首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here on a series of studies aimed at characterization of the structural and dynamical properties of the synthetic lipid diphytanoyl phosphatidylcholine, in multilamellar dispersions and vesicle suspensions. The lipid exhibits no detectable gel to liquid crystalline phase transition over a large temperature range (-120 degrees C to +120 degrees C). Examination of proton nuclear magnetic resonance (NMR) free induction decays obtained from multilayer dispersions of diphytanoyl phosphatidylcholine provided an estimate of the methylene proton order parameter. The estimated magnitude of 0.21 is comparable to those determined for other phospholipids. Sonication of aqueous dispersions of diphytanoyl phosphatidylcholine led to formation of bilayer vesicles as determined by the measurement of the outer/inner choline methyl proton resonances, vesicle sizes in electron micrographs, and comparison of proton NMR linewidths between multilayer and sonicated dispersions. Ultracentrifugation studies of diphytanoyl phosphatidylcholine vesicles in H2O and 2H2O media yielded a value of 1.013 +/- 0.026 ml/g for the partial specific volume of this lipid. We have measured spin lattice relaxation rates for the methyl and methylenemethyne protons of the hydrocarbon chains of diphytanoyl phosphatidylcholine in bilayer vesicles over a range of temperatures and at two NMR frequencies (100 and 220 MHz). The observed relaxation rates for the methylene protons in this system were approximately twice those previously reported for dipalmitoyl phosphatidylcholine at comparable temperatures and resonance frequencies, whereas the relaxation rates measured for the methyl protons were greater than those of the straight chain lipid by an order of magnitude. Measurement of the spin lattice relaxation rates of the hydrocarbon protons of the diphytanoyl phosphatidylcholine in a 10 mol% mixture of the branched-chain lipid in a deuterated host lipid, diperdeuteropalmitoyl phosphatidylcholine, showed a discontinuity in the temperature dependence of the proton NMR longitudinal relaxation rates of the branched-chain lipid in the region of the gel to liquid crystalline phase transition temperature of the deuterated dipalmitoyl phosphatidylcholine host lipid. This result may be taken as evidence of lateral phase separation of a liquid cyrstalline phase enriched in diphytanoyl phosphatidylcholine from a gel phase enriched in diperdeuteropalmitoyl phosphatidylcholine at temperatures below the phase transition temperature of deuterated host lipid. This conclusion is supported by the observation of an abrupt change in the hydrocarbon methylene linewidth (at 100 MHz) of 10 mol% diphytanoyl phosphatidylcholine in diperdeuteropalmitoyl phosphatidylcholine over the temperature range where lateral phase separation is taking place according to differential thermograms.  相似文献   

2.
2H NMR spectra have been observed for several selectively deuterated phospholipid and fatty acid probes intercalated in the liquid crystalline phase of egg phosphatidylcholine in aqueous dispersion. For unsonicated lamellar dispersions and planar multibilayers, quadrupole splittings may be observed which lead directly to a value for the order parameter for the carbon-deuterium bond. Sonicated dispersions yield high-resolution spectra, from which spin-lattice relaxation rates and correlation times for rotational diffusion can be obtained. The presence of cholesterol in the dispersion has no effect on the quadrupole splittings and relaxation rates for 2H in the choline methyl groups, in contrast to its profound effect on the spectra for 2H in the hydrocarbon chains.  相似文献   

3.
We have determined the relative magnitudes of the intra- and intermolecular contributions to the nuclear magnetic relaxation rates of the methylene protons of the hydrocarbon chains in phosphatidylcholine bilayer vesicles over a range of temperatures and at two NMR frequencies (100 and 220 MHz). These measurements have been made by the isotopic dilution method using deuterated phosphatidylcholines containing fully deuterated hydrocarbon chains. The results showed that both the methylene linewidths and the spin-lattice relaxation rates are dominated by intramolecular dipolar interactions. Both the intra- and intermolecular contributions to the spin-lattice relaxation rate were found to decrease with increasing temperature and to exhibit a frequency dependence, the rates being higher at the lower NMR frequency in both cases. These observations indicate that both intra- and intermolecular dipolar interactions are modulated by anisotropic motions. In the case of the intermolecular dipolar fields, it is proposed that they are modulated both by the rapid rotational isomerization of the hydrocarbon chains as well as by lateral diffusion of the lipid molecules. That the hydrocarbon chain motion must be fairly effective in effecting efficient spin-lattice relaxation is evident from the negligible intramolecular interchain contribution to the relaxation found in the present work.  相似文献   

