kctd15 expression in ectodermal explants, and the inhibition of FGF receptor with a chemical compound dramatically expands the region expressing kctd15 in whole embryos. Dorsal depletion of kctd15 in Xenopus embryos leads to bent axes with reduced head structures, defective eyes and abnormal somites, while ventral depletion causes defects in ventral and caudal morphologies. These results suggest that kctd15 is an FGF-repressed ectodermal gene required for both dorsal and ventral development.  相似文献   

10.
Epidermal differentiation in the ventral ectoderm of Xenopus embryos is regulated by the bone morphogenetic protein (BMP) pathway. However, it remains unclear how the BMP pathway is activated and induces the epidermal fate in the ventral ectoderm. Here, we identify a novel player in the BMP pathway that is required for epidermal differentiation during Xenopus early embryonic development. We show that Xenopus EIG121L (xEIG121L) protein, an evolutionarily conserved transmembrane protein, is expressed in the ventral ectoderm at the gastrula and neurula stages. Almost complete knockdown of xEIG121L protein with antisense morpholino oligonucleotides in early Xenopus embryos results in severe developmental defects, including the inhibition of epidermal differentiation and the induction of neural genes. Remarkably, our analysis shows that BMP/Smad1 signaling is severely suppressed in the xEIG121L knockdown ectoderm. Moreover, immunoprecipitation and immunostaining experiments suggest that xEIG121L protein physically interacts, and co-localizes, with BMP receptors. Thus, our results identify a novel regulator of the BMP pathway that has a positive role in BMP signaling and plays an essential role in epidermal differentiation during early embryonic development.  相似文献   

11.
Residual deformation of fragments of the embryonic tissues preserved after relaxation of the stretching force serve as a criterion of active redistribution of their cells caused by this stretching. We measured residual deformations of the Xenopus laevis ventral and dorsal ectoderm at the early gastrula and lateral ectoderm at the late gastrula-early neurula after stretching of varying time and force. While the samples responded to moderate (up to 40%) short-term stretching as elastic bodies (residual deformations were absent), residual deformation appeared in the early gastrula tissues after 30–60-min stretching, which were more pronounced in the ventral tissues than in the dorsal ones. On the contrary, a contractile reaction developed in the late gastrula-early neurula tissues in response to 60-min stretching, which almost relaxed residual deformation within 20 min after unloading. A conclusion was drawn that gastrulation and neurulation proceed under the conditions of relaxing and nonrelaxing mechanical tensions, respectively. Mechanical bases and morphogenetic role of the described reactions is discussed.  相似文献   

12.
We have previously identified two Xenopus homologues of mammalian IQGAP, XIQGAP1 and XIQGAP2, which show high homology with human IQGAP1 and IQGAP2, respectively. In order to clarify function of the IQGAPs during development, we performed knock-down experiments on the XIQGAPs in Xenopus laevis embryos by microinjecting morpholino antisense oligonucleotides into blastomeres at the two-cell stage. Suppression of XIQGAP2 expression caused ectodermal lesions in the neurula stage embryos. While suppression of XIQGAP1 expression alone did not show any obvious defect in subsequent developmental processes, simultaneous knock-down of both XIQGAPs caused the ectodermal lesions during the gastrula stage. Histological studies suggested that a loss of cell adhesion in the ectodermal and mesodermal layers of the embryos caused the defect. The suppression of XIQGAP2 expression resulted in loss of actin filaments, beta-catenin, and XIQGAP1 from cell borders in the ectoderm, although it did not affect the expression levels of these proteins. Furthermore, it inhibited Ca(2+)-induced reaggregation of embryonic cells which had been dissociated in a Ca(2+)/Mg(2+)-free medium. These results strongly suggest that XIQGAP2 is crucial for cell adhesion during early development in Xenopus.  相似文献   

