首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Clostridium difficile is a major nosocomial pathogen of present times. The analysis of 624 C. difficile strains from 11 hospitals in the Czech Republic in 2013 revealed that 40 % of isolates belonged to ribotype 176. These results suggest that the incidence of CDI (C. difficile infection) in the Czech Republic has increased probably in connection with C. difficile ribotype 176. The molecular systems Xpert C. difficile Epi assay (Cepheid Inc., Sunnyvale, CA) diagnoses toxigenic strains and supports C. difficile ribotype 027 determination based on three specific target places in the toxigenic C. difficile genome. Twenty-nine strains cultivated from stool specimens were evaluated by the Xpert systems as presumed C. difficile PCR ribotype 027 were confirmed as a C. difficile ribotype 176 based on ribotyping. A further 120 C. difficile strains of ribotype 176 were examined for the presence of genes tcdB, cdtB and deletion in position 117 in the tcdC gene. Our experience shows that due to the correspondence of the target places, C. difficile ribotype 176 may be interpreted as ribotype 027 by Xpert C. difficile Epi assay (Cepheid Inc., Sunnyvale, CA). Further molecular analysis as ribotyping based on capillary electrophoresis is needed to differentiate between C. difficile ribotypes 027 and 176 for appropriate epidemiological situation control on local and national levels.  相似文献   

2.
Clostridioides difficile (CD) is the most frequent cause of healthcare related diarrhea and its severity has increased in the last decade by the spread of hypervirulent strains. Most important CD virulence factor is toxin production; however, not only toxins are responsible for Clostridioides virulence. We sequenced 38 strains and analyzed the presence and integrity of 24 virulence (including toxin) genes. We identified 28 toxigenic strains, six also presented the cdt genes. Only six strains didn't present all others genes searched. All absent genes were adhesion related. Understand others CD virulence factors can lead to a best understanding on this matter.  相似文献   

3.
Clostridium difficile infection (CDI) is an important cause of mortality and morbidity in healthcare settings. The major virulence determinants are large clostridial toxins, toxin A (tcdA) and toxin B (tcdB), encoded within the pathogenicity locus (PaLoc). Isolates vary in pathogenicity from hypervirulent PCR-ribotypes 027 and 078 with high mortality, to benign non-toxigenic strains carried asymptomatically. The relative pathogenicity of most toxigenic genotypes is still unclear, but may be influenced by PaLoc genetic variant. This is the largest study of C. difficile molecular epidemiology performed to date, in which a representative collection of recent isolates (n = 1290) from patients with CDI in Oxfordshire, UK, was genotyped by multilocus sequence typing. The population structure was described using NeighborNet and ClonalFrame. Sequence variation within toxin B (tcdB) and its negative regulator (tcdC), was mapped onto the population structure. The 69 Sequence Types (ST) showed evidence for homologous recombination with an effect on genetic diversification four times lower than mutation. Five previously recognised genetic groups or clades persisted, designated 1 to 5, each having a strikingly congruent association with tcdB and tcdC variants. Hypervirulent ST-11 (078) was the only member of clade 5, which was divergent from the other four clades within the MLST loci. However, it was closely related to the other clades within the tcdB and tcdC loci. ST-11 (078) may represent a divergent formerly non-toxigenic strain that acquired the PaLoc (at least) by genetic recombination. This study focused on human clinical isolates collected from a single geographic location, to achieve a uniquely high density of sampling. It sets a baseline of MLST data for future comparative studies investigating genotype virulence potential (using clinical severity data for these isolates), possible reservoirs of human CDI, and the evolutionary origins of hypervirulent strains.  相似文献   

4.
《Anaerobe》2009,15(6):237-240
150 Clostridium difficile strains isolated from diarrheal feces were collected from three parts of Hungary and the presence of genes responsible for toxin A and B, and binary toxin production were examined. MIC distribution against clindamycin, erythromycin, metronidazole, moxifloxacin and rifampin of 80 toxigenic strains selected from the above-mentioned strains and 20 large clostridial toxins (LCTs)-positive strains chosen from our earlier strain collection were determined. 80% of the examined 150 strains were positive for both tcdA and tcdB, and no toxin A-negative, toxin B-positive isolates were found during the study period. 5.3% of toxigenic strains proved to be positive for binary toxin too. Among binary toxin-positive strains, one strain showed the same pattern characteristic of PCR ribotype 027. Comparison of recent findings and our earlier results, the prevalence of toxin-producing and binary toxin-positive strains among C. difficile isolated from diarrheal specimens increased. No metronidazole resistant isolate was detected among strains isolated in 2002–2003 and 2006–2007. The rates of resistance to erythromycin, clindamycin, moxifloxacin and rifampin among strains isolated between 2006 and 2007 were 25%, 27.5%, 25% and 6.3%, respectively. Erythromycin resistance was frequently associated with clindamycin and moxifloxacin resistance, however this resistant phenotype was not found among strains isolated in 2002–2003.  相似文献   