4.
Raman spectroscopic data indicate that the conformations of the two hydrocarbon chains of dipalmitoyl phosphatidylcholine in aqueous dispersions of the lipid differ signficantly. The compounds 1-palmitoyl, 2-palmitoyl-d31-3-sn-phosphatidylcholine and 1-palmitoyl-d31, 2-palmitoyl-3-sn-phosphatidylcholine were synthesized. Aqueous dispersions of these phospholipids display very similar phase behavior, with both premelting and melting transitions at nearly identical temperatures, midway between the comparable transition temperatures of undeuterated and completely deuterated dipalmitoyl phosphatidylcholine. We have monitored the state of chains 1 and 2 of these molecules simultaneously and independently by Raman spectroscopy. Raman difference spectra taken between samples of the two compounds under identical conditions show significant features. We attribute these spectral differences to nonequivalent conformations of the fatty acyl chains attached at positions 1 and 2 on the glycerol backbone. Below the pretransition the conformation of chain 2 is, on average, slightly less all-trans than is the chain at position 1. There is some evidence that the conformations of the terminal methyl group of the two chains are significantly different at low temperatures.  相似文献   

5.
Raman spectroscopic frequency differences between selected carbon-carbon stretching modes of lipid hydrocarbon chains were determined as a function of temperature for use in monitoring lipid phase transition behavior and acyl chain disorder in both multilamellar and single-wall vesicles. Transition temperatues detected by this procedure for pure dipalmitoyl phosphatidylcholine and dimyristoyl phosphatidylcholine multilayers were observed at 39±1 °C and 23±1 °C, respectively. Although the phase transition for unilamellar vesicles of dipalmitoyl phosphatidylcholine occurred at nearly the same temperature as the multilayers, the crystal-liquid crystalline transition for the single-shell vesicles appeared to span a slightly broader temperature range, a characteristic consistent with irregularities in the packing arrangement of the hydrocarbon chains. Within the precision of the Raman spectroscopic method, however, the temperature behavior of both the multilamellar and the unilamellar dimyristoyl phosphatidylcholine assemblies appeared nearly identical. The temperature profile for the Raman frequency differences of an excess water sonicate of 25 mol percent cholesterol in dipalmitoyl phosphatidylcholine served as an example of the effect upon lipid phase transition characteristics of a bilayer component intercalated between the acyl chains. For this particular cholesterol-lipid system the phase transition was broadened over a 30 °C temperature range, in contrast to the narrow 5?4 °C range observed for pure multilayer and single-shell vesicle particles.  相似文献   

6.
The orientation dependence of the low frequency NMR relaxation time, T(1rho), of protons in aligned phospholipid bilayers was measured using 13C cross polarisation and direct proton experiments. The contribution of intra- and inter-molecular interactions to proton T(1rho) was determined by using dimyristoyl phosphatidylcholine (DMPC) with one hydrocarbon chain deuterated and dispersed in perdeuterated DMPC. The results indicated that intramolecular motions on the kHz timescale were the major cause of T(1rho) relaxation in phospholipid bilayers.  相似文献   

7.
With the aid of paramagentic praseodymium ions the resonances at 60 MHz of the inward and outward facing choline methyl protons of sonicated egg yolk phosphatidylcholine vesicles were resolved. The subsequent addition of 2,2,6,6,-tetramethylpiperidine-N-oxyl (TEMPO) to the vesicle suspension broadened the inner and outer resonances equally. TEMPO easily penetrates the egg yolk phosphatidylcholine vesicles and has free access to the entire lipid volume above the gel to liquid crystalline transition temperature. The electron spin resonance (ESR) spectrum of TEMPO in the egg yolk phosphatidylcholine suspension exhibits features indicating that TEMPO dissolves principally in the hydrocarbon portion of the egg yolk phosphatidylcholine bilayer. The egg yolk phosphatidylcholine methylene chain proton resonances are also broadened by TEMPO notably to a greater extent than the choline methyl resonances. These data indicate that TEMPO should be more sensitive to the melting behavior of the fatty acyl chains of phospholipid suspensions than to the polar head groups.  相似文献   