13.
Mesodermal differentiation of dorsal marginal zone (DMZ) before and after invagination was analyzed by a series of combination experiments with different kinds of ectoderm.
Lower DMZ of early gastrula didn't show any axial-mesoderm (notochord and somitic mesoderm) but lateral mesoderm (mesenchyme, mesothelium, or blood cells) in combinant with non-competent ventral ectoderm, while combinant with competent ectoderm was found to have well-differentiated axial-mesoderm with deutero-spinocaudal neurals. The axial-mesoderms have origin in the ectoderm. Uninvaginated DMZ of middle gastrula also showed difference in mesodermal differentiation between competent and non-competent ectoderms; axial-mesoderm differentiation was much better in competent than in non-competent. The axial-mesoderm originated from the uninvaginated DMZ. Archenteron roof of late gastrula showed regional difference in mesodermal differentiation in both combinants with competent and non-competent. The present study further demonstrated that there was regionality in promoting effect of induced neurectoderm on axial-mesoderm differentiation of invaginated archenteron roof.
The present experiments suggest that the cranio-caudal and dorso-ventral axis formations of amphibian mesoderm are finally determined by sequential and reciprocal interactions between the mesodermal anlage and the overlying ectoderm. It should be also shown that lower DMZ acts to trigger a series of the sequential interactions during primary embryonic induction.  相似文献   

14.
When Xenopus embryos are cultured in calcium- and magnesium-free medium (CMFM), the blastomeres lose adhesion but continue dividing to form a loose heap of cells. If divalent cations are restored at the early gastrula stage the cells re-adhere and eventually form muscle (a mesodermal cell type) as well as epidermis. If, however, the cells are dispersed during culture in CMFM, muscle does not form following reaggregation although epidermis does. This suggests that culturing blastomeres in a heap allows the transmission of mesoderm-induction signals from cell to cell while dispersion effectively dilutes the signal. In this paper, we have attempted to substitute for cell proximity by culturing dispersed blastomeres in XTC mesoderm-inducing factor (MIF). We find that dispersed cells do not respond to XTC-MIF by forming mesodermal cell types after reaggregation, but the factor does inhibit epidermal differentiation. One interpretation of this observation is that an early stage in mesoderm induction is the suppression of epidermal differentiation and that formation of mesoderm may require contact-mediated signals that are produced in response to XTC-MIF. We have gone on to study the suppression of epidermal differentiation in more detail. We find that this is a dose-dependent phenomenon that can occur in single cells in the absence of cell division. Animal pole blastomeres become more difficult to divert from epidermal differentiation at later stages of development and by stage 12 they are 'determined' to this fate. Fibroblast growth factor (FGF) also suppresses epidermal differentiation in isolated animal pole blastomeres and transforming growth factor-beta 1 acts synergistically with FGF in doing so.  相似文献   

15.
The ectoderm of early Xenopus gastrula is competent to become induced to neural tissue, but dorsal ectoderm is more neural competent than ventral ectoderm. It is a tenable, but as yet untested possibility that the higher neural competence of dorsal gastrula ectoderm is dependent on the presence of the dorsal mesoderm. To test this hypothesis we overexpressed Xwnt-8 in order to ectopically induce dorsal mesoderm in the ventral side of the embryo. We found that this elevated the level of neural competence of ventral ectoderm to that of dorsal ectoderm. The effect of Xwnt-8 on neural competence of ventral ectoderm was strictly correlated with its ability to enhance the amount of dorsal structures. The data indicate that the presence of dorsal mesoderm is a prerequisite for establishing the differences in neural competence between gastrula dorsal and ventral ectoderm.  相似文献   

16.
In amphibian development, neural structures arise from the presumptive ectoderm at the gastrula stage by an inductive interaction with the chordamesoderm. It has been previously reported that early gastrula presumptive ectoderm can be neuralized when it is dissociated into single cells. A similar result is reported here with regard to Pleurodeles waltl presumptive ectoderm. Using this experimental model system we demonstrate: first, that neuronal and glial lineages can be specified from the presumptive ectoderm without any intervention of the natural inducing tissue; and second, that whereas rupture of cell-cell contacts evoked neural induction, dissociation immediately followed by reaggregation reduces the neuralizing response, pointing toward an active role played by cell-cell contacts of presumptive ectodermal cells in the modulation of neural commitment.  相似文献   