5.
Clostridium difficile isolates from the environment are closely related to those from humans, indicating a possible environmental transmission route for C. difficile infection (CDI). In this study, C. difficile was isolated from 47.3% (53/112) of lake/pond, 23.0% (14/61) of river, 20.0% (3/15) of estuary and 0.0% (0/89) of seawater samples. The most common toxigenic strain isolated was C. difficile PCR ribotype (RT) 014/020 (10.5%, 8/76). All water isolates were susceptible to fidaxomicin, metronidazole, rifaximin, amoxicillin/clavulanic acid, moxifloxacin and tetracycline. Resistance to vancomycin, clindamycin, erythromycin and meropenem was detected in 5.3% (4/76), 26.3% (20/76), 1.3% (1/76) and 6.6% (5/76) of isolates, respectively. High-resolution core-genome analysis was performed on RT 014/020 isolates of water origin and 26 clinical RT 014/020 isolates from the same year and geographical location. Notably, both human and water strains were intermixed across three sequence types (STs), 2, 13 and 49. Six closely related groups with ≤10 core-genome single nucleotide polymorphisms were identified, five of which comprised human and water strains. Overall, 19.2% (5/26) of human strains shared a recent genomic relationship with one or more water strains. This study supports the growing hypothesis that environmental contamination by C. difficile plays a role in CDI transmission.  相似文献   

6.
A total of 79 Clostridium difficile strains from healthy young and elderly adults, elderly patients without gastrointestinal disease, elderly patients receiving antibiotics without gastrointestinal complications, and elderly patients with antibiotic-associated diarrhea or pseudomembranous colitis were tested for their susceptibilities to 24 antimicrobial agents. All of the 79 strains were inhibited by low concentrations of rifampicin, metronidazole, fusidic acid, vancomycin, ampicillin, and penicillin G. The strains were highly resistant to aminoglycosides, trimethoprim, sulfamethoxazole, nalidixic acid, and cycloserine and often resistant to neomycin, cefoxitin, and cefalexin. Wide variations in the susceptibility of C. difficile strains to erythromycin, clindamycin, lincomycin, chloramphenicol, and tetracycline were found. Strains resistant to erythromycin, clindamycin, and lincomycin were more frequently found among strains isolated from elderly adults than those isolated from young adults, with particularly high frequency among strains isolated from elderly patients receiving antibiotics. None of the 23 strains isolated from healthy young adults was resistant to chloramphenicol. All of the 14 strains resistant to erythromycin, clindamycin, lincomycin, and chloramphenicol were sensitive to tetracycline and all of the 15 strains resistant to erythromycin, clindamycin, lincomycin, and tetracycline were sensitive to chloramphenicol. Only one out of 19 tetracycline-resistant strains was highly toxigenic, whereas 42 (70%) of 60 sensitive strains were highly toxigenic.  相似文献   

7.
Clostridium difficile infections (CDI) are caused by colonization and growth of toxigenic strains of C. difficile in individuals whose intestinal microbiota has been perturbed, in most cases following antimicrobial therapy. Determination of the protective commensal gut community members could inform the development of treatments for CDI. Here, we utilized the lethal enterocolitis model in Syrian golden hamsters to analyze the microbiota disruption and recovery along a 20-day period following a single dose of clindamycin on day 0, inducing in vivo susceptibility to C. difficile infection. To determine susceptibility in vitro, spores of strain VPI 10463 were cultured with and without soluble hamster fecal filtrates and growth was quantified by quantitative PCR and toxin immunoassay. Fecal microbial population changes over time were tracked by 16S ribosomal RNA gene analysis via V4 sequencing and the PhyloChip assay. C. difficile culture growth and toxin production were inhibited by the presence of fecal extracts from untreated hamsters but not extracts collected 5 days post-administration of clindamycin. In vitro inhibition was re-established by day 15, which correlated with resistance of animals to lethal challenge. A substantial fecal microbiota shift in hamsters treated with antibiotics was observed, marked by significant changes across multiple phyla including Bacteroidetes and Proteobacteria. An incomplete return towards the baseline microbiome occurred by day 15 correlating with the inhibition of C. difficile growth in vitro and in vivo. These data suggest that soluble factors produced by the gut microbiota may be responsible for the suppression of C. difficile growth and toxin production.  相似文献   

