首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Feedback regulation of bile acid biosynthesis in the rat   总被引:11,自引:0,他引:11  
The hepatic biosynthesis of bile salts in the rat has been shown to be controlled homeostatically by the quantity of bile salt returning to the liver via the portal circulation. The feedback mechanism was demonstrated in two kinds of experiments. In the first, rats with bile fistulas were infused intraduodenally with sodium taurocholate 12 hr after surgery. If the rate of infusion was greater than 10 mg per 100 g rat per hr, the increase in bile acid output normally observed in bile fistula rats was prevented. In the second type of experiment, the rats were infused with taurocholate 48-72 hr after biliary diversion, when bile acid output had reached a maximal value. Provided the rate of infusion exceeded 10 mg per 100 g rat per hr, bile acid secretion returned to the low levels observed in intact rats. Previous attempts to demonstrate the feedback control have been unsuccessful because too little bile salt was infused. The taurocholate pool of the experimental animals was measured as approximately 15 mg per 100 g rat; it was calculated from this and the above results that this pool circulated 10-13 times daily.  相似文献   

2.
We have previously reported that intravenous infusion of taurocholate at 10 mumol (100 g.hr) into bile-fistula rats suppressed bile salt synthesis by 85% (Pries et al. 1983. J. Lipid Res. 24: 141-146). Recently, however, infusion rates twice this high have been reported not to suppress synthesis (Davis et al. 1984. Falk Symposium 42. MTP Press Ltd., Boston. 37-45). Because the only major difference in design of these two studies was supplementation with sodium bicarbonate to replace biliary losses induced by bile salt choleresis, we have repeated our studies with and without bicarbonate supplementation. Without bicarbonate, as before, we found suppression of synthesis during infusion of taurocholate at 10 mumol/(100 g.hr). With bicarbonate, no suppression of synthesis occurred at these infusion rates. These data indicate that bicarbonate supplementation is essential when testing physiological effects of infused bile salt in the bile-fistula rat.  相似文献   

3.
The role of the hepatocyte microtubular system in the transport and excretion of bile salts and biliary lipid has not been defined. In this study the effects of microtubule inhibition on biliary excretion of micelle- and non-micelle-forming bile salts and associated lipid were examined in rats. Low-dose colchicine pretreatment had no effect on the baseline excretion of biliary bile salts and phospholipid in animals studied 1 hr after surgery (basal animals), but slightly retarded the excretion of tracer [14C]taurocholate relative to that of lumicolchicine-pretreated (control) rats. However, colchicine pretreatment resulted in a marked reduction in the excretion of 2 mumol/100 g doses of a series of four micelle-forming bile salts of differing hydrophilicity, but had no significant effect on the excretion of the non-micelle-forming bile salt, taurodehydrocholate. Continuous infusion of 0.2 mumol of taurocholate/(100 g.min) following 24 hr of biliary drainage (depleted/reinfused animals) resulted in physiologic bile flow with biliary excretion rates of bile salts, phospholipid, and cholesterol that were markedly inhibited (mean 33, 39, and 42%, respectively) by colchicine or vinblastine pretreatment. Excretion of tracer [14C]taurocholate also was markedly delayed by colchicine in these bile salt-depleted/reinfused animals. In contrast, colchicine did not inhibit bile salt excretion in response to reinfusion of taurodehydrocholate. Thus, under basal conditions, the microtubular system appears to play a minor role in hepatic transport and excretion of bile salts and biliary lipid. However, biliary excretion of micelle-forming bile salts and associated phospholipid and cholesterol becomes increasingly dependent on microtubular integrity as the transcellular flux and biliary excretion of bile salts increases, in both bile salt-depleted and basal animals. We postulate that cotransport of micelle-forming bile salts and lipids destined for biliary excretion, via an intracellular vesicular pathway, forms the basis for this microtubule dependence.  相似文献   