8.
Activation of the first component of human complement (C1) by bilayer-embedded nitroxide spin label lipid haptens and specific rabbit antinitroxide antibody has been measured. The nitroxide spin label hapten was contained in host bilayers of either dimyristoyl phosphatidylcholine or dipalmitoyl phosphatidylcholine in the form of both liposomes and vesicles. At a temperature of 32 degrees C, which is intermediate between the hydrocarbon chain-melting temperatures of the two phospholipids, activation of C1 in such vesicles and liposomes is more efficient in the fluid membrane. Studies of C1 activation in binary mixtures of cholesterol and dipalmitoyl phosphatidylcholine indicate that the activation of C1 is not limited by the lateral diffusion of the lipid haptens in these membranes.  相似文献   

9.
We studied the properties of bilayers formed by ether-and ester-containing phospholipids, whose hydrocarbon chains can be either linear or branched, using sn-1,2 dipalmitoyl, dihexadecyl, diphytanoyl, and diphytanyl phosphatidylcholines (DPPC, DHPC, DPhoPC, and DPhPC, respectively) either pure or in binary mixtures. Differential scanning calorimetry and confocal fluorescence microscopy of giant unilamellar vesicles concurred in showing that equimolar mixtures of linear and branched lipids gave rise to gel/fluid phase coexistence at room temperature. Mixtures containing DHPC evolved in time (0.5 h) from initial reticulated domains to extended solid ones when an equilibrium was achieved. The nanomechanical properties of supported planar bilayers formed by each of the four lipids studied by atomic force microscopy revealed average breakdown forces Fb decreasing in the order DHPC ≥ DPPC > DPhoPC >> DPhPC. Moreover, except for DPPC, two different Fb values were found for each lipid. Atomic force microscopy imaging of DHPC was peculiar in showing two coexisting phases of different heights, probably corresponding to an interdigitated gel phase that gradually transformed, over a period of 0.5 h, into a regular tilted gel phase. Permeability to nonelectrolytes showed that linear-chain phospholipids allowed a higher rate of solute + water diffusion than branched-chain phospholipids, yet the former supported a smaller extent of swelling of the corresponding vesicles. Ether or ester bonds appeared to have only a minor effect on permeability.  相似文献   

10.
The saturation transfer electron spin resonance (STESR) spectra of spin-labeled phosphatidylcholines in gel phase lipid bilayers are shown to be sensitive to dipolar spin-spin interactions with paramagnetic ions in the aqueous phase. The reciprocal integrated intensity of the STESR spectrum is linearly dependent on aqueous Ni2+ ion concentration, hence, confirming the expectation that the STESR intensity is directly proportional to the spin-lattice relaxation time of the spin label. The gradient of the relaxation rate with respect to Ni2+ ion concentration decreases strongly with the position of the nitroxide group down the sn-2 chain of the spin-labeled lipid and is consistent with a 1/R3 dependence on the distance, R, from the bilayer surface. The values derived for the dimensions of the bilayer and lipid molecules in the case of dipalmitoyl phosphatidylcholine (DPPC) are in good agreement with those available from x-ray diffraction studies. Allowance for the multibilayer nature of the DPPC dispersions gives an estimate of the water layer thickness that is also consistent with results from x-ray diffraction. The profile of the paramagnetic ion-induced relaxation is drastically changed with DPPC dispersions in glycerol for which the lipid chains are known to be interdigitated in the gel phase. The terminal methyl groups of the lipid chains are located approximately in register with the C-3 atoms of the sn-2 chain of the oppositely oriented lipid molecules in the interdigitated phase. The thickness of the lipid layer and the effective thickness of the lipid polar group are reduced by ~40% in the interdigitated phase as compared with the bilayer phase. The calibrations of the distance dependence established by use of spin labels at defined chain positions should be applicable to STESR measurements on other biological systems.  相似文献   

