首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Survey of plant short tandem DNA repeats   总被引:46,自引:0,他引:46  
Length variations in simple sequence tandem repeats are being given increased attention in plant genetics. Some short tandem repeats (STRs) from a few plant species, mainly those at the dinucleotide level, have been demonstrated to show polymorphisms and Mendelian inheritance. In the study reported here a search for all of the possible STRs ranging from mononucleotide up to tetranucleotide repeats was carried out on EMBL and GenBank DNA sequence databases of 3026 kb nuclear DNA and 1268 kb organelle DNA in 54 and 28 plant species (plus algae), respectively. An extreme rareness of STRs (4 STRs in 1268 kb DNA) was detected in organelle compared with nuclear DNA sequences. In nuclear DNA sequences, (AT)n sequences were the most abundant followed by (A)n · (T)n, (AG)n · (CT)n, (AAT)n · (ATT)n, (AAC)n · (GTT), (AGC)n · (GCT)n, (AAG)n · (CTT)n, (AATT)n · (TTAA)n, (AAAT)n · (ATTT)n and (AC)n · (GT)n sequences. A total of 130 STRs were found, including 49 (AT)n sequences in 31 species, giving an average of 1 STR every 23.3 kb and 1 (AT)n STR every 62 kb. An abundance comparable to that for the dinucleotide repeat was observed for the tri- and tetranucleotide repeats together. On average, there was 1 STR every 64.6 kb DNA in monocotyledons versus 1 every 21.2 kb DNA in dicotyledons. The fraction of STRs that contained G-C basepairs increased as the G+C contents went up from dicotyledons, monocotyledons to algae. While STRs of mono-, di- and tetranucleotide repeats were all located in non coding regions, 57% of the trinucleotide STRs containing G-C basepairs resided in coding regions.  相似文献   

2.
Abundance, polymorphism and genetic mapping of microsatellites in rice   总被引:71,自引:0,他引:71  
Dinucleotide microsatellites have been characterized and used as genetic markers in rice. Screening of a rice genomic library with poly(dG-dA)·(dC-dT) and poly(dG-dT)·(dC-dA) probes indicated that (GA)n repeats occurred, on average, once every 225 kb and (GT)n repeats once every 480 kb. DNA sequencing of ten randomly selected microsatellites indicated that the numbers of repeats ranged from 12 to 34 and that the patterns of microsatellites in rice were similar to those of humans and other mammals. Primers to these microsatellite loci as well as to four published microsatellite-containing sequences have been designed and degrees of polymorphism has been examined with 20 rice accessions. Multiple alleles, ranging from 5 to 11, have been observed at all the microsatellite loci in 20 rice accessions. Alleles specific to two cultivated subspecies, indica and japonica, were found in some microsatellite loci. Heterozygosity values of all the microsatellite markers were significantly higher than those of RFLP markers, based upon a parallel comparison. Ten microsatellite loci have been genetically mapped to four rice chromosomes. The genomic distribution of microsatellites appears to be random in rice.  相似文献   

3.
Summary Tandemly organized simple repetitive sequences are widespread in all eukaryotes. The organization of the simple tetrameric (GACA)n sequences at chromosomal loci has been investigated using in situ hybridization with chemically pure oligonucleotide probes. Both biotin- and digoxigenin-attached (GACA)4 probes reveal specific hybridization signals over the short arms of all acrocentric autosomes in man. In the other examined primates the NOR-bearing autosomes could be detected by in situ hybridization with (GACA)4, and a major concentration of the GACA simple repeats could be observed on the Y chromosome in the gibbon and mouse; the hybridization site in the gibbon Y chromosome coincides particularly with the silver-stainable NOR. In the past, accumulations of (GACA)n sequences were demonstrated mainly on vertebrate sex chromosomes. Therefore, the organization of GACA simple sequences is discussed in the context of their evolutionary potential accumulation and the possible linkage with the primate rDNA loci.  相似文献   

4.
To document the frequency and distribution of repetitive elements in Peromyscus leucopus, the white-footed mouse, a cosmid genomic library was examined. Two thousand thirteen randomly chosen recombinants, with an average insert size of 35 kb and representing 2.35% of the haploid genome of P. leucopus, were screened with probes representing microsatellites, tandem repeats, and transposable elements. Of the four dinucleotides, (GT)n was present in 87% of the clones, (CT)n was present in 59% of the clones, and (AT)n and (GC)n each was represented in our sample by a single clone (0.05%). (TCC)n was present in 8% of the clones. Of the tandem repeats, the 28S ribosomal probe and the (TTAGGG)n telomere probe were not represented in the library, whereas a heterochromatic fragment was present in 9% of the clones. A transposable element, mys, was estimated to occur in 4700 copies, whereas a long interspersed element (LINE) was estimated to occur in about 41,000 copies per haploid genome. LINE and mys occurred together in the same clones more frequently than expected on the basis of chance. Hybridizing the library to genomic DNA from P. leucopus, Reithrodontomys fulvescens, Mus musculus, and human produced general agreement between phylogenetic relatedness and intensity of hybridization. However, dinucleotide repeats appeared to account for a disproportionately high number of positive clones in the more distantly related taxa.  相似文献   