8.
《Anaerobe》2000,6(1):15-19
One hundred and fifty-five stool specimens of patients suspected for Clostridium difficile -associated diarrhoea, colitis or pseudomembranous colitis (PMC) were investigated. All patients were pre-treated with antibiotics, suffered from watery diarrhoea and abdominal pain and were hospitalized in different hospital units. Units varied from departments of surgery, internal medicine, intensive care, paediatry, dermatology, orthopaedy to gastroenterology. Fifty C. difficile strains were isolated from the faecal samples. Clostridium difficile toxin detection was done directly in the stool samples, and also in cultured C. difficile strains (in vivo and in vitro, respectively). We observed clear differences between in vivo and in vitro toxin A detection by using commercial rapid immuno-enzymatic tests: from 25 in vivo toxin A-negative samples, 17 were positive in vitro. This observation suggests that culturing of C. difficile on selective medium is mandatory for adequate toxin detection and necessary for confirming the presence of toxin-producing C. difficile. This is especially important among patients with clinical symptoms and history of pretreatment with antibiotics and when in vivo toxin A detection is negative. It was established that toxin gene detection by PCR is optimal and PCR results were concordant with results of other in vitro assays. Genotyping by using AP-PCR and PCR ribotyping showed heterogeneity among the toxigenic C. difficile strains cultured from in vivo toxin A-negative stool samples.  相似文献   

9.
The susceptibility trends for all anaerobes processed by the Anaerobe Reference Laboratory against various antibiotics were determined by using data for 2557 isolates referred by all government hospitals in Kuwait from 2002 to 2007. MIC were determined for the following anti-anaerobic antibiotics: amoxicillin–clavulanic acid, clindamycin, imipenem, meropenem, metronidazole, penicillin, piperacillin, piperacillin–tazobactam and vancomycin (for Gram-positive anaerobes only), using E-test method. The commonest isolates were Bacteroides fragilis (36.8%), followed by Peptostreptococcus spp. (21.9%), Bacteroides ovatus (15.5%) and Prevotella bivia (12.1%). In addition, Prevotella oralis and other Bacteroides spp. represented 8.5% and 8.1% of total number of isolates, respectively. Resistance rate varied among the antimicrobial agents and the species tested. The β-lactams, with the exception of penicillin, were the most active drugs. Piperacillin–tazobactam was the only antimicrobial agent to which all the isolates were uniformly susceptible. Imipenem and metronidazole were highly active with resistance rate of only <5% recorded against most isolates. However, 42.8, 55.8 and 9.3% of Clostridium difficile isolates were resistant to imipenem, clindamycin and meropenem, respectively. It is noteworthy that from 2002 to 2007, there was a gradual increase in resistance rates to clindamycin, amoxicillin–clavulanic acid and piperacillin among B. fragilis. Periodic surveillance of antibiotic resistance among the anaerobic bacteria is recommended as a guide to empiric antibiotic use and formulation of guideline for appropriate choice of antimicrobial therapy in anaerobic infections.  相似文献   

