首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Radioactivity eventually destined for the chromatophore membrane of Rhodopseudomonas sphaeroides was shown in pulse-chase studies to appear first in a distinct pigmented fraction. The material formed an upper pigmented band which sedimented more slowly than chromatophores when cell-free extracts were subjected directly to rate-zone sedimentation on sucrose density gradients. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the purified fraction contained polypeptide bands of the same mobility as light-harvesting bacteriochlorophyll alpha and reaction center-associated protein components of chromatophores; these were superimposed upon cytoplasmic membrane polypeptides. The pulse-chase relation was confined mainly to the polypeptide components of these pigment-protein complexes. It is suggested that the isolated fraction may be derived from sites at which new membrane invagination is initiated.  相似文献   

2.
Previous pulse-chase studies have shown that bacteriochlorophyll a-protein complexes destined eventually for the photosynthetic (chromatophore) membrane of Rhodopseudomonas sphaeroides appear first in a distinct pigmented fraction. This rapidly labeled material forms an upper band when extracts of phototrophically grown cells are subjected directly to rate-zone sedimentation. In the present investigation, flash-induced absorbance changes at 605 nm have demonstrated that the upper fraction is enriched two-fold in photochemical reaction center activity when compared to chromatophores; a similar enrichment in the reaction center-associated B-875 antenna bacteriochlorophyll complex was also observed. Although b- and c-type cytochromes were present in the upper pigmented band, no photoreduction of the b-type components could be demonstrated. The endogenous c-type cytochrome (Em = +345 mV) was photooxidized slowly upon flash illumination. The extent of the reaction was increased markedly with excess exogenous ferrocytochrome c but only slightly in chromatophores. Only a small light-induced carotenoid band shift was observed. These results indicate that the rapidly labeled fraction contains photochemically competent reaction centers associated loosely with c-type and unconnected to b-type cytochrome. It is suggested that this fraction arises from new sites of cytoplasmic membrane invagination which fragment to form leaky vesicles upon cell disruption.  相似文献   

3.
Sites of intracytoplasmic membrane growth and temporal relations in the assembly of photosynthetic units were examined in synchronously dividing Rhodopseudomonas sphaeroides cells. After rate-zone sedimentation of cell-free extracts, apparent sites of initiation of intracytoplasmic membrane growth formed an upper pigmented band that sedimented more slowly than the intracytoplasmic membrane-derived chromatophore fraction. Throughout the cell cycle, the levels of the peripheral B800-850 light-harvesting pigment-protein complex relative to those of the core B875 complex in the upper pigmented fraction were only about half those of chromatophores. Pulse-labeling studies with L-[35S]methionine indicated that the rates of assembly of proteins in the upper pigmented fraction were much higher than those of chromatophores throughout the cell cycle; rates for the reaction center polypeptides were estimated to be approximately 3.5-fold higher than in chromatophores when the two membrane fractions were equalized on a protein basis. In pulse-chase studies, radioactivity of the reaction center and B875 polypeptides increased significantly in chromatophores and decreased in the upper pigmented band during cell division. These data suggest that the B875 reaction center cores of the photosynthetic units are inserted preferentially into sites of membrane growth initiation isolated in the upper pigmented band and that the incomplete photosynthetic units are transferred from their sites of assembly into the intracytoplasmic membrane during cell division. These results suggested further that B800-850 is added directly to the intracytoplasmic membrane throughout the cell cycle.  相似文献   

4.
Previous pulse-chase studies have shown that bacteriochlorophyll a-protein complexes destined eventually for the photosynthetic (chromatophore) membrane of Rhodopseudomonas sphaeroides appear first in a distinct pigmented fraction. This rapidly labeled material forms an upper band when extracts of phototrophically grown cells are subjected directly to rate-zone sedimentation. In the present investigation, flash-induced absorbance changes at 605 nm have demonstrated that the upper fraction is enriched two-fold in photochemical reaction center activity when compared to chromotophores; a similar enrichment in the reaction center-associated B-875 antenna bacteriochlorophyll complex was also observed. Although b- and c-type cytochromes were present in the upper pigmented band, no photoreduction of the b-type components could be demonstrated. The endogenous c-type cytochrome (Em = +345 mV) was photooxidized slowly upon flash illumination. The extent of the reaction was increased markedly with excess exogenous ferrocytochrome c but only slightly in chromatophores. Only a small light-induced carotenoid band shift was observed. These results indicate that the rapidly labeled fraction contains photochemically competent reaction centers associated loosely with c-type and unconnected to b-type cytochrome. It is suggested that this fraction arises from new sites of cytoplasmic membrane invagination which fragment to form leaky vesicles upon cell disruption.  相似文献   