17.
The ability of a tissue to respond to induction, termed its competence, is often critical in determining both the timing of inductive interactions and the extent of induced tissue. We have examined the lens-forming competence of Xenopus embryonic ectoderm by transplanting it into the presumptive lens region of open neural plate stage embryos. We find that early gastrula ectoderm has little lens-forming competence, but instead forms neural tissue, despite its location outside the neural plate; we believe that the transplants are being neuralized by a signal originating in the host neural plate. This neural competence is not localized to a particular region within the ectoderm since both dorsal and ventral portions of early gastrula ectoderm show the same response. As ectoderm is taken from gastrulae of increasing age, its neural competence is gradually lost, while lens competence appears and then rapidly disappears during later gastrula stages. To determine whether these developmental changes in competence result from tissue interactions during gastrulation, or are due to autonomous changes within the ectoderm itself, ectoderm was removed from early gastrulae and cultured for various periods of time before transplantation. The loss of neural competence, and the gain and loss of lens competence, all occur in ectoderm cultured in vitro with approximately the same time course as seen in ectoderm in vitro. Thus, at least from the beginning of gastrulation onwards, changes in competence occur autonomously within ectoderm. We propose that there is a developmental timing mechanism in embryonic ectoderm that specifies a sequence of competences solely on the basis of the age of the ectoderm.  相似文献   

18.
19.
To study how epithelial layers are formed during early development in Xenopus embryos, we have focused on Claudin, the major component of the tight junction. So far, 19 claudin genes have been found in the mouse, expressed in different epithelial tissues. However, though a number of cytological studies have been done for the roles of Claudins, their expression patterns and functions during early embryogenesis are largely unknown. We found three novel Xenopus claudin genes, which are referred to as claudin-4L1, -4L2, and -7L1. At the early gastrula stage, claudin-4L1, -4L2, and -7L1 mRNAs were detected in the ectoderm and in the mesoderm. At the late gastrula stage, claudin mRNAs were detected in the ectoderm through the involuting archenteron roof. At the neurula stage, claudin-4L1/4L2 and -7L1 mRNAs were differentially expressed in the neural groove and the epidermal ectoderm. At the tailbud stage, the claudin mRNAs were found in the branchial arches, the otic vesicles, the sensorial layer of the epidermis, and along the dorsal midline of the neural tube. In addition, claudin-4L1/4L2 mRNAs were detected in the pronephros and the endoderm, whereas claudin-7L1 mRNA was observed in the epithelial layer of the epidermis.  相似文献   

20.
To study how epithelial layers are formed during early development in Xenopus embryos, we have focused on Claudin, the major component of the tight junction. So far, 19 claudin genes have been found in the mouse, expressed in different epithelial tissues. However, though a number of cytological studies have been done for the roles of Claudins, their expression patterns and functions during early embryogenesis are largely unknown. We found three novel Xenopus claudin genes, which are referred to as claudin-4L1, -4L2, and -7L1. At the early gastrula stage, claudin-4L1, -4L2, and -7L1 mRNAs were detected in the ectoderm and in the mesoderm. At the late gastrula stage, claudin mRNAs were detected in the ectoderm through the involuting archenteron roof. At the neurula stage, claudin-4L1/4L2 and -7L1 mRNAs were differentially expressed in the neural groove and the epidermal ectoderm. At the tailbud stage, the claudin mRNAs were found in the branchial arches, the otic vesicles, the sensorial layer of the epidermis, and along the dorsal midline of the neural tube. In addition, claudin-4L1/4L2 mRNAs were detected in the pronephros and the endoderm, whereas claudin-7L1 mRNA was observed in the epithelial layer of the epidermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号