10.
Clostridium difficile is a spore-forming, gram-positive, anaerobic bacillus that can cause C. difficile infection (CDI). However, only a few studies on the prevalence and antibiotic resistance of C. difficile in healthy individuals in China have been reported. We employed a spore enrichment culture to screen for C. difficile in the stool samples of 3699 healthy Chinese individuals who were divided into 4 groups: infants younger than 2 years of age and living at home with their parents; children aged 1 to 8 years of age and attending three different kindergarten schools; community-dwelling healthy adult aged 23–60 years old; and healthcare workers aged 28–80 years old. The C. difficile isolates were analyzed for the presence of toxin genes and typed by PCR ribotyping and multilocus sequence typing (MLST). The minimum inhibitory concentration of 8 antimicrobial agents was determined for all of the isolates using the agar dilution method. The intestinal carriage rate in the healthy children was 13.6% and ranged from 0% to 21% depending on age. The carriage rates in the 1654 community-dwelling healthy adults and 348 healthcare workers were 5.5% and 6.3%, respectively. Among the isolates, 226 were toxigenic (225 tcdA+/tcdB+ and 1 tcdA+/tcdB+ ctdA+/ctdB+). Twenty-four ribotypes were found, with the dominant type accounting for 29.7% of the isolates. The toxigenic isolates were typed into 27 MLST genotypes. All of the strains were susceptible to vancomycin, metronidazole, fidaxomicin, and rifaximin. High resistance to levofloxacin and ciprofloxacin at rates of 39.8% and 98.3%, respectively, were observed. ST37 isolates were more resistant to levofloxacin than the other STs. The PCR ribotypes and sequence types from the healthy populations were similar to those from the adult patients.  相似文献   

11.
《Anaerobe》2009,15(3):61-64
The aim of this work was to identify and characterize Clostridium difficile strains from fecal and hospital environmental samples. C. difficile toxins were detected by ELISA in 28.5% of the analyzed samples. Four strains were isolated from immunosuppresssed inpatients presenting antibiotic-associated diarrhea. All strains possessed tcdA and tcdB genes and did not present neither the cdtA and cdtB genes nor any significant deletions in the tcdC gene. PFGE and PCR-ribotyping analysis showed that two strains belonged to the same clonal type (ribotype 014) and the other two were grouped into ribotype 106, in spite of presenting a similar, but not identical genetic fingerprint. This report shows that for the first time ribotype 106 was found outside the United Kingdom. All isolates were equally sensitive to metronidazole. The ribotype 014 isolates were highly resistant to clindamycin, while the ribotype 106 isolates were resistant to all fluoroquinolones tested. This work reveals the spread of C. difficile in the hospital unit studied and the presence of three genetically related types, two of them presenting resistance to fluoroquinolones.  相似文献   

12.
The Gram-positive obligate anaerobe Clostridium difficile causes potentially fatal intestinal diseases. How this organism regulates virulence gene expression is poorly understood. In many bacterial species, the second messenger cyclic di-GMP (c-di-GMP) negatively regulates flagellar motility and, in some cases, virulence. c-di-GMP was previously shown to repress motility of C. difficile. Recent evidence indicates that flagellar gene expression is tightly linked with expression of the genes encoding the two C. difficile toxins TcdA and TcdB, which are key virulence factors for this pathogen. Here, the effect of c-di-GMP on expression of the toxin genes tcdA and tcdB was determined, and the mechanism connecting flagellar and toxin gene expressions was examined. In C. difficile, increasing c-di-GMP levels reduced the expression levels of tcdA and tcdB, as well as that of tcdR, which encodes an alternative sigma factor that activates tcdA and tcdB expression. We hypothesized that the C. difficile orthologue of the flagellar alternative sigma factor SigD (FliA; σ28) mediates regulation of toxin gene expression in response to c-di-GMP. Indeed, ectopic expression of sigD in C. difficile resulted in increased expression levels of tcdR, tcdA, and tcdB. Furthermore, sigD expression enhanced toxin production and increased the cytopathic effect of C. difficile on cultured fibroblasts. Finally, evidence is provided that SigD directly activates tcdR expression and that SigD cannot activate tcdA or tcdB expression independent of TcdR. Taken together, these data suggest that SigD positively regulates toxin genes in C. difficile and that c-di-GMP can inhibit both motility and toxin production via SigD, making this signaling molecule a key virulence gene regulator in C. difficile.  相似文献   

