首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
M Cioffi 《Tissue & cell》1979,11(3):467-479
Light and electron microscopic examination of the midgut of Manduca sexta has shown that the organization of this tissue is more complex than was originally believed. The midgut can be divided into anterior, middle and posterior regions on the basis of the pattern of folding of the epithelial sheet, and variations in the structure of goblet and columnar cells which occur along its length. The columnar cells show gradual structural changes form the anterior to the posterior end of the midgut. For example, the microvilli in the anterior region form a dense, interconnecting network from which vesicles break off. This organization becomes less obvious through the middle region, until by the posterior region each microvillus is unconnected to adjacent microvilli along its entire length and vesicles are no longer produced. Two distinct types of goblet cells are found. In the anterior and middle regions the goblet cells have a large basally located cavity, but in the posterior region the cavity occupies only the apical half of the cell. In both cases the cavity is formed by invagination of the apical membrane, which is studded with small particles implicated in active ion transport. In the anterior and middle regions this membrane is closely associated with mitochondria, but not in the posterior region. The significance of the observed structural differences is discussed in relation to active ion transport.  相似文献   

2.
The alimentary canal of the spittlebug Lepyronia coleopterata (L.) differentiates into esophagus, filter chamber, midgut (conical segment, tubular midgut), and hindgut (ileum, rectum). The filter chamber is composed of the anterior extremity of the midgut, posterior extremity of the midgut, proximal Malpighian tubules, and proximal ileum; it is externally enveloped by a thin cellular sheath and thick muscle layers. The sac-like anterior extremity of the midgut is coiled around by the posterior extremity of the midgut and proximal Malpighian tubules. The tubular midgut is subdivided into an anterior tubular midgut, mid-midgut, posterior tubular midgut, and distal tubular midgut. Four Malpighian tubules run alongside the ileum, and each terminates in a rod closely attached to the rectum. Ultrastructurally, the esophagus is lined with a cuticle and enveloped by circular muscles; its cytoplasm contains virus-like fine granules of high electron-density. The anterior extremity of the midgut consists of two cellular types: (1) thin epithelia with well-developed and regularly arranged microvilli, and (2) large cuboidal cells with short and sparse microvilli. Cells of the posterior extremity of the midgut have regularly arranged microvilli and shallow basal infoldings devoid of mitochondria. Cells of the proximal Malpighian tubule possess concentric granules of different electron-density. The internal proximal ileum lined with a cuticle facing the lumen and contains secretory vesicles in its cytoplasm. Dense and long microvilli at the apical border of the conical segment cells are coated with abundant electron-dense fine granules. Cells of the anterior tubular midgut contain spherical secretory granules, oval secretory vesicles of different size, and autophagic vacuoles. Ferritin-like granules exist in the mid-midgut cells. The posterior tubular midgut consists of two cellular types: 1) cells with shallow and bulb-shaped basal infoldings containing numerous mitochondria, homocentric secretory granules, and fine electron-dense granules, and 2) cells with well-developed basal infoldings and regularly-arranged apical microvilli containing vesicles filled with fine granular materials. Cells of the distal tubular midgut are similar to those of the conical segment, but lack electron-dense fine granules coating the microvilli apex. Filamentous materials coat the microvilli of the conical segment, anterior and posterior extremities of the midgut, which are possibly the perimicrovillar membrane closely related to the nutrient absorption. The lumen of the hindgut is lined with a cuticle, beneath which are cells with poorly-developed infoldings possessing numerous mitochondria. Single-membraned or double-membraned microorganisms exist in the anterior and posterior extremities of the midgut, proximal Malpighian tubule and ileum; these are probably symbiotic.  相似文献   