4.
Apolipoprotein B (apoB) synthesis rates have been determined, in vivo, in rat enterocytes. Following intralumenal administration of a pulse of [3H]leucine, newly synthesized apoB was quantitated by specific immunoprecipitation and compared to [3H]leucine incorporation into total, trichloroacetic acid-insoluble protein. ApoB synthesis rates were determined after acute administration of either 0.1 or 1 g of triglyceride to fasting animals. No differences were found at any time from 90 min to 6 hr after challenge and values were not different from the basal values established in fasted controls. Animals rechallenged with triglyceride after 8 days' intake of fat-free chow also failed to demonstrate a change in intestinal apoB synthesis rate. By contrast, enterocyte content of apoB appeared to fall, temporarily, with the onset of active triglyceride flux. Groups of animals were then subjected to external bile diversion for 48 hr, a maneuver designed to remove all lumenal sources of lipid. Jejunal apoB synthesis rates fell by 43% (from 0.76% +/- 0.14 to 0.43% +/- 0.12, P less than 0.001), a change that was completely prevented by continuous replacement with 10 mM Na taurocholate. The suppression of jejunal apoB synthesis, induced by prolonged bile diversion, was reversed after 14 hr, but not 8 hr, of intralumenal perfusion with 10 mM Na taurocholate. The addition of micellar fatty acid-monoolein to the perfusate for 4 hr produced no further change in apoB synthesis. Ileal apoB synthesis rates fell by 70% (from 0.61% +/- 0.15 to 0.18% +/- 0.10, P less than 0.001) following 48 hr external bile diversion, a change that was only partially prevented by continuous bile salt replacement. These results suggest that jejunal apoB synthesis demonstrates bile salt dependence but not regulation by acute triglyceride flux. The data further suggest that key aspects of the regulation of apoB synthesis by cellular lipid flux may be mediated independently in jejunal and ileal enterocytes.  相似文献   

5.
The biliary excretion of bile salts, lysosomal acid phosphatase, and total proteins were studied in rats under different experimental conditions: during bile salt loss through a bile fistula and after loading with exogenous sodium taurocholate. The experimental models were suitable to demonstrate that variations in the excretion of bile salts were associated with those of acid phosphatase output. During bile salt depletion, acid phosphatase output showed a decrease parallel to that of bile salts. Following a single i.v. injection of sodium taurocholate and during its i.v. infusion, a rapid increase of acid phosphatase excretion in bile was seen. The patterns of enzyme outputs observed after administration of sodium taurocholate suggested a bulk discharge in bile of lysosomal contents. The profiles of protein output were similar to those of acid phosphatase suggesting an association between the secretory mechanism of these bile constituents. In contrast to sodium taurocholate, 4-methylumbelliferone, which also increases canalicular bile flow, did not produce changes in the excretory patterns of the bile components studied. Therefore, the results suggested a bile salt related secretion of acid phosphatase in the rat, which may involve protein secretion in bile.  相似文献   

6.
Na(+)-taurocholate-cotransporting peptide (NTCP)/SLC10A1 and bile salt export pump (BSEP)/ABCB11 synergistically play an important role in the transport of bile salts by the hepatocyte. In this study, we transfected human NTCP and BSEP or rat Ntcp and Bsep into LLC-PK1 cells, a cell line devoid of bile salts transporters. Transport by these cells was characterized with a focus on substrate specificity between rats and humans. The basal to apical flux of taurocholate across NTCP- and BSEP-expressing LLC-PK1 monolayers was 10 times higher than that in the opposite direction, whereas the flux across the monolayer of control and NTCP or BSEP single-expressing cells did not show any vectorial transport. The basal to apical flux of taurocholate was saturated with a K(m) value of 20 microM. Vectorial transcellular transport was also observed for cholate, chenodeoxycholate, ursodeoxycholate, their taurine and glycine conjugates, and taurodeoxycholate and glycodeoxycholate, whereas no transport of lithocholate was detected. To evaluate the respective functions of NTCP and BSEP and to compare them with those of rat Ntcp and Bsep, we calculated the clearance by each transporter in this system. A good correlation in the clearance of the examined bile salts (cholate, chenodeoxycholate, ursodeoxycholate, and their taurine or glycine conjugates) was observed between transport by human and that of rat transporters in terms of their rank order: for NTCP, taurine conjugates > glycine conjugates > unconjugated bile salts, and for BSEP, unconjugated bile salts and glycine conjugates > taurine conjugates. In conclusion, the substrate specificity of human and rat NTCP and BSEP appear to be very similar at least for monovalent bile salts under physiological conditions.  相似文献   