13.
A prospective study was conducted to investigate the incidence, clinical profiles and outcome of ICU-onset CDI in a 50-bed medical ICU at a university hospital in China. Stools were collected from patients who developed ICU-onset diarrhea and was screened for tcdA (toxin A gene) and tcdB (toxin B gene) by PCR. CDI cases were compared with the ICU-onset non-CDI diarrhea cases for demographics, comorbidities, potential risk factors, major laboratory findings and outcomes. Stool samples from CDI cases were subjected to C. difficile culture and C. difficile isolates were screened for tcdA, tcdB and the binary toxin genes (cdtA and cdtB) using multiplex PCR. Strain typing of toxigenic C. difficile isolates was performed using multilocus sequence typing. There were 1,277 patients in the ICU during the study period and 124 (9.7%) developed ICU-onset diarrhea, of which 31 patients had CDI. The incidence of ICU-onset CDI was 25.2 cases per 10,000 ICU days. ICU-onset CDI cases had similar features with ICU-onset non-CDI diarrhea cases including the use of proton pump inhibitors and antibacterial agents. The crude mortality rate of ICU-onset CDI was 22.6%, but the attributable mortality rate of ICU-onset CDI was only 3.2% here. Toxigenic C. difficile isolates were recovered from 28 out of the 31 patients with CDI. cdtA and cdtB were found in two strains. Seventeen STs including 11 new STs were identified. All of the 11 new STs were single-locus variants of known STs and the 17 STs identified here could be clustered into 3 clades. The incidence of ICU-onset CDI here is similar to those in Europe and North America, suggesting that CDI is likely to be a common problem in China. Toxigenic C. difficile here belonged to a variety of STs, which may represent a significant clonal expansion rather than the true clonal diversity.  相似文献   

14.
A total of 35 Brazilian isolates of Clostridium difficile from faecal stools and four isolates from hospital environments were analyzed by PCR ribotyping. A whole cell protein profile (as an alternative for serogrouping), in vitro toxin production and susceptibility to vancomycin, metronidazole and clindamycin were also investigated. All strains were typeable by both phenotypic and genotypic methods, and a total of 13 different PCR ribotypes were identified, of which seven (132, 133, 134, 135, 136, 142 and 143) were considered new types and accounted for 78.5% of all samples evaluated (including hospital environments). A non-toxigenic C. difficile PCR ribotype 133 was detected in all children groups examined (inpatients, outpatients and healthy children), whilst toxigenic PCR ribotypes 015, 131, 134 and 135 were associated mostly with symptomatic children. Serogroups G and D were disseminated both in patients from the community and from the pediatric hospital, with group G prevalent among outpatient children. All strains were susceptible to vancomycin and metronidazole but high levels of resistance to clindamycin were found, especially among serogroups G and D. Co-existence of different ribotypes and serogroups in the same individual was observed. The new seven ribotypes found in this investigation may represent strains characteristic of this region of Brazil.  相似文献   

15.
16.
Clostridium difficile is an important nosocomial enteric pathogen and is the etiological agent of pseudomembranous colites. Recently, the rates of C. difficile infection (CDI) have increased worldwide, but in Brazil few data about this situation and the incidence of clonal types of C. difficile exist. This study aimed to isolate and characterize C. difficile strains from samples obtained of a university hospital (HUCFF) in Rio de Janeiro city, Brazil. CDI was identified by ELISA in 27.1% of HUCFF-in-patients enrolled in the study, and the bacterium was recovered from eight of these fecal samples. All strains, except one, presented tcdA and tcdB genes and presented neither the cdtA and cdtB genes nor any significant deletions in the tcdC gene. All strains were sensitive to metronidazole, vancomycin and moxifloxacin, and resistant to clindamycin, ciprofloxacin and levofloxacin. PCR-ribotyping and PFGE revealed four different clonal types among the isolates. The Brazilian PCR-ribotype 133 accounted for 50% of strains isolated, and PCR-ribotype 233 strains were obtained from 25% of the in-patients. The prevalence and resurgence of the Brazilian PCR-ribotype 133 among the hospitalized patients of HUCFF was established, and cross-infection of different patients associated to the same PCR-ribotypes was detected. Our results emphasize the importance of the diagnosis and control of CDI in order to prevent the emergence of specific clones that can lead to C. difficile-associated outbreaks in Brazilian hospitals.  相似文献   

17.

Introduction

We investigated the changing trend of various toxigenic Clostridium difficile isolates at a 3 500-bed hospital in Taiwan. Genetic relatedness and antimicrobial susceptibility of toxigenic C. difficile isolates were also examined.

Methods

A total of 110 non-repeat toxigenic C. difficile isolates from different patients were collected between 2002 and 2007. Characterization of the 110 toxigenic isolates was performed using agar dilution method, multilocus variable-number tandem-repeat analysis (MLVA) genotyping, tcdC genotyping, and toxinotyping.