3.
The midgut of Rhynchosciara americana larvae consists of a cylindrical ventriculus from which protrudes two gastric caeca formed by polyhedral cells with microvilli covering their apical faces. The basal plasma membrane of these cells is infolded and displays associated mitochondria which are, nevertheless, more conspicuous in the apical cytoplasm. The anterior ventricular cells possess elaborate mitochondria-associated basal plasma membrane infoldings extending almost to the tips of the cells, and small microvilli disposed in the cell apexes. Distal posterior ventricular cells with long apical microvilli are grouped into major epithelial foldings forming multicellular crypts. In these cells the majority of the mitochondria are dispersed in the apical cytoplasm, minor amounts being associated with moderately-developed basal plasma membrane infoldings. The proximal posterior ventriculus represents a transition region between the anterior ventriculus and the distal posterior ventriculus. The resemblance between the gastric caeca and distal posterior ventricular cells is stressed by the finding that their microvilli preparations display similar alkaline phosphatase-specific activities. The results lend support to the proposal, based mainly on previous data on enzyme excretion rates, that the endo-ectoperitrophic circulation of digestive enzymes is a consequence of fluid fluxes caused by the transport of water into the first two thirds of midgut lumen, and its transference back to the haemolymph in the gastric caeca and in the distal posterior ventriculus.  相似文献   

4.
Tobacco hornworm, Manduca sexta, is a model insect for studying the action of Bacillus thuringiensis (Bt) Cry toxins on lepidopterans. The proteins, which bind Bt toxins to midgut epithelial cells, are key factors involved in the insecticidal functions of the toxins. Three Cry1A-binding proteins, viz., aminopeptidase N (APN), the cadherin-like Bt-R1, and membrane-type alkaline phosphatase (m-ALP), were localized, by immunohistochemistry, in sections from the anterior, middle, and posterior regions of the midgut from second instar M. sexta larvae. Both APN and m-ALP were distributed predominantly along microvilli in the posterior region and to a lesser extent on the apical tip of microvilli in the anterior and middle regions. Bt-R1 was localized at the base of microvilli in the anterior region, over the entire microvilli in the middle region, and at both the apex and base of microvilli in the posterior region. The localization of rhodamine-labeled Cry1Aa, Cry1Ab, and Cry1Ac binding was determined on sections from the same midgut regions. Cry1Aa and Cry1Ab bound to the apical tip of microvilli almost equally in all midgut regions. Binding of Cry1Ac was much stronger in the posterior region than in the anterior and middle regions. Thus, binding sites for Bt proteins and Cry1A toxins are co-localized on the microvilli of M. sexta midgut epithelial cells.  相似文献   

5.
The sugarcane borer, Diatraea saccharalis Fabricius, is a pest to sugarcane and many other crops. This work aims to characterize morphological variability in the epithelial cells (columnar, goblet and regenerative) along the midgut of D. saccharalis larvae. Fragments of the midgut (anterior, middle and posterior regions) were fixed and processed by light and scanning electron microscopy. There are both cytochemical and ultrastructural differences in the morphology of the epithelial cells, depending on their localization along the midgut. The apical surface of columnar cells shows an increase in both number and size of the apical protrusions from the anterior to the posterior midgut regions. There is an increase in the amount of PAS-positive (Periodic Acid-Schiff Reaction) granules detected in the cytoplasm of both the columnar and regenerative cells, from the anterior to the posterior region. The goblet cell apical surface is narrow in the anterior region, and enlarged in the posterior midgut; the chamber's cytoplasm extrusion are small and thin at the apical cavity surface, being thicker, longer and more numerous at the basal portion of the cavity. Our results suggest that the sugarcane borer midgut has two morphologically different regions, the anterior and the posterior; the middle region is a transitional region.  相似文献   

6.
Arab A  Caetano FH 《Cytobios》2001,105(408):45-53
Solenopsis saevissima has a midgut composed of columnar, regenerative, and goblet cells. The midgut epithelium was covered by a basal lamina. Outside the basal lamina, layers of inner oblique, circular, and outer longitudinal muscles were present. Columnar cells showed a basal plasma membrane containing numerous folds, mitochondria, and the nucleus. Rough endoplasmic reticulum, Golgi bodies, membrane bounded vacuoles, and spherocrystals were found in this region. The apical plasma membrane was constituted by microvilli, which were above a region rich in mitochondria. Regenerative cells were found in groups lying by the basal lamina. Goblet cells were associated with an ion-transporting mechanism between the haemolymph and the midgut epithelium. These cells were lying by the midgut lumen and large microvilli were evident, but the cytoplasmic features were similar to the columnar cells.  相似文献   