7.
Biochemical site of regulation of bile acid biosynthesis in the rat   总被引:15,自引:0,他引:15  
The production of bile salts by rat liver is regulated by a feedback mechanism, but it is not known which enzyme controls endogenous bile acid synthesis. In order to demonstrate the biochemical site of this control mechanism, bile fistula rats were infused intravenously with (14)C-labeled bile acid precursors, and bile acid biosynthesis was inhibited as required by intraduodenal infusion of sodium taurocholate. The infusion of taurocholate (11-14 mg/100 g of rat per hr) inhibited the incorporation of acetate-1-(14)C, mevalonolactone-2-(14)C, and cholesterol-4-(14)C into bile acids by approximately 90%. In contrast, the incorporation of 7alpha-hydroxycholesterol-4-(14)C into bile acids was reduced by less than 10% during taurocholate infusion. These results indicate that the regulation of bile acid biosynthesis is exerted via cholesterol 7alpha-hydroxylase provided that hepatic cholesterol synthesis is adequate.  相似文献   

8.
M Ohta  S Kanai  K Kitani 《Life sciences》1990,46(21):1503-1508
Using an enzyme release from isolated rat hepatocytes incubated with a bile salt as a marker, the cytotoxic order of bile salts was found to be taurochenodeoxycholate, glycochenodeoxycholate greater than tauroursodeoxycholate, glycoursodeoxycholate, cholate greater than taurocholate, glycocholate. Thus, the cytotoxicity of conjugates of ursodeoxycholate was greater than that of conjugates of cholate. However, these data do not agree with the order of cytotoxicity of these bile salts previously studied in vivo by the authors which demonstrated the least cytotoxic nature of conjugates of ursodeoxycholate.  相似文献   

9.
The effect of individual bile acids on bile acid synthesis was studied in primary hepatocyte cultures. Relative rates of bile acid synthesis were measured as the conversion of lipoprotein [4-14C]cholesterol into 4-14C-labeled bile acids. Additions to the culture media of cholate, taurocholate, glycocholate, chenodeoxycholate, taurochenodeoxycholate, glycochenodeoxycholate, deoxycholate, and taurodeoxycholate (10-200 microM) did not inhibit bile acid synthesis. The addition of cholate (100 microM) to the medium raised the intracellular level of cholate 10-fold, documenting effective uptake of added bile acid by cultured hepatocytes. The addition of 200 microM taurocholate to cultured hepatocytes prelabeled with [4-14C]cholesterol did not result in inhibition of bile acid synthesis. Taurocholate (10-200 microM) also failed to inhibit bile acid synthesis in suspensions of freshly isolated hepatocytes after 2, 4, and 6 h of incubation. Surprisingly, the addition of taurocholate and taurochenodeoxycholate (10-200 microM) stimulated taurocholate synthesis from [2-14C]mevalonate-labeled cholesterol (p less than 0.05). Neither taurocholate nor taurochenodeoxycholate directly inhibited cholesterol 7 alpha-hydroxylase activity in the microsomes prepared from cholestyramine-fed rats. By contrast, 7-ketocholesterol and 20 alpha-hydroxycholesterol strongly inhibited cholesterol 7 alpha-hydroxylase activity at low concentrations (10 microM). In conclusion, these data strongly suggest that bile acids, at the level of the hepatocyte, do not directly inhibit bile acid synthesis from exogenous or endogenous cholesterol even at concentrations 3-6-fold higher than those found in rat portal blood.  相似文献   