Results

Among the 110 toxigenic isolates studied, 70 isolates harbored tcdA and tcdB (A+B+) and 40 isolates harbored tcdB only (AB+). The annual number of A+B+ isolates considerably increased over the 6-year study (P = 0.055). A total of 109 different MLVA genotypes were identified, in which A+B+ isolates and AB+ isolates were differentiated into two genetic clusters with similarity of 17.6%. Twenty-four (60%) of the 40 AB+ isolates formed a major cluster, MLVA-group 1, with a similarity of 85%. Seven (6.4%) resistant isolates were identified, including two metronidazole-resistant and five vancomycin-resistant isolates.

Conclusions

This study indicated a persistence of a MLVA group 1 AB+ isolates and an increase of A+B+ isolates with diverse MLVA types. Moreover, C. difficile isolates with antimicrobial resistance to metronidazole or vancomycin were found to have emerged. Continuous surveillance is warranted to understand the recent situation and control the further spread of the toxigenic C. difficile isolates, especially among hospitalized patients.  相似文献   

18.
19.
We have developed and validated a rapid molecular screening protocol for toxigenic Clostridium difficile, that also enables the identification of the hypervirulent epidemic 027/NAP1 strain. We describe a multiplex real-time PCR assay, which detects the presence of the tcdA and tcdB genes directly in stool samples. In case of positive PCR results, a separate multiplex real-time PCR typing assay was performed targeting the tcdC gene frame shift mutation at position 117. We prospectively compared the results of the screening PCR with those of a cytotoxicity assay (CTA), and a rapid immuno-enzyme assay for 161 stool samples with a specific request for diagnosis of C. difficile infection (CDI). A total of 16 stool samples were positive by CTA. The screening PCR assay confirmed all 16 samples, and gave a PCR positive signal in eight additional samples. The typing PCR assay detected the tcdC Δ117 mutation in 2/24 samples suggesting the presence of the epidemic strain in these samples. This was confirmed by PCR ribotyping and sequencing of the tcdC gene. Using CTA as the “gold standard”, the sensitivity, specificity, positive predictive value, and negative predictive value, for the screening PCR were 100%, 94.4%, 66.7%, and 100%, respectively. In conclusion, PCR may serve as a rapid negative screening assay for patients suspected of having CDI, although the low PPV hamper the use of PCR as a standalone test. However, PCR results may provide valuable information for patient management and minimising the spread of the epidemic 027/NAP1 strain.  相似文献   

20.
《Anaerobe》2009,15(6):234-236
BackgroundClostridium difficile infection (CDI) has been increasing in incidence and severity in recent years, coincident with the spread of a “hypervirulent” strain, REA type BI (ribotype 027, PFGE NAP 1). Exacerbating the problem has been the observation that metronidazole may be showing decreased effectiveness, particularly in the more severe cases. Fidaxomicin is an 18-membered macrocycle currently in phase 3 trials for the treatment of C. difficile infection (CDI). An open-label, phase II study in CDI patients has been completed and the clinical results published. C. difficile organisms were isolated from patient stool specimens and typed by restriction endonuclease analysis (REA) in order to determine the frequency and susceptibility of the C. difficile isolates and their response to treatment.MethodsFecal samples were plated on CCFA agar for isolation of C. difficile. These isolates were tested for susceptibility to fidaxomicin, vancomycin, and metronidazole using CLSI agar dilution methods and were typed by REA.ResultsC. difficile was isolated from 38 of 49 subjects and 16 (42%) were the epidemic C. difficile BI group. The BI strain was distributed approximately equally in the three dosing groups. Overall antibiotic susceptibilities were consistent with the previously reported MIC90 values for the three antibiotics tested, but the MIC90 of BI strains was two dilutions higher than non-BI strains for metronidazole and vancomycin (for both antibiotics, MIC90 was 2 μg/mL vs. 0.5 μg/mL, P < 0.01 for metronidazole, P = NS for vancomycin). Clinical cure for BI isolates (11/14, 79%) was not significantly different from non-BI isolates (21/22, 95%).ConclusionThese results underscore the high prevalence of the BI epidemic strain and demonstrate that mild to moderate CDI infection as well as severe disease can be caused by these strains. Fidaxomicin cure rates for subjects with BI and with non-BI strains are similar, although the small numbers of subjects preclude a robust statistical comparison.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号