5.
In cell-free extracts from low-aeration suspensions of Rhodospirillum rubrum strain G-9, bacteriochlorophyll a was distributed in two bands after rate-zone sedimentation in sucrose density gradients. From the physicochemical properties of these fractions, it was concluded that the upper band consisted of small membrane fragments, whereas the major band was composed of fragmented vesicular intracytoplasmic membrane (chromatophores). After a pulse with L-[35S]methionine, apparent polypeptide subunits of the reaction center and light-harvesting complexes within the upper pigmented fraction were labeled more rapidly than those of chromatophores; after a chase with excess unlabeled L-methionine, radioactivity from these components within the upper band appeared to be chased into the corresponding polypeptides of chromatophores. These labeling patterns are interpreted to reflect growth initiation and maturation of the photosynthetic apparatus and may, in part, represent a general mechanism for the development of vesicular intracytoplasmic membranes.  相似文献   

6.
The separation of membrane fragments was investigated in extracts of phototropically grown Rhodopseudomonas sphaeroides to determine if the plasma membrane contains discrete regions. A highly purified fraction of bacteriochlorophyll a-deficient membrane fragments was isolated by differential centrifugation, chromatography on Sepharose 2B, reaggregation, and isopycnic sedimentation on sucrose gradients. Significant levels of b- and c-type cytochromes and succinate dehydrogenase were demonstrated in the isolated membrane fragments and their appearance in electron micrographs, their polypeptide profile in dodecyl sulfate-polyacrylamide gel electrophoresis, and overall chemical composition were essentially identical to a similar fraction isolated from aerobically grown cells. Their polypeptide profiles were distinct from those of the intracytoplasmic chromatophore and outer membranes, and on the basis of bacteriochlorophyll content the phototrophic fraction was contaminated with chromatophores by <9%. The membrane fragments contained no diaminopimelic acid or glucosamine. It is concluded that the membrane fragments isolated from phototrophically growing Rp. sphaeroides have arisen from photosynthetic pigment-depleted regions of the plasma membrane structurally and functionally differentiated from the intracytoplasmic chromatophore membrane. These regions represent conserved chemotrophic cytoplasmic membrane whose synthesis continues under photoheterotrophic conditions.  相似文献   

7.
C.Neil Hunter  Owen T.G. Jones 《BBA》1979,545(2):325-338
Reaction centres purified from a blue-green mutant R-26 of Rhodopseudomonas sphaeroides can be incorporated into bacteriochlorophyll-less membranes purified from an aerobically-grown bacteriochlorophyll-less mutant 01 of R. sphaeroides. This can be accomplished by raising the temperature of the mixture or by addition of the detergent sodium cholate and its subsequent removal by dilution or dialysis. Optimum conditions for the reconstitution are at 4°C in the presence of 1% cholate and soybean phospholipid (2 : 1, w/w, with membrane protein). Isopycnic sucrose density gradient centrifugation of such preparations shows that reaction centres and light-harvesting pigment-protein complex bind to the membranes. Reconstituted membranes exhibit light-induced steady-state cytochrome absorbance changes resembling those observed in chromatophores prepared from the photosynthetically-grown mutant R-26. The effect on these absorbance changes of varying reaction centre content in the membrane has been studied, and the time course of the interaction between 01 membrane cytochrome c2 and added reaction centre examined.Cytochrome b photoreduction and cytochrome c2 photo-oxidation were observed in the reconstituted preparation; each increased following the addition of antimycin A, suggesting that a cyclic light-driven system had been reconstituted.  相似文献   