10.
The growth of Clostridium group P strain C48-50 [an anaerobe that contains 12alpha-hydroxysteroid dehydrogenase (12alpha-HSDH) in the absence of other dehydrogenases active upon bile salts] is greatly enhanced by the addition of 2.0% d-fructose or d-glucose to the growth medium. Other sugars were less effective. The production of NADP-dependent 12alpha-HSDH paralleled the growth of the organism which was optimal at 72 hr. Growth (and enzyme production) were suppressed by the addition of bile salt to the medium; the order of suppression was deoxycholate > chenodeoxycholate > cholate; 1 mM of either of the dihydroxy-bile salts inhibited 96% of the growth and 100% of the enzyme production. Kinetic studies on cell-free preparations of 12alpha-HSDH revealed a pH optimum of 7.8 with greater linearity of NADP evolution with time occurring only at more alkaline pH values (9-10). Lineweaver-Burke plots revealed Michaelis constant (K(m)) values in the range of 3-5 x 10(-4) M for deoxycholate and its glycine and taurine conjugates, while higher values were found for cholate and conjugates (K(m) value for taurocholate was 3 x 10(-3) M). Although there was no activity with NAD, 12alpha-HSDH was shown to bind onto both NAD- and NADP-Sepharose columns, with stronger binding on the latter. The enzyme was purified 20-fold by NAD-Sepharose chromatography. The molecular weight was estimated at 100,000 by Sephadex G-200 and a series of molecular weight markers. Substrate specificity studies showed that a variety of bile salts containing 12alpha-OH groups reacted; notably, the 3alpha-sulfates of cholate and deoxycholate were nonsubstrates.-Macdonald, I. A., J. F. Jellett and D. E. Mahony. 12alpha-Hydroxysteroid dehydrogenase from Clostridium Group P strain C48-50 #29733: partial purification and characterization.  相似文献   

11.
F(+) strains of Escherichia coli infected with donor-specific bacteriophage such as M13 are sensitive to bile salts. We show here that this sensitivity has two components. The first derives from secretion of bacteriophage particles through the cell envelope, but the second can be attributed to expression of the F genes required for the formation of conjugative (F) pili. The latter component was manifested as reduced or no growth of an F(+) strain in liquid medium containing bile salts at concentrations that had little or no effect on the isogenic F(-) strain or as a reduced plating efficiency of the F(+) strain on solid media; at 2% bile salts, plating efficiency was reduced 10(4)-fold. Strains with F or F-like R factors were consistently more sensitive to bile salts than isogenic, plasmid-free strains, but the quantitative effect of bile salts depended on both the plasmid and the strain. Sensitivity also depended on the bile salt, with conjugated bile salts (glycocholate and taurocholate) being less active than unconjugated bile salts (deoxycholate and cholate). F(+) cells were also more sensitive to sodium dodecyl sulfate than otherwise isogenic F(-) cells, suggesting a selectivity for amphipathic anions. A mutation in any but one F tra gene required for the assembly of F pili, including the traA gene encoding F pilin, substantially restored bile salt resistance, suggesting that bile salt sensitivity requires an active system for F pilin secretion. The exception was traW. A traW mutant was 100-fold more sensitive to cholate than the tra(+) strain but only marginally more sensitive to taurocholate or glycocholate. Bile salt sensitivity could not be attributed to a generalized change in the surface permeability of F(+) cells, as judged by the effects of hydrophilic and hydrophobic antibiotics and by leakage of periplasmic beta-lactamase into the medium.  相似文献   