11.
The structure and thermotropic phase behaviour of a fully hydrated binary mixture of dipalmitoylphosphatidylcholine and a branched-chain phosphatidylcholine, 1, 2-di(4-dodecyl-palmitoyl)-sn-glycero-3-phosphocholine, were examined using differential scanning calorimetry, synchrotron X-ray diffraction and freeze-fracture electron microscopy. The branched-chain lipid forms a nonlamellar phase when dispersed alone in aqueous medium. Mixed aqueous dispersions of the two phospholipids containing less than 33 mol% of the branched-chain lipid form lamellar phases over the whole temperature range were studied (4 degrees C to 60 degrees C). When present in proportions greater than 33 mol% it induces a hexagonal phase in mixed aqueous dispersions with dipalmitoylphosphatidylcholine at temperatures above the fluid phase transition. At temperatures below 35 degrees C a hexagonal phase coexists with a gel bilayer phase. The lamellar<-->nonlamellar transition can be explained satisfactorily on the basis of the shape of the molecule expressed in terms of headgroup and chain cross-sectional areas. At temperatures below 35 degrees C macroscopic phase separation of two gel phases takes place. Freeze-fracture electron microscopy revealed that one gel phase consists of bilayers with a highly regular, periodic superstructure (macro-ripples) whereas the other phase forms flat, planar bilayers. The macro-ripple phase appears to represent a relaxation structure required to adapt to the packing constraints imposed by the incorporation of the branched-chain lipid into the dipalmitoylphosphatidylcholine host bilayer. The data suggest that structural changes that take place on cooling the mixed dispersion below the lamellar<-->nonlamellar phase transition temperature cannot be adequately described using the molecular form concept. Instead it is necessary to take into account the detailed molecular form of the guest lipid as well as its physical properties.  相似文献   

12.
The polymorphic phase behavior of aqueous dispersions of a number of representative phosphatidylcholines with methyl iso-branched fatty acyl chains was investigated by Fourier transform infrared (FT-IR) and phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy. For the longer chain phosphatidylcholines, where two transitions are resolved on the temperature scale, the higher temperature event can unequivocally be assigned to the melting of the acyl chains (i.e., a gel/liquid-crystalline phase transition), whereas the lower temperature event is shown to involve a change in the packing mode of the methylene and carbonyl groups of the hydrocarbon chains in the gel state (i.e., a gel/gel transition). The infrared spectroscopic data suggest that the methyl iso-branched phosphatidylcholines assume a partially dehydrated, highly ordered state at low temperatures, resembling the Lc phase recently described for the long-chain n-saturated phosphatidylcholines. At higher temperatures, some branched-chain phosphatidylcholines appear to assume a fully hydrated, loosely packed gel phase similar to but not identical with the P beta, phase of their linear saturated analogues. Thus, the iso-branched phosphatidylcholine gel/gel transition corresponds, at least approximately, to a summation of the structural changes accompanying both the subtransition and the pretransition characteristic of the longer chain n-saturated phosphatidylcholines. The infrared spectroscopic data also show that, in the low-temperature gel state, there are significant differences between the odd- and even-numbered isoacylphosphatidylcholines with respect to their hydrocarbon chain packing modes as well as to their head group and interfacial hydration states.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We studied the properties of bilayers formed by ether-and ester-containing phospholipids, whose hydrocarbon chains can be either linear or branched, using sn-1,2 dipalmitoyl, dihexadecyl, diphytanoyl, and diphytanyl phosphatidylcholines (DPPC, DHPC, DPhoPC, and DPhPC, respectively) either pure or in binary mixtures. Differential scanning calorimetry and confocal fluorescence microscopy of giant unilamellar vesicles concurred in showing that equimolar mixtures of linear and branched lipids gave rise to gel/fluid phase coexistence at room temperature. Mixtures containing DHPC evolved in time (0.5 h) from initial reticulated domains to extended solid ones when an equilibrium was achieved. The nanomechanical properties of supported planar bilayers formed by each of the four lipids studied by atomic force microscopy revealed average breakdown forces Fb decreasing in the order DHPC ≥ DPPC > DPhoPC >> DPhPC. Moreover, except for DPPC, two different Fb values were found for each lipid. Atomic force microscopy imaging of DHPC was peculiar in showing two coexisting phases of different heights, probably corresponding to an interdigitated gel phase that gradually transformed, over a period of 0.5 h, into a regular tilted gel phase. Permeability to nonelectrolytes showed that linear-chain phospholipids allowed a higher rate of solute + water diffusion than branched-chain phospholipids, yet the former supported a smaller extent of swelling of the corresponding vesicles. Ether or ester bonds appeared to have only a minor effect on permeability.  相似文献   