5.
Isolation and characterization of microsatellites from the canine genome   总被引:2,自引:0,他引:2  
Microsatellite sequences comprising (dC-dA)n.(dG-dT)n repeats have been isolated from canine libraries and sequenced. Oligonucleotide primers have been synthesized to the micro-satellite flanking sequences and used in the polymerase chain reaction to amplify those loci from genomic DNA. The degree of polymorphism of each microsatellite was estimated in a set of unrelated dogs. It is concluded that of the 10 loci studied, nine are sufficiently polymorphic to be useful in genetic studies.  相似文献   

6.
《Gene》1998,216(2):245-254
Minisatellite tandem repeat elements are well known components of vertebrate genomes, but have not yet been extensively characterized in lower eukaryotes. We describe two unusual, AT-rich minisatellites of the protozoan parasite Theileria parva whose sequences are unrelated to the G/C-rich `chi minisatellite superfamily' of vertebrate and plant genomes. The T. parva tandem repeats, one with a conserved sequence T2-5ACACA (6–17 copies), and the other with a 6-bp core sequence of either ACTATA or TATACT associated with additional variable sequences in repeats of 10–17 bp (3–7 copies), were closely linked at more than 20 sites in the T. parva genome, separated by 390, 510 and 660 bp at three loci analysed in detail. Such linkage is without precedent in minisatellites so far analysed in other organisms. The minisatellite loci were widely dispersed on 13 out of 33 genomic SfiI fragments, on all four T. parva chromosomes and did not exhibit a telomeric bias in their distribution. Analysis of flanking sequences revealed no obvious conserved sequences between the five loci, or other multicopy repeat sequences outside the minisatellite regions. The T2-5 ACACA minisatellite was highly effective as a multilocus fingerprinting probe for discrimination of T. parva isolates. Analysis of two individual minisatellite loci revealed variation between the genomic DNAs of two T. parva isolates in the copy number of the constituent repeats within the array, similar to that typical of vertebrate minisatellites.  相似文献   

7.
To determine the frequency and clustering of a variety of simple di-and trinucleotide repeats, an Artiodactyl short interspersed element (SINE), an ovine satellite repeat, and a human Alu 1 repeat were used to screen a random selection of cosmids containing inserts of ovine genomic DNA. In total, 197 individual cosmids were digested with EcoRI and the fragments separated on 0.7% agarose gels. Southern blots of these gels were then sequentially probed with (AC)7, (CT)9, and (CAC)6 oligonucleotides, and the repeats described above. The frequency at which (AC)1, (CT)n, and (CAC)n repeats were found in the cosmids indicated that they occurred at average intervals of 65 kb, 367 kb, and 213 kb respectively within the ovine genome. The Artiodactyl SINE was the most common, occurring at an average interval of 20 kb. No human Alu 1 sequences were detected. There was a significant positive association between the (AC)n and the Artiodactyl SINE. This association is quite strong as there was significant clustering of the two repeats both within cosmids and also within the EcoRI fragments of the digested genomic fragments. With the exception of the sheep satellite sequence, which occurs in tandem arrays, none of the other repeats showed significant clustering within the 41-kb (average size) cosmid inserts. The first 25 ovine microsatellites we characterized had an average polymorphic information content (PIC) of 0.65. The different microsatellite types, containing either perfect, imperfect, or compound repeats, had similar average PICs of 0.64, 0.65, and 0.66 respectively. There was a weak regression relationship (R2(adj)%=21.9) between the length of the longest uninterrupted dinucleotide repeat in the largest allele and the PIC of the microsatellite.  相似文献   