7.
Triatoma vitticeps (Stal, 1859) is a hematophagous Hemiptera that, although being considered wild, can be found in households, being a potential Chagas’ disease vector. This work describes the histology and ultrastructure of the midgut of T. vitticeps under different starvation periods. Fifteen adults of both sexes starved for 3, 7, 20 and 25 days were studied. In general, digestive cells had apical microvilli, basal plasma membrane infoldings and central nucleus. The perimicrovillar membrane was found in all insects examined. Digestive cells of anterior midgut had lipid droplets, glycogen granules, developed basal labyrinth associated with mitochondria suggesting their role in nutrient storage and in fluid and ion transport. The cells of median and posterior regions of the midgut were rich in rough endoplasmic reticulum, lysosomes, vesicles and granules with different electron-densities. Moreover, cells of the posterior portion of the midgut had hemozoyn granules and mitochondria in the apical cytoplasm close to microvilli, suggesting their role in blood digestion and active nutrient absorption. The midgut of T. vitticeps showed differences in digestive cells associated with the time after feeding, and the increase of vesicles amount in long starvation periods, which suggests enzyme storage, which is readily used after a blood meal.  相似文献   

8.
The epithelium of anterior midgut of adult Cenocorixa bifida was examined with light and electron microscopy. The folded epithelium is composed of tall columnar cells extending to the lumen, differentiating dark and light cells with interdigitating apices and regenerative basal cells in the nidi surrounded by villiform ridges that penetrate deeply into the epithelium. The columnar cells display microvilli at their luminal surface. Microvilli lined intercellular spaces and basal plasma membrane infoldings are associated with mitochondria. These ultrastructural features suggest their role in absorption of electrolytes and nutrients from the midgut lumen. The columnar cells contain large oval nuclei with prominent nucleoli. Their cytoplasm is rich in rough endoplasmic reticulum, Golgi complexes and electron-dense secretory granules indicating that they are also engaged in synthesis of digestive enzymes. The presence of secretory granules in close proximity of the apical plasma membrane suggests the release of secretion is by exocytosis. The presence of degenerating cells containing secretory granules at the luminal surface and the occurance of empty vesicles and cell fragments in the lumen are consistent with the holocrine secretion of digestive enzymes. Apical extrusions of columnar cells filled with fine granular material are most likely formed in response to the lack of food in the midgut. The presence of laminated concretions in the cytoplasm is indicative of storageexcretion of surplus minerals. The peritrophic membrane is absent from the midgut of C. bifida.  相似文献   

9.
Immunocytochemical localization and sorting properties of a newly purified 41-kDa protein (MsM41) were investigated in an insect, the tobacco hornworm Manduca sexta. The protein purified from midgut homogenates of feeding fifth-stadium larvae was found exclusively in this tissue on Western blots. Presence of MsM41 protein was indicated in both anterior and posterior regions of the midgut during the whole fifth stadium. However, in the posterior region an additional 39-kDa protein was also detected during the feeding period of the last larval stage. Upon light-microscopic examination immunoreactivity was localized in the columnar cells, while the goblet, endocrine and regenerative cells remained unlabeled. Distribution of the label during the feeding period was different in the anterior and posterior regions. In the anterior region immunoreactivity was localized only to the brush border membrane of columnar cells, while in the posterior region some cytoplasmic structures identified as large trans-Golgi vesicles, endoplasmic reticulum and small secretory vesicles were also labeled. Large, apical extrusions remained immunonegative. In vitro translation confirmed that our protein was expressed only in the posterior region of the midgut. The primary translation product was a 39-kDa protein. Putative post-translational modifications yielded the 41-kDa form, which was then secreted apically. Its presence in the region of the anterior part microvilli was probably due to the countercurrent flux of the ectoperitrophic fluid.  相似文献   