8.
The kinetics of light-driven electron flow and the nature of redox centers at apparent photosynthetic membrane growth initiation sites in Rhodopseudomans sphaeroides were compared to those of intracytoplasmic photosynthetic membranes. In sucrose gradients, these membrane growth sites sediment more slowly than intracytoplasmic membrane-derived chromatophores and form an upper pigmented band. Cytochromes c1, c2, b561, and b566 were demonstrated in the upper fraction by redox potentiometry; c-type cytochromes were also detected electrophoretically. Signals characteristic of light-induced reaction center bacteriochlorophyll triplet and photooxidized reaction center bacteriochlorophyll dimer states were observed by EPR spectroscopy but the Rieske iron-sulfur signal of the ubiquinol-cytochrome c2 oxidoreductase was present at a 3-fold reduced level on a reaction center basis in comparison to chromatophores. Flash-induced absorbance measurements of the upper pigmented fraction demonstrated reaction center primary and secondary semiquinone anion acceptor signals, but cytochrome b561 photoreduction and cytochrome c1/c2 reactions occurred at slow rates. This fraction was enriched approximately 2- and 4-fold in total b- and c-type cytochromes, respectively, per reaction center over chromatophores, but photoreducible b-type cytochrome was lower. Measurements of respiratory activity indicated a 1.6-fold higher level of succinate-cytochrome c oxidoreductase/reaction center than in chromatophores, but the apparent turnover rates in both preparations were low. Overall, the results suggest that complete cycles of rapid, light-driven electron flow do not occur merely by introduction of newly synthesized reaction centers into respiratory membrane, but that subsequent synthesis and assembly of appropriate components of the ubiquinol-cytochrome c2 oxidoreductase is required.  相似文献   

9.
The B800–850 antenna complex of Rhodopseudomonas sphaeroides was studied by comparing the spectral properties of several different types of complexes, isolated from chromatophores by means of the detergents lithium dodecyl sulfate (LDS) or lauryl dimethylamine N-oxide (LDAO). Fluorescence polarization spectra of the BChl 800 emission at 4 K indicated that rapid energy transfer between at least two BChl 800 molecules occurs with a rate constant of energy transfer kET > 3 · 1012 s?1. The maximal dipole-dipole distance between the two BChl 800 molecules was calculated to be 18–19 Å. The porphyrin rings of the BChl 800 molecules are oriented parallel to each other, while their Qy transition moments are mutually perpendicular. The energy-transfer efficiency from carotenoid to bacteriochlorophyll measured in different complexes showed that two functionally different carotenoids are present associated with, respectively, BChl 800 and BChl 850. Fluorescence polarization and linear dichroism spectra revealed that these carotenoids have different absorption spectra and a different orientation with respect to the membrane. The carotenoid associated with BChl 800 absorbs some nanometers more to the red and its orientation is approximately parallel to the membrane, while the carotenoid associated with BChl 850 is oriented more or less perpendicular to the membrane. The fluorescence polarization of BChl 850 was the same for the different complexes. This indicates that the observed polarization of the fluorescence is determined by the smallest complex obtained which contains 8–10 BChl 850 molecules. The B800–850 complex isolated with LDAO thus must consist of a highly ordered array of smaller structures. On basis of these results a minimal model is proposed for the basic unit consisting of four BChl 850 and two BChl 800 and three carotenoid molecules.  相似文献   

10.
All the major membrane proteins of isolated chromatophore vesicles are eventually degraded upon incubation with the unspecific proteinase K. These proteins must therefore be exposed at least partially or temporarily on the cytosolic surface of the membrane which is exclusively accessible to the proteinase in intact chromatophore vesicles. That the vesicles are intact during the incubation with proteinase is demonstrated by the finding that cytochrome c2, which is located in the interior of the vesicles, is protected from proteolytic attack. The degree of degradation of the various chromatophore proteins and the time taken for degradation differ characteristically. From the changes in intensity of the gel bands during the course of digestion it appears that reaction center subunit H is digested first, much faster than are subunits M and L. The near-infrared absorption spectrum of the chromatophores changes only after proteolytic degradation of these two pigment-carrying subunits. Fading of the band of the light-harvesting polypeptide is evident only after prolonged incubation. It seems that this is the most stable component of the chromatophore membrane. The light-harvesting polypeptide appears to be somewhat shortened eventually, leaving the protein conformation necessary for holding the pigments unchanged, as shown by the absorption spectrum. The possible topology of these major membrane components is discussed in the light of these findings.  相似文献   