8.
Simple sequence repeats (SSRs), or microsatellites, are a new class of PCR-based DNA markers for genetic mapping. The objectives of the present study were to develop SSR markers for barley and to integrate them into an existing barley linkage map. DNA sequences containing SSRs were isolated from a barley genomic library and from public databases. It is estimated that the barley genome contains one (GA)n repeat every 330 kb and one (CA)n repeat every 620 kb. A total of 45 SSRs were identified and mapped to seven barley chromosomes using doubled-haploid lines and/or wheat-barley addition-line assays. Segregation analysis for 39 of these SSRs identified 40 loci. These 40 markers were placed on a barley linkage map with respect to 160 restriction fragment length polymorphism (RFLP) and other markers. The results of this study demonstrate the value of SSRs as markers in genetic studies and breeding research in barley.  相似文献   

9.
Simple sequence repeats (SSRs) have been widely used in maize genetics and breeding, because they are co-dominant, easy to score, and highly abundant. In this study, we used whole-genome sequences from 16 maize inbreds and 1 wild relative to determine SSR abundance and to develop a set of high-density polymorphic SSR markers. A total of 264 658 SSRs were identified across the 17 genomes, with an average of 135 693 SSRs per genome. Marker density was one SSR every of 15.48 kb. (C/G)n, (AT)n, (CAG/CTG)n, and (AAAT/ATTT)n were the most frequent motifs for mono, di-, tri-, and tetra-nucleotide SSRs, respectively. SSRs were most abundant in intergenic region and least frequent in untranslated regions, as revealed by comparing SSR distributions of three representative resequenced genomes. Comparing SSR sequences and e-polymerase chain reaction analysis among the 17 tested genomes created a new database, including 111 887 SSRs, that could be develop as polymorphic markers in silico. Among these markers, 58.00, 26.09, 7.20, 3.00, 3.93, and 1.78% of them had mono, di-, tri-, tetra-, penta-, and hexa-nucleotide motifs, respectively. Polymorphic information content for 35 573 polymorphic SSRs out of 111 887 loci varied from 0.05 to 0.83, with an average of 0.31 in the 17 tested genomes. Experimental validation of polymorphic SSR markers showed that over 70% of the primer pairs could generate the target bands with length polymorphism, and these markers would be very powerful when they are used for genetic populations derived from various types of maize germplasms that were sampled for this study.  相似文献   

10.
A partial genomic DNA library of Chlamydomonas reinhardtii was screened with an (AC)11 probe for the presence of (CA/GT)n simple sequence repeats (SSRs). Based on the frequency of these repeats in the partial genomic library, we estimate that (CA/GT)n repeats occur at a rate of about one every 17.7 kb in the C. reinhardtii genome. Ten positive clones were sequenced and four polymerase chain reaction (PCR) primer sets flanking (CA/GT)n sequences were constructed for four loci. The PCR was used to specifically amplify these regions from multiple isolates of C. reinhardtii. All four loci were highly polymorphic in the C. reinhardtii isolates. A simple Mendelian inheritance pattern was found for all four loci, which showed 2:2 segregation in the tetrads resulting from a cross between C. reinhardtii and C. smithii. Our results suggest that these simple sequence repeat DNA loci will be useful for identity testing, population studies, linkage analysis, and genome mapping in Chlamydomonas.  相似文献   

11.
A computer analysis revealed that the mononucleotide repeat (A)n-(T)n is about five times as common as (CA)n-(GT)n repeats in the porcine genome, with frequency estimates of one every 7kb and 30kb, respectively. Seven mononucleotide repeats with n= 12–25 located close to coding sequences were analysed for polymorphism using polymerase chain reaction (PCR) amplification and polyacrylamide gel electrophoresis. All loci were variable with 3–6 alleles and heterozygosities of 0.26–0.69 based on investigation of 10 unrelated pigs (two wild boars and eight domestic sows). Repeat length correlated with degree of polymorphism. A comparison with (CA)n-(GT)n polymorphisms suggested that the number of repeat units rather than the total length of the repeat region is the common denominator that governs polymorphism at both mono- and dinucleotide repeat loci. (A)n-(T)n polymorphisms allowed linkage mapping of relaxin to chromosome 1, apolipoprotein B to chromosome 3, aminopepti-dase N to chromosome 7, arachidonate 12-lipoxygenase to chromosome 12, and follistatin to chromosome 16. The rich abundance of potentially informative (A)n-(T)n repeats will increase the chances of finding a PCR-based marker near any DNA sequence of interest.  相似文献   