10.
The alimentary canal of Daphnia pulex consists of a tube-shaped foregut, a midgut (mesenteron) with an anterior pair of small diverticula, and a short hindgut. The foregut and hindgut are structurally similar. Each is formed by a low cuboidal epithelium 5 mum tall and lined with a chitinous intima. The midgut wall consists of a simple epithelium resting on a thick beaded basal lamina which is surrounded by a spiraling muscularis. Anteriorly the midgut cells are columnar in shape being 30 mum in height each having a basal nucleus, anteriorly concentrated mitochondria and in apical border of long thin microvilli. Posteriorly the midgut cells become progressively shorter so that in the posteriormost region of the midgut the cells are 5 mum tall and cuboidal in shape. The microvilli concomitantly become shorter and thicker. All mesenteron cells contain the usual cytoplasmic organelles. The paired digestive diverticula are simple evaginations of the midgut. The wall of each consists of a simple epithelium of cuboidal cells 25 mum in height, each with a brushed border of long thin microvilli. Enzyme secretion appears to be holocrine in mode and not confined to any one region of the mesenteron though definitely polarized anteriorly. The thin gut muscularis encircles the entire length of the midgut and caeca. Thick and thin filaments appear to be in a 6:1 ratio.  相似文献   

11.
12.
On the Antarctica continent the wingless midge, Belgica antarctica (Diptera, Chironomidae) occurs further south than any other insect. The digestive tract of the larval stage of Belgica that inhabits this extreme environment and feeds in detritus of penguin rookeries has been described for the first time. Ingested food passes through a foregut lumen and into a stomodeal valve representing an intussusception of the foregut into the midgut. A sharp discontinuity in microvillar length occurs at an interface separating relatively long microvilli of the stomodeal midgut region, the site where peritrophic membrane originates, from the midgut epithelium lying posterior to this stomodeal region. Although shapes of cells along the length of this non-stomodeal midgut epithelium are similar, the lengths of their microvilli increase over two orders of magnitude from anterior midgut to posterior midgut. Infoldings of the basal membranes also account for a greatly expanded interface between midgut cells and the hemocoel. The epithelial cells of the hindgut seem to be specialized for exchange of water with their environment, with the anterior two-thirds of the hindgut showing highly convoluted luminal membranes and the posterior third having a highly convoluted basal surface. The lumen of the middle third of the hindgut has a dense population of resident bacteria. Regenerative cells are scattered throughout the larval midgut epithelium. These presumably represent stem cells for the adult midgut, while a ring of cells, marked by a discontinuity in nuclear size at the midgut-hindgut interface, presumably represents stem cells for the adult hindgut.  相似文献   

13.
Peritrophic membrane (PM) structure and the effects of dietary wheat germ agglutinin (WGA) on PM formation were studied in larvae of the European corn borer (ECB), Ostrinia nubilalis, and the tobacco hornworm (THW), Manduca sexta. Growth of ECB was strongly inhibited by low amounts of WGA in the diet (0.05%), whereas THW was not affected by amounts of up to 2%. In ECB larvae, chitin microfibrils were secreted to form an orthogonal network within the apical region of the anterior midgut microvilli. The network then moved to the tips of the microvilli where proteinacious matrix was added prior to delamination of a single PM into the lumen to enclose the food bolus. Multiple PMs rapidly appeared as the food moved posteriorly and some of these became greatly thickened in the middle and posterior regions of the midgut. WGA in the diet caused hypersecretion of unorganized PM in the anterior midgut lumen, disintegration of microvilli, and cessation of feeding. It was also shown to bind to both the chitinous network and to several PM proteins, perhaps causing voids in the PM and sparse matrix material. This allowed the passage of food particles through a defective PM into the ectoperitrophic space and penetration into the microvillar brush border. Stimulation of PM secretion and cessation of feeding may have been a response to damage to the brush border. Unlike ECB, the chitinous network of THW is a randomly organized felt-like structure embedded in a proteinaceous matrix. This PM is secreted as a thin multilayered structure in the anterior region of the midgut, but multiple and thickened PMs occur in the middle and posterior lumens of the midgut. THW tolerated high amounts of WGA in its diet with no disruption of PM formation or inhibition of growth. WGA did accumulate as large masses embedded in the PM, but caused no voids that would allow the penetration of food particles and subsequent damage to the brush border. Therefore, differences in PM formation and structure between ECB and THW appeared to affect how WGA interacts with chitinous and proteinaceous components of the PM and subsequent effects on larval feeding and growth.  相似文献   