12.
Cystic fibrosis liver disease (CFLD) is treated with ursodeoxycholate (UDCA). Our aim was to evaluate, in cystic fibrosis transmembrane regulator knockout (Cftr(-/-)) mice and wild-type controls, whether the supposed therapeutic action of UDCA is mediated via choleretic activity or effects on bile salt metabolism. Cftr(-/-) mice and controls, under general anesthesia, were intravenously infused with tauroursodeoxycholate (TUDCA) in increasing dosage or were fed either standard or UDCA-enriched chow (0.5% wt/wt) for 3 wk. Bile flow and bile composition were characterized. In chow-fed mice, we analyzed bile salt synthesis and pool size of cholate (CA). In both Cftr(-/-) and controls intravenous TUDCA stimulated bile flow by ~250% and dietary UDCA by ~500%, compared with untreated animals (P < 0.05). In non-UDCA-treated Cftr(-/-) mice, the proportion of CA in bile was higher compared with that in controls (61 ± 4 vs. 46 ± 4%; P < 0.05), accompanied by an increased CA synthesis [16 ± 1 vs. 10 ± 2 μmol·h(-1)·100 g body wt (BW)(-1); P < 0.05] and CA pool size (28 ± 3 vs. 19 ± 1 μmol/100 g BW; P < 0.05). In both Cftr(-/-) and controls, UDCA treatment drastically reduced the proportion of CA in bile below 5% and diminished CA synthesis (2.3 ± 0.3 vs. 2.2 ± 0.4 μmol·day(-1)·100 g BW(-1); nonsignificant) and CA pool size (3.6 ± 0.6 vs. 1.5 ± 0.3 μmol/100 g BW; P < 0.05). Acute TUDCA infusion and chronic UDCA treatment both stimulate bile flow in cystic fibrosis conditions independently from Cftr function. Chronic UDCA treatment reduces the hydrophobicity of the bile salt pool in Cftr(-/-) mice. These results support a potential beneficial effect of UDCA on bile flow and bile salt metabolism in cystic fibrosis conditions.  相似文献   

13.
Killing of Giardia lamblia trophozoites by nonimmune human milk in vitro is dependent upon the presence of cholate which activates the milk bile salt-stimulated lipase to cleave fatty acids from milk triglycerides. In the present studies, conjugated bile salts, which predominate in vivo, displayed striking differences from unconjugated bile salts in ability to support killing by milk. Human milk killed greater than 99% of the parasites in the presence of cholate, but not glycocholate or taurocholate. In contrast, after brief sonication which disrupts milk fat globules, milk killed G. lamblia after addition of either conjugated or unconjugated bile salts. Whereas cholate stimulated milk lipase to cleave triglycerides of either unsonicated or sonicated human milk, glycocholate or taurocholate stimulated lipolysis only in sonicated milk. Since the concentration of bile salts in the small intestine fluctuates, the effect of this variable on killing was examined. Each bile salt at and above its critical micellar concentration increased Giardia survival of human milk probably because it sequestered released fatty acids in micelles. This partial protection could be overcome by increasing the milk concentration. Human hepatic and gall bladder bile and artificial bile also activated human milk to kill at low concentrations but partly protected the parasite at higher concentrations. These studies show that conjugated bile salts can activate the bile salt-stimulated lipase of sonicated human milk to release fatty acids; and kill G. lamblia. Conversely, bile salts in concentrations above their critical micellar concentration sequester fatty acids and interfere with killing. Thus, nonimmune host secretions such as milk and bile may affect the course of infection by G. lamblia.  相似文献   