12.
Synthetic tandem repeats (STRs) of oligonucleotides have previously been shown to detect polymorphic loci in the human genome. Here, we report results from the use of three such probes to screen a human cosmid library. Nine of the 45 positive clones that were analyzed appear to contain highly polymorphic minisatellite or VNTR loci. The degree of enrichment for minisatellite sequences varied with the choice of STR: one provided a 15- to 20-fold enrichment (4 polymorphic loci among 10 clones), whereas 2 others gave a 3- to 5-fold enrichment (5 polymorphic probes in a total of 35 clones) compared to random screening. The 9 VNTR markers have been localized by linkage analysis in the CEPH panel and/or by in situ hybridization. Eight probes identify new loci, one of which maps to an interstitial region. One of the VNTR loci (identified by probe CEB1) was found to be hypermutable, with 52 mutation events identified among 310 children characterized in 40 CEPH families. The parental origin of the mutation could be identified in all instances, and only one mutation was found to be of maternal origin. The mutation rate in males was estimated to be approximately 15%. Segregation analysis of flanking markers suggests that mutations are not associated with crossing over. As the only previously described hypermutable minisatellite loci in humans have equal rates of male and female mutations, these observations establish that a second type of hypermutable minisatellite exists in the human genome. In neither case does the generation of new alleles appear to be associated with unequal crossing over.  相似文献   

13.
A tomato lambda genomic library was screened with the human minisatellites 33.6 and 33.15. Similar tomato sequences are estimated to occur on average every 4000 kb. In thirteen hybridizing clones characterized, the size of minisatellite arrays varied between 100 bp and 3 kb. The structure of the repetitive elements is complex as the human core sequence is interspersed with other elements. In three cases, sequences similar to the human minisatellites were part of a higher-order tandem repeat. The chromosomal position of these sequences was established by ascertaining linkage to previously mapped RFLP markers. In contrast to the human genome, no clustering of minisatellite loci was observed in tomato. The fingerprints generated by hybridizing tomato minisatellites to genomic DNA of a set of cultivars were, in two cases, more variable than those obtained with 33.6 or 33.15. Two of the characterized probes detected 4–8 alleles of a single locus, which displayed 10–15 times more polymorphism than random RFLP clones. Some minisatellites contain di- and tri-nucleotide microsatellite repeated motifs which may account for the high level of polymorphism detected with these clones.  相似文献   

14.
An integrated genetic linkage map of avocado   总被引:5,自引:0,他引:5  
 An avocado genomic library was screened with various microsatellite repeats. (A/T)n and (TC/AG)n sequences were found to be the most frequent repeats. One hundred and seventy-two positive clones were sequenced successfully of which 113 were found to contain simple sequence repeats (SSR). Polymerase chain reaction primers were designed to the regions flanking the SSR in 62 clones. A GenBank search of avocado DNA sequences revealed 1 sequence containing a (CT)10 repeat. A total of 92 avocado-specific SSR markers were screened for polymorphism using 50 offspring of a cross between the avocado cultivars ‘Pinkerton’ and ‘Ettinger’. Both are standard avocado cultivars which are normally outcrossed and highly heterozygous. Fifty polymorphic SSR loci, 17 random amplified polymorphic DNA (RAPD) and 23 minisatellite DNA Fingerprint (DFP) bands were used to construct the avocado genetic map. The resulting data were analyzed with various mapping programs in order to assess which program best accommodated data from progeny of heterozygous parents. The analyses resulted in 12 linkage groups with 34 markers (25 SSRs, 3 RAPDs and 6 DFP bands) covering 352.6 cM. This initial map can serve as a basis for developing a detailed genomic map and for detection of linkage between markers and quantitative trait loci. Received: 2 April 1996 / Accepted: 28 February 1997  相似文献   

15.
Microsatellites have emerged as an important system of molecular markers. We evaluated the potential of microsatellites for use in genetic studies of peach [Prunus persica (L.) Batsch]. Microsatellite loci in peach were identified by screening a pUC8 genomic library, a λZAPII leaf cDNA library, as well as through database searches. Primer sequences for the microsatellite loci were tested from the related Rosaceae species apple (Malus×domestica) and sour cherry (Prunus cerasus L.). The genomic library was screened for CT, CA and AGG repeats, while the cDNA library was screened for (CT)n- and (CA)n-containing clones. Estimates of microsatellite frequencies were determined from the genomic library screening, and indicate that CT repeats occur every 100 kb, CA repeats every 420 kb, and AGG repeats every 700 kb in the peach genome. Microsatellite- containing clones were sequenced, and specific PCR primers were designed to amplify the microsatellite- containing regions from genomic DNA. The level of microsatellite polymorphism was evaluated among 28 scion peach cultivars which displayed one to four alleles per primer pair. Five microsatellites were found to segregate in intraspecific peach-mapping crosses. In addition, these microsatellite markers were tested for their utility in cross-species amplification for use in comparative mapping both within the Rosaceae, and with the un- related species Arabidopsis thaliana L. Received: 18 June 1999 / Accepted: 6 December 1999  相似文献   