14.
A morphological basis for transcellular potassium transport in the midgut of the mature fifth instar larvae of Hyalophora cecropia has been established through studies with the light and electron microscopes. The single-layered epithelium consists of two distinct cell types, the columnar cell and the goblet cell. No regenerative cells are present. Both columnar and goblet cells rest on a well developed basement lamina. The basal portion of the columnar cell is incompletely divided into compartments by deep infoldings of the plasma membrane, whereas the apical end consists of numerous cytoplasmic projections, each of which is covered with a fine fuzzy or filamentous material. The cytoplasm of this cell contains large amounts of rough endoplasmic reticulum, microtubules, and mitochondria. In the basal region of the cell the mitochondria are oriented parallel to the long axes of the folded plasma-lemma, but in the intermediate and apical portions they are randomly scattered within the cytoplasmic matrix. Compared to the columnar cell, the goblet cell has relatively little endoplasmic reticulum. On the other hand, the plications of the plasma membrane of the goblet cell greatly exceed those of the columnar cell. One can distinguish at least four characteristic types of folding: (a) basal podocytelike extensions, (b) lateral evaginations, (c) apical microvilli, and (d) specialized cytoplasmic projections which line the goblet chamber. Apically, the projections are large and branch to form villus-like units, whereas in the major portion of the cavity each projection appears to contain an elongate mitochondrion. Junctional complexes of similar kind and position appear between neighboring columnar cells and between adjacent columnar and goblet cells as follows: a zonula adherens is found near the luminal surface and is followed by one or more zonulae occludentes. The morphological data obtained in this study and the physiological information on ion transport through the midgut epithelium have encouraged us to suggest that the goblet cell may be the principal unit of active potassium transport from the hemolymph to the lumen of the midgut. We have postulated that ion accumulation by mitochondria in close association with plicated plasma membranes may play a role in the active movement of potassium across the midgut.  相似文献   

15.
Bumblebees are widely distributed across the world and have great economic and ecological importance as pollinators in the forest as well as in agriculture. The insect midgut consists of three cell types, which play various important roles in digestion, absorption, and hormone production. The present study characterized the anterior and posterior midgut regions of the bumblebee, Bombus morio. The digestive, regenerative and endocrine cells in the midgut showed regional differences in their number, nuclear size, as well as the size of the striated border. Ultrastructurally, the digestive cells contained many mitochondria and long microvilli; however, in the anterior midgut region, these cells showed dilated basal labyrinths with a few openings for the hemocoel, whereas the labyrinths of the basal posterior region remained inverse characteristics. Thus, the characterization of the midgut of B. morio supported an ecto-endoperitrophic circulation, contributing to a better understanding of the digestive process in this bee.  相似文献   

16.
The midgut of cicadoid and cercopoid insects is differentiated at the anatomical, ultrastructural and cytochemical levels into a conical segment, anterior, mid, and posterior midgut. The cells of the conical segment and anterior midgut are cytochemically very similar. They differ in ultrastructure, the anterior midgut cells having a submicrovillar row of mitochondria and a very marked mucoprotein coat investing the microvilli. The mid-midgut contains mineral spherites, which are formed in cisternae in the endoplasmic reticulum, and ferritin. The posterior midgut differs cytochemically from the anterior midgut and the cells are characterized by deep narrow basal invaginations and the absence of a mucoprotein coat investing the microvilli. It is suggested that nutrient absorption occurs in the conical segment and anterior midgut. Ion absorption may also occur in the anterior midgut. Storage excretion of calcium, magnesium and phosphate occurs in the mid-midgut. Ferritin is also stored here but may be found in other regions of the midgut, particularly in the cicada. The posterior midgut may be involved in ion secretion which could be related to filter chamber function.  相似文献   