11.
Electrophoresis of thylakoid membrane polypeptides from Chlamydomonas reinhardi revealed two major polypeptide fractions. But electrophoresis of the total protein of green cells showed that these membrane polypeptides were not major components of the cell. However, a polypeptide fraction whose characteristics are those of fraction c (a designation used for reference in this paper), one of the two major polypeptides of thylakoid membranes, was resolved in the electrophoretic pattern of total protein of green cells. This polypeptide could not be detected in dark-grown, etiolated cells. Synthesis of the polypeptide occurred during greening of etiolated cells exposed to light. When chloramphenicol (final concentration, 200 µg/ml) was added to the medium during greening to inhibit chloroplastic protein synthesis, synthesis of chlorophyll and formation of thylakoid membranes were also inhibited to an extent resulting in levels of chlorophyll and membranes 20–25% of those found in control cells. However, synthesis of fraction c was not affected by the drug. This polypeptide appeared in the soluble fraction of the cell under these conditions, indicating that this protein was synthesized in the cytoplasm as a soluble component. When normally greening cells were transferred from light to dark, synthesis of the major membrane polypeptides decreased. Also, it was found that synthesis of both subunits of ribulose 1, 5-diphosphate carboxylase was inhibited by chloramphenicol, and that synthesis of this enzyme stopped when cells were transferred from light to dark.  相似文献   

12.
Cytochrome c2 was removed by washing from heavy chromatophores prepared from Rhodopseudomonas capsulata cells. The easy removal of the cytochrome could indicate that it was attached on the outside of the membrane. Therefore, the membrane was probably oriented inside out in relation to the membrane of regular chromatophores, from which cytochrome c2 could not be removed. Washing of the heavy chromatophores caused loss of photphosphorylation activity. The activity was restored to the resolved heavy chromatophores by the supernatant obtained during the washing or by the native cytochrome c2, which was found to be the active component in this supernatant. The activity could not be restored by other c-type cytochromes. Ascorbate, which enhanced photophosphorylation activity in the heavy chromatophores at the optimal concentration of 8 mm, restored this activity to the washed heavy chromatophores, but at an optimum concentration of 50 mm. Cytochrome c2 and dichlorophenol indophenol reduced the optimum of the ascorbate concentration to 7 mm. This might indicate that the effect of ascorbate is mediated through cytochrome c2. Washing the heavy chromatophores caused 70% loss of the light-induced electron transport from ascorbate and from ascorbate-reduced dichlorophenol indophenol to O2. However, this effect was only observed with the lower concentrations of ascorbate and the dye. The activity was restored either by the supernatant obtained from the washing or by various c-type cytochromes, reduced by ascorbate. Washing the heavy chromatophores did not affect succinate oxidation in the dark. It is suggested that cytochrome c2 is one of the cytochromes catalyzing the photosynthetic cyclic electron transport, as has been seen from its high specificity in the reconstitution experiments. Light can induce oxidation of various c-type cytochromes and other redox reagents. However, reduction was specific for cytochrome c2 from Rps. capuslata, since it was the only one which could be both reduced and oxidized as required from a component which is part of a cyclic electron transport chain. It is also suggested that cytochrome c2 was not part of the succinate oxidase system.  相似文献   

13.
The mechanism of light-induced O2 uptake by chromatophores and isolated P-870 reaction center complexes from Rhodospirillum rubrum has been investigated.The process is inhibited by o-phenanthroline and also by an extraction of loosely bound quinones from chromatophores. Vitamin K-3 restored the o-phenanthroline-sensitive light-induced O2 uptake by the extracted chromatophores and stimulated the O2 uptake by the reaction center complexes. It is believed that photooxidase activity of native chromatophores is due to an interaction of loosely bound photoreduced ubiquinone with O2. Another component distinguishable from the loosely bound ubiquinone is also oxidized by O2 upon the addition of detergents (lauryldimethylamine oxide or Triton X-100) to the illuminated reaction center complexes and to the extracted or native chromatophores treated by o-phenanthroline. Two types of photooxidase activity are distinguished by their dependence on pH.The oxidation of chromatophore redox chain components due to photooxidase activity as well as the over-reduction of these components in chromatophores, incubated with 2,3,5,6-tetramethyl-p-phenylenediamine (Me4Ph(NH2)2) or N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) (plus ascorbate) in the absence of exogenous electron acceptors, leads to an inhibition of the membrane potential generation, as measured by the light-induced uptake of penetrating phenyldicarbaundecaborane anions (PCB?) and tetraphenylborate anions. The inhibition of the penetrating anion responses observed under reducing conditions is removed by oxygen, 1,4-naphthoquinone, fumarate, vitamin K-3 and methylviologen, but not by NAD+ or benzylviologen. Since methylviologen does not act as an electron acceptor with the extracted chromatophores, it is believed that this compound, together with fumarate and O2, gains electrons at the level of the loosely bound ubiquinone. Data on the relationship between photooxidase activity and membrane potential generation by the chromatophores show that non-cyclic electron transfer from reduced Me4Ph(NH2)2 to the exogenous acceptors is an electrogenic process, whereas non-cyclic electron transfer from reduced TMPD is non-electrogenic.Being oxidized, Me4Ph(NH2)2 and TMPD are capable of the shunting of the cyclic redox chain of the chromatophores. Experiments with extracted chromatophores show that the mechanisms of the shunting by Me4Ph(NH2)2 and TMPD are different.  相似文献   