14.
Different bacterial strategies to degrade taurocholate   总被引:1,自引:0,他引:1  
Aerobic enrichment cultures with taurocholate or alkanesulfonates as sole sources of carbon and energy for growth were successful and yielded nine bacterial isolates, all of which utilized taurocholate. Growth was complex and involved not only many, usually transient, excretion products but also sorption of taurocholate and cholate to cells. Three metabolic strategies to dissimilate taurocholate were elucidated, all of which involved bile salt hydrolase cleaving taurocholate to cholate and taurine. Comamonas testosteroni KF-1 utilized both the taurine and the cholate moieties for growth. Pseudomonas spp., e.g. strain TAC-K3 and Rhodococcus equi TAC-A1 grew with the cholate moiety and released taurine quantitatively. Delftia acidovorans SPH-1 utilized the taurine moiety and released cholate.  相似文献   

15.
The effect of human bile juice and bile salts (sodium cholate, sodium taurocholate, sodium glycochenodeoxycholate and sodium chenodeoxycholate) on growth, sporulation and enterotoxin production by enterotoxin-positive and enterotoxin-negative strains of Clostridium perfringens was determined. Each bile salt inhibited growth to a different degree. A mixture of bile salts completely inhibited the growth of enterotoxin-positive strains of this organism. Human bile juice completely inhibited the growth of all the strains at a dilution of 1:320. A distinct stimulatory effect of the bile salts on sporulation was observed in the case of C. perfringens strains NCTC 8239 and NCTC 8679. The salts also increased enterotoxin concentrations in the cell extracts of the enterotoxin-positive strains tested. No effect on enterotoxin production was detected when an enterotoxin-negative strain was examined.  相似文献   

16.
The biliary elimination of glycodihydrofusidate (GDHF), a structural analogue of bile salts, was studied in bile fistula rats. GDHF was excreted in bile with a maximal excretory rate (Tm = 0.80 mumol min-1 kg-1) which is much lower than bile salts Tm. The effects of dehydrocholate and taurocholate on GDHF biliary secretion suggest a stimulatory effect of bile salts on canalicular excretion of the drug. (a) When a bolus intravenous injection of 3 mumol of GDHF was followed after 2 min by a continuous dehydrocholate perfusion (10 mumol min-1 kg-1), biliary excretion of GDHF was increased in comparison with control rats. (b) Upon attaining the biliary Tm by continuous perfusion of GDHF at a rate of 1.35 mumol min-1 kg-1, infusion with either taurocholate or dehydrocholate increased its Tm to a similar degree. These results are similar to those previously obtained with the effects of bile salt infusions on the Tm of bromosulfophthalein. They suggest therefore that hepatic transport of GDHF and bile salts occurs by routes which are distinct for canalicular transport in spite of the striking structural similarities between GDHF and bile salts.  相似文献   

17.
The bile salt-activated farnesoid X receptor (FXR; NR1H4) controls expression of several genes considered crucial in maintenance of bile salt homeostasis. We evaluated the physiological consequences of FXR deficiency on bile formation and on the kinetics of the enterohepatic circulation of cholate, the major bile salt species in mice. The pool size, fractional turnover rate, synthesis rate, and intestinal absorption of cholate were determined by stable isotope dilution and were related to expression of relevant transporters in the livers and intestines of FXR-deficient (Fxr-/-) mice. Fxr-/- mice showed only mildly elevated plasma bile salt concentrations associated with a 2.4-fold higher biliary bile salt output, whereas hepatic mRNA levels of the bile salt export pump were decreased. Cholate pool size and total bile salt pool size were increased by 67 and 39%, respectively, in Fxr-/- mice compared with wild-type mice. The cholate synthesis rate was increased by 85% in Fxr-/- mice, coinciding with a 2.5-fold increase in cholesterol 7alpha-hydroxylase (Cyp7a1) and unchanged sterol 12alpha-hydroxylase (Cyp8b1) expression in the liver. Despite a complete absence of ileal bile acid-binding protein mRNA and protein, the fractional turnover rate and cycling time of the cholate pool were not affected. The calculated amount of cholate reabsorbed from the intestine per day was approximately 2-fold higher in Fxr-/- mice than in wild-type mice. Thus, the absence of FXR in mice is associated with defective feedback inhibition of hepatic cholate synthesis, which leads to enlargement of the circulating cholate pool with an unaltered fractional turnover rate. The absence of ileal bile acid-binding protein does not negatively interfere with the enterohepatic circulation of cholate in mice.  相似文献   