17.
仿刺参消化系统的组织学和组织化学研究   总被引:15,自引:0,他引:15  
用组织学和组织化学方法研究了仿刺参的消化系统。消化道管壁由粘膜层、粘膜下层、肌层和外膜组成。粘膜层为假复层或单层的柱状细胞或立方细胞与粘液细胞。粘液细胞分布于前肠的前段和排泄腔。前肠和中肠上皮具蛋白酶、脂酶和非特异性酯酶活性。中肠上皮细胞游离端有密集微绒毛,游离端质膜呈碱性磷酸酶活性,上皮下有丰富的血窦,表明具吸收作用。  相似文献   

18.
The fine structure of the alimentary canal, especially the midgut and hindgut of Lepidocampa weberi (Diplura: Campodeidae) is described. The general organization of the canal is similar to that of Campodea. The midgut epithelium is composed of columnar apical microvillated cells. Each nucleus contains a single intranuclear crystal. Close to the pyloric region, the posterior midgut cells are devoid of microvilli and intranuclear crystals. There is no special pyloric chamber as in Protura or pyloric cuticular ring as in Collembola but a morphological transformation from midgut to hindgut cells. Eight globular Malpighian papillae, consisting of distal microvillated cells and flat proximal cells, open into the gut lumen via ducts formed by hindgut cells. The structure of the hindgut is complicated and can be divided into three segments. The anterior hindgut cells have an irregular shape and compact cytoplasm. A striking interdigitation between the large bottle-shaped epithelial cells and longitudinal muscle cells occurs in the middle segment of the hindgut. The thick cuticle gives rise to long spikes projecting into the gut lumen. The posterior hindgut cells possess the morphological features for water reabsorption. Some hypotheses are advanced about the function of the different regions of the gut.  相似文献   

19.
胡氏边白蚁消化系统的微细构造   总被引:1,自引:0,他引:1  
卢宝廉 《昆虫学报》1991,34(2):155-158
胡氏边白蚁Marginitermes hubbardi(Banks)消化系统可分为前肠、中肠及后肠三大段.前肠包括葡萄状唾腺、口、咽喉、食道、前胃及贲门瓣;从贲门瓣开始到马氏管着生处为止这一段为中肠;后肠则分为葫芦形胃、结肠、直肠和肛门.其消化系统的特点:在前、后肠有几丁内膜、细胞层上还有一层微绒毛;上皮细胞底膜内陷很深,折叠中夹着许多线粒体;中肠围食膜表面有几丁层一直延伸到后肠;后肠前端膨大的葫芦胃中共生了很多种细菌及原生动物,共生的细菌、动物分泌纤维素酶帮助它消化木质纤维.  相似文献   

20.
Peritrophic membrane (PM) secretion and formation occur primarily in the anterior region of the mesenteron in the European corn borer (Ostrinia nubilalis) as determined by light and electron microscopy. Nascent PM first became visible as fibrous linear chitin-containing structures stained with gold-labeled wheat germ agglutinin between and at the tips of the microvilli. No formed PM was visible at the foregut-midgut junction, but a thin single PM appeared first in the lumen between the stomodeal valves and the midgut epithelium. Just posterior to the stomodeal valves, multiple PMs were observed that became progressively thicker and more numerous in the mid and posterior regions of the mesenteron. The PM consists of an orthogonal chitin meshwork with openings slightly larger than the diameters of the microvilli. As it delaminates from the microvilli, the meshwork becomes embedded in proteinaceous matrix that greatly reduces the pore size of the PM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号