14.
The separation of membrane fragments was investigated in extracts of phototropically grown Rhodopseudomonas sphaeroides to determine if the plasma membrane contains discrete regions. A highly purified fraction of bacteriochlorophyll alpha-deficient membrane fragments was isolated by differential centrifugation, chromatography on Sepharose 2B, reaggregation, and isopycnic sedimentation on sucrose gradients. Significant levels of b- and c-type cytochromes and succinate dehydrogenase were demonstrated in the isolated membrane fragments and their appearance in electron micrographs, their polypeptide profile in dodecyl sulfate-polyacrylamide gel electrophoresis, and overall chemical composition were essentially identical to a similar fraction isolated from aerobically grown cells. Their polypeptide profiles were distinct from those of the intracytoplasmic chromatophore and outer membranes, and on the basis of bacteriochlorophyll content the phototrophic fraction was contaminated with chromatophores by less than 9%. The membrane fragments contained no diaminopimelic acid or glucosamine. It is condluded that the membrane fragments isolated from phototrophically growing Rp. sphaeroides have arisen from photosynthetic pigment-depleted regions of the plasma membrane structurally and functionally differentiated from the intracytoplasmic chromatophore membrane. These regions represent conserved chemotrophic cytoplasmic membrane whose synthesis continues under photoheterotrophic conditions.  相似文献   

15.
In purple bacteria, photosynthesis is carried out on large indentations of the bacterial plasma membrane termed chromatophores. Acting as primitive organelles, chromatophores are densely packed with the membrane proteins necessary for photosynthesis, including light harvesting complexes LH1 and LH2, reaction center (RC), and cytochrome bc1. The shape of chromatophores is primarily dependent on species, and is typically spherical or flat. How these shapes arise from the protein-protein and protein-membrane interactions is still unknown. Now, using molecular dynamics simulations, we have observed the dynamic curvature of membranes caused by proteins in the chromatophore. A membrane-embedded array of LH2s was found to relax to a curved state, both for LH2 from Rps. acidophila and a homology-modeled LH2 from Rb. sphaeroides. A modeled LH1-RC-PufX dimer was found to develop a bend at the dimerizing interface resulting in a curved shape as well. In contrast, the bc1 complex, which has not been imaged yet in native chromatophores, did not induce a preferred membrane curvature in simulation. Based on these results, a model for how the different photosynthetic proteins influence chromatophore shape is presented.  相似文献   

16.
Two fractions of membrane preparations, a heavy and a light one were isolated from mildly broken Rhodopseudomonas capsulata cells. The light fraction which contained vesicles similar to the regular chromatophores obtained by sonication and a heavy fraction which appeared in electron micrographs to consist of cell fragments which were designated as heavy chromatophores and were composed of broken cell envelopes containing closely packed vesicles enclosed within the cytoplasmic membrane. Both types of chromatophores catalyzed photophosphorylation. However, cytochrome c2 could be washed out only from the heavy chromatophores. Photophosphorylation activity which was lost by the removal of the cytochrome could be restored by addition of either cytochrome c2 or phenazine methosulphate. Light induced proton efflux in heavy chromatophores in contrast to proton influx in regular chromatophores. The washed heavy chromatophores did not lose the light induced proton movement. Light induced quenching of 9-aminoacridine and atebrin fluorescence in chromatophores, while the fluorescence was enhanced in the heavy chromatophores. The washing did not affect the fluorescence changes of the heavy chromatophores but caused a reduction of the steady state of the carotenoid absorbance shift. It is suggested that the membrane in the heavy chromatophores is oriented inside out with respect to the membrane in regular chromatophores. Cytochrome c2 which is attached to that side of the membrane facing the outside medium could be removed from the heavy chromatophors and reconstituted to them. The role of cytochrome c2 in photophosphorylation is discussed.  相似文献   