14.
The CH2 proton NMR linewidths of sn-3 and sn-1 dipalmitoyl phosphatidylcholine respond differently to the addition of cholesterol to the lipid vesicles. This result points to a stereospecific phospholipid-cholesterol interaction in the "hydrogen belt" region.  相似文献   

15.
The ultrasonic absorption of large unilamellar vesicles (average diameter 0.2 micron) was determined in the frequency range 0.5-5 MHz. The liposomes were composed of a 4:1 mixture by weight of dipalmitoyl phosphatidylcholine and dipalmitoyl phosphatidylglycerol. They were studied with and without cholesterol or gramicidin incorporated into the bilayer. A large increase in absorption occurs at the solid to liquid-crystalline phase transition temperature (42 degrees C) of the pure lipid vesicles. This increase in absorption is interpreted as a structural relaxation of the 'melting' fatty acid chains occurring with an average relaxation time of 76 ns. The liposomes were also found to be extremely permeable near the transition temperature. Essentially complete release of cytosine arabinoside, a small water-soluble molecule, occurred at 42 degrees C. Addition of cholesterol or gramicidin to the bilayer of the liposomes broadened the ultrasonic absorption and reduced the efflux of cytosine arabinoside at the phase transition. No increase in absorption was observed at the transition temperature in the presence of 50 mol% of cholesterol. Gramicidin, in addition to broadening the transition, slows the isomerization of bonds in the hydrocarbon chains of the lipids. A concentration of 5 mol% gramicidin increased the average relaxation time to 211 ns.  相似文献   

16.
Infrared spectra were obtained as a function of temperature for a variety of phospholipid/water bilayer assemblies (80% water by weight) in the 3000-950 cm?1 region. Spectral band-maximum frequency parameters were defined for the 2900 cm?1 hydrocarbon chain methylene symmetric and asymmetric stretching vibrations. Temperature shifts for these band-maximum frequencies provided convenient probes for monitoring the phase transition behavior of both multilamellar liposomes and small diameter single-shell vesiclesof dipalmitoyl phosphatidylcholine/water dispersions. As examples of the effects of bilayer lipid/cholesterol/water (3 : 1 mol ratio) and lipid/cholesterol/amphotericin B/water (3 : 1 : 0.1 mol ratios) vesicles were examined using the methylene stretching frequency indices. In comparison to the pure vesicle form, the transition width of the lipid/cholesterol system increased by nearly a factor of two (to 8°C) while the phase transition temperature remained approximately the same (41° C). For the lipid/cholesterol/amphotericin B system, the phase transition temperature increased by about 4.5° C (to 45.5°C) with the transition width increasing by nearly a factor of four (to ≈ 15°C) above that of the pure vesicles. The lipid/cholesterol/amphotericin B data were interpreted as reflecting the formation below 38°C of a cholesterol/amphotericin B complex whose dissociation at higher temperature (38–60°C range) significantly broades the gel-liquid crystalline phase transition.  相似文献   