16.
《Genomics》1995,29(3)
By two-dimensional (2-D) genome typing, i.e., electrophoretic separation of restriction enzyme-digested genomic DNA on the basis of both size and sequence in denaturing gradient gels followed by hybridization analysis, several hundred alleles (spots) can be analyzed in parallel, using a micro- or minisatellite core probe. We studied the segregation of 213 and 214 spots detected by microsatellite core probe (CAC)nand mini- satellite core probe 33.6, respectively, in two three-generation human pedigrees. Reproducibility of the spot patterns was such that particular spot variants could be scored in both pedigrees. Between 73 and 74% of the spots scored were variant and were transmitted in a Mendelian manner. Very little cosegregation among the 2-D spots themselves was observed, suggesting a random distribution over the genome. Several pairs of spots that appeared to contain both alleles from single loci were identified. The few spots detected by both probes (overlapping spots) showed different segregation patterns, indicating that each probe detects independent sets of genetically informative loci. These results provide a firm basis for using 2-D DNA typing to identify disease loci and for constructing a 2-D spot genetic linkage map of the human genome.  相似文献   

17.
Microsatellites are islands of long repeats of mono-, di- or trinucleotides evenly distributed in the eukaryotic genome with an average distance of 50–100 kb. They display a high degree of length polymorphism and heterozygosity at individual loci, making them highly useful as markers in the development of genomic maps of eukaryotes. In the present work, we examined the dinucleotide repeat motif (dG-dT)n in the Atlantic salmon, Salmo salar L., genome. The frequency of (dG-dT)n microsatellites in salmon correlates well with earlier published estimations. Cloning and sequencing of 45 salmon microsatellites revealed perfect and imperfect repeats, but no compound microsatellites. The distribution of number of repeat units in salmon microsatellites differ significantly from that of higher vertebrates. Salmon tends to have more long repeat stretches and less intermediate length repeats.  相似文献   

18.
19.
Large-insert bacterial artificial chromosome (BAC) libraries, plant-transformation-competent binary BAC (BIBAC) libraries, and simple sequence repeat (SSR) markers are essential for many aspects of genomics research. We constructed a BAC library and a BIBAC library from the nuclear DNA of chickpea, Cicer arietinum L., cv. Hadas, partially digested with HindIII and BamHI, respectively. The BAC library has 14,976 clones, with an average insert size of 121 kb, and the BIBAC library consists of 23,040 clones, with an average insert size of 145 kb. The combined libraries collectively cover ca. 7.0× genomes of chickpea. We screened the BAC library with eight synthetic SSR oligos, (GA)10, (GAA)7, (AT)10, (TAA)7, (TGA)7, (CA)10, (CAA)7, and (CCA)7. Positive BACs were selected, subcloned, and sequenced for SSR marker development. Two hundred and thirty-three new chickpea SSR markers were developed and characterized by PCR, using chickpea DNA as template. These results have demonstrated that BACs are an excellent source for SSR marker development in chickpea. We also estimated the distribution of the SSR loci in the chickpea genome. The SSR motifs (TAA)n and (GA)n were much more abundant than the others, and the distribution of the SSR loci appeared non-random. The BAC and BIBAC libraries and new SSR markers will provide valuable resources for chickpea genomics research and breeding (the libraries and their filters are available to the public at ).J. Lichtenzveig and C. Scheuring contributed equally to this study.  相似文献   

20.
Two parthenogenic families of unisexual species of Caucasian rock lizards of genusLacerta, L. armeniaca andL. unisexualis, were analyzed by DNA fingerprinting. Inheritance of M13 minisatellite and of (GACA) n , (GATA) n , and (TCC) n microsatellite loci in the first generation of the lizards was studied. M13, (GACA) n , and (TCC) n loci in the families ofL. armeniaca were strictly inherited, as well as M13 and (GACA) n loci in the families ofL. unisexualis: each DNA fragment in the fingerprint patterns of progeny could be detected in the maternal pattern. However, when a (TCC)50 microsatellite probe was applied in the study ofL. unisexualis families, specific DNA fragments with altered mobility were revealed in the progeny patterns, and the frequency of such events was rather high. It might be hypothesized that some of the (TCC) n loci inL. unisexualis genome are highly mutable. Hence, the family analysis allowed us to demonstrate experimentally the presence of genetically unstable loci in genomes of parthenogenic species of vertebrates. The nature and mechanism of the instability of these loci in parthenogenesis remain obscure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号