17.
The aerobic photooxidations of reduced 2,6-dichlorophenolindophenol and of reaction-center bacteriochlorophyll (P-870) have been investigated in membrane vesicles (chromatophores) isolated from a non-phototrophic Rhodospirillum rubrum strain. In aerobic suspensions of wild-type chromatophores, continuous light elicits an increase of the levels of 2,6-dichlorophenolindophenol and of oxidized P-870, which reach steady-state values shortly after the onset of illumination. In contrast, light induces in mutant suspensions a transient increase of the levels of 2,6-dichlorophenolindophenol and of oxidized P-870, which fall to low steady-state values within a few seconds. These observations suggest that the mutation has altered a redox constituent located on the low-potential side of the photochemical reaction center, between a pool of acceptors and oxygen.Since endogenous cyclic photophosphorylation is catalyzed by mutant chromatophores at normal rates, it appears that the constituent altered by the mutation does not belong to the cyclic electron-transfer chain responsible for photophosphorylation. However, the system which mediates the aerobic photooxidations and the cyclic system are not completely independent: endogenous photophosphorylation is inhibited by oxygen in wild-type chromatophores but not in mutant chromatophores; in addition, the inhibitor of cyclic electron flow, 2-heptyl-4-hydroxyquinoline-N-oxide, enhances the aerobic photooxidation of reduced 2,6-dichlorophenolindophenol by chromatophores from both strains.These results support a tentative branched model for light-driven electron transfer. In that model, the constituent altered in the mutant strain is located in a side electron-transfer chain which connects the cyclic acceptors to oxygen.  相似文献   

18.
The photosynthetic electron transport chain in Rhodopseudomonas capsulata cells was investigated by studying light-induced noncyclic electron transport from external donors to O2. Two membrane preparations with opposite membrane polarity, heavy chromatophores and regular chromatophores, were used to characterize this electron transport. It was shown that with lipophylic electron donors such as dichloroindophenol, diaminobenzidine, and phenazine methosulfate the electron transport activities were similar in both types of chromatophores, whereas horse heart cytochrome c, K4Fe(CN)6, 3-sulfonic acid phenazine methosulfate, and ascorbate, which cannot penetrate the membrane, were more active in the heavy chromatophores than in the regular chromatophores. Partial depletion of cytochrome c2 from the heavy chromatophores caused a decrease in the light-induced O2 uptake from reduced dichloroindophenol or ascorbate. The activity could be restored with higher concentrations of dichloroindophenol or with purified cytochrome c2 from Rps. capsulata. It is assumed that in the heavy chromatophores the artificial electron donors are oxidized on the cytochrome c2 level which faces the outside medium. However, cytochrome c2 is not exposed to the outside medium in the regular chromatophores. Therefore, only lipophylic donors would interact with cytochrome c2 in this system, while hydrophylic donors would be oxidized by another component of the electron transport chain which is exposed to the external medium. Studies with inhibitors of photophosphorylation show that antimycin A enhances the light-dependent electron transport to O2 whereas 1:10 phenanthroline inhibited the reaction, but dibromothymoquinone did not affect it. It is assumed that a nonheme iron protein is taking part in this electron transport but not a dibromothymoquinone-sensitive quinone. The terminal oxidase of the light-dependent pathway is different from the two oxidases of the respiratory chain. The ratio between electrons entering the system and molecules of O2 consumed is 4, which means that the end product of O2 reduction is H2O.  相似文献   

19.
20.
Antimycin A causes a biphasic suppression of the light-induced membrane potential generation in Rhodospirillum rubrum and Rhodopseudomonas sphaeroides chromatophores incubated anaerobically. The first phase is observed at low antibiotic concentrations and is apparently due to its action as a cyclic electron transfer inhibitor. The second phase is manifested at concentrations which are greater than 1–2 μM and is due to uncoupling that may be connected with an antibiotic-induced dissipation of the electrochemical H+ gradient across the chromatophore membrane. The inhibitory effect of anti-mycin added at low concentrations under aerobic conditions is removed by succinate to a large extent. It is expected that the electrogenic cyclic redox chain in the bacterial chromatophores incubated under conditions of continuous illumination may function at two regimes: (1) as a complete chain involving all the redox components, and (2) as a shortened chain involving only the P-870 photoreaction center, ubiquinone and cytochrome c2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号