17.
Physicochemical studies on the binding of etomidate, a fast acting anaesthetic, with lipid bilayers have been carried out. ESR spin labeling studies indicate that the gel to liquid crystalline phase transition of dipalmitoyl phosphatidyl choline (DPPC) vesicles retains its cooperative nature on incorporation of the anaesthetic. For a 5:1 lipid to drug molar ratio, the phase transition occurs at an unusually lower temperature than those observed with other drug-DPPC systems. Results of 13C NMR and 1H NOE experiments suggest that the drug molecules reside in the close proximity of the terminal of hydrocarbon chains of the lipid molecules. 31P NMR and Electron Microscopic experiments indicate that the presence of etomidate alters the normal lamellar structure of DPPC vesicles into hexagonal (HII) type. Based on these observations, a model for drug-lipid binding has been proposed.  相似文献   

18.
2H nuclear magnetic resonance (NMR) of Acholesplasma laidlawii membranes grown on a medium supplemented with perdeuterated palmitic acid shows that at 42°C or above, the membrane lipids are entirely in a fluid state, exhibiting the characteristic ‘plateau’ in the variation of deuterium quadrupolar splitting with chain position. Between 42 and 34°C there is a well-defined gel-to-fluid phase transition encompassing the growth temperature of 37°C, and at lower temperatures the membranes are in a highly ordered gel state. The 2H-NMR spectra of the gel phase membranes are similar to those of multilamellar dispersions of chain perdeuterated dipalmitoyl phosphatidylcholine (Davis, J.H. (1979) Biophys. J. 27, 339) as are the temperature dependences of the spectra and their moments. The incorporation of large amounts of cholesterol into the membrane removes the gel to fluid phase transition. Between 20 and 42°C, the position dependence of the orientational order of the hydrocarbon chains of the membranes is similar to that of the fluid phase of the membranes without cholesterol, i.e., they exhibit the plateau in the deuterium quadrupolar splittings. However, the cholesterol-containing membranes have a higher average order, with the increases in order being greater for positions near the carbonyl group of the acyl chains. Below 20°C the 2H spectra of the membranes containing cholesterol change dramatically in a fashion suggestive of complex motional and/or phase behaviour.  相似文献   

19.
Two types of hydrocarbon chain interdigitation in sphingomyelin bilayers   总被引:4,自引:0,他引:4  
Vibrational Raman spectroscopic experiments have been performed as a function of temperature on aqueous dispersions of synthetic DL-erythro-N-lignoceroylsphingosylphosphocholine [C(24):SPM], a racemic mixture of two highly asymmetric hydrocarbon chain length sphingomyelins. Raman spectral peak-height intensity ratios of vibrational transitions in the C-H stretching-mode region show that the C(24):SPM-H2O system undergoes two thermal phase transitions centered at 48.5 and 54.5 degrees C. Vibrational data for fully hydrated C(24):SPM are compared to those of highly asymmetric phosphatidylcholine dispersions. The Raman data are consistent with the plausible model that the lower temperature transition can be ascribed to the conversion of a mixed interdigitated gel state (gel II) to a partially interdigitated gel state (gel I) and that the higher temperature transition corresponds to a gel I----liquid-crystalline phase transition. The observation of a mixed interdigitated gel state (gel II) at temperatures below 48.5 degrees C implies that biological membranes may have lipid domains in which some of the lipid hydrocarbon chains penetrate completely across the entire hydrocarbon width of the lipid bilayer.  相似文献   

20.
The effects of a number of barbiturates on the temperature of the lipid phase transition have been studied using chlorophyll a as a fluorescence probe. The barbiturates cause a reduction in the temperature of the phase transitions of dipalmitoyl phosphatidylcholine and dipalmitoyl phosphatidylethanolamine, the effects being greatest at lower pH values where more of the barbiturate is present in the uncharged form. There was no significant interaction between the barbiturates and dipalmitoyl phosphatidylserine. These and other observations on the actions of local anaesthetics are used to develop a model for local anaesthesia. It is suggested that the sodium channel is surrounded by an annulus of lipid in the gel state, this rigid microenvironment preventing the sodium channel relaxing from its active configuration to an inactive one. Local anaesthetics, which reduce the temperature of lipid phase transitions, trigger a change of the annular lipid from the gel to the liquid-crystalline state, with a consequent relaxation of the sodium channel to an inactive configuration, in which the sodium current is reduced or blocked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号