18.
The effect of bile salts and other surfactants on the rate of incorporation of cholesterol into isolated brush-border membranes was tested. At constant cholesterol concentration, a stimulatory effect of taurocholate was noticed which increased as the bile salt concentration was raised to 20 mM. Taurodeoxycholate was as effective as taurocholate at concentrations of up to 5 mM and inhibited at higher concentrations. Glycocholate was only moderately stimulatory whereas cholate was nearly as effective as taurocholate at concentrations above 5 mM. Other surfactants such as sodium lauryl sulfate and Triton X-100 were very inhibitory at all concentrations tried whereas cetyltrimethyl ammonium chloride was stimulatory only at a very low range of concentrations. These micellizing agents all caused some disruption of the membranes and the greater effectiveness of taurocholate in stimulating sterol uptake was partly relatable to the weaker membrane solubilizing action of this bile salt. Preincubation of membranes with 20 mM taurocholate followed by washing and exposure to cholesterol-containing lipid suspensions lacking bile salt, did not enhance the incorporation of the sterol. In the absence of bile salt the incorporation of cholesterol was unaffected by stirring of the incubation mixtures. Increasing the cholesterol concentration in the mixed micelle while keeping the concentration of bile salt constant caused an increase in rate of sterol incorporation. This increased rate was seen whether the cholesterol suspension was turbid, i.e., contained non-micellized cholesterol, or whether it was optically-clear and contained only monomers and micelles. When the concentration of taurocholate and cholesterol were increased simultaneously such that the concentration ratio of these two components was kept constant, there resulted a corresponding increase in rate of cholesterol uptake. The initial rates of cholesterol incorporation from suspensions containing micellar and monomer forms of cholesterol were much larger than from solutions containing only monomers of the same concentration. The rates of incorporation of cholesterol and phosphatidylethanolamine from mixed micelles containing these lipids in equimolar concentrations were very different. The results as a whole suggest at least for those experimental conditions specified in this study, that uptake of cholesterol by isolated brush-border membranes involves both the monomer and micellar phases of the bulk lipid and that the interaction of the micelles with membrane does not likely involve a fusion process.  相似文献   

19.
The effects of the bile salts, sodium taurocholate (NaTc) and sodium cholate (NaCh), and toad bile gallbladder (bile) on short-circuit current (SCC) across isolated skin, and sodium taurocholate (NaTc) on isolated bladder of Bufo arenarum toads were tested. Sodium taurocholate (NaTc), sodium cholate (NaCh) and toad bile gallbladder (bile) promoted an increase in SCC, when added to the external side. The stimulatory effect was reversible after rinsing the preparation for 60 min. Implications on in vivo renal function of these results are discussed.  相似文献   

20.
The maximal micellar solubility, distribution and apparent monomer activity of cholesterol in taurine-conjugated cholate and chenodeoxycholate micellar solutions were studied to clarify the different modulating effect of these bile salt species on cholesterol uptake in an intestinal lumen. The maximal micellar solubility was significantly greater in taurochenodeoxycholate. The intermicellar cholesterol monomer concentration was not significantly different between the two kinds of micellar solution. However, the apparent cholesterol monomer activity determined using an artificial organic phase (polyethylene disc) was significantly higher in taurocholate than that in taurochenodeoxycholate. A linear relationship between the intermicellar cholesterol concentration and the apparent cholesterol monomer activity was found, with the slope depending upon the bile salt species. It is concluded that the difference in partitioning of cholesterol from taurocholate and taurochenodeoxycholate micelles into a fixed organic phase may contribute in part to the different regulating effects of these bile salts on the uptake of cholesterol in the intraluminal phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号