首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Objective: Lower lipid and insulin levels are found during a glucose-tolerance test in obese black than obese white South African women. Therefore, β-cell function and lipid metabolism were compared in these populations during a mixed meal. Research Methods and Procedures: Blood concentrations of glucose, free fatty acids (FFAs), insulin, lipograms, and in vivo FFA oxidation were determined at fasting and for 7 hours after oral administration of a mixed emulsion containing glucose-casein-sucrose-lipid and [1-13C] palmitic acid in 8 lean black women (LBW), 10 obese black women (OBW), 9 lean white women (LWW), and 10 obese white women (OWW). Subcutaneous and visceral fat mass was assessed by computerized tomography. Results: Visceral fat area was higher in OWW (152.7 ± 17.0 cm2) than OBW (80.0 ± 6.7 cm2; p < 0.01). In OBW, 30-minute insulin levels were higher (604.3 ± 117.6 pM) than OWW (311.0 ± 42.9 pM; p < 0.05). Total triglyceride was higher in OWW (706.7 ± 96.0 mM × 7 hours) than OBW (465.7 ± 48.2 mM × 7 hours; p < 0.05) and correlated with visceral fat area (β = 0.38, p = 0.05). Palmitate oxidation was higher in lean than obese women in both ethnic groups and correlated negatively with fat mass (β = −0.58, p < 0.005). Discussion: The higher 30-minute insulin response in OBW may reflect a higher insulinotropic effect of FFAs or glucose. The elevated triglyceride level of OWW may be due to their higher visceral fat mass and possibly reduced clearance by adipose tissue.  相似文献   

2.
Objective: To evaluate insulin action on substrate use and insulinemia in nondiabetic class III obese patients before and after weight loss induced by bariatric surgery. Research Methods and Procedures: Thirteen obese patients (four men/nine women; BMI = 56.3 ± 2.7 kg/m2) and 13 lean subjects (five men/eight women; BMI = 22.4 ± 0.5 kg/m2) underwent euglycemic clamp, oral glucose tolerance test, and indirect calorimetry. The study was carried out before (Study I) and after (~40% relative to initial body weight; Study II) weight loss induced by Roux‐en‐Y Gastric bypass with silastic ring surgery. Results: The obese patients were insulin resistant (whole‐body glucose use = 19.7 ± 1.5 vs. 51.5 ± 2.4 μmol/min per kilogram fat‐free mass, p < 0.0001) and hyperinsulinemic in the fasting state (332 ± 86 vs. 85 ± 5 pM, p < 0.0001) and during the oral glucose tolerance test compared with the lean subjects. Fasting plasma insulin normalized after weight loss, whereas whole‐body glucose use increased (35.5 ± 3.7 μmol/min per kilogram fat‐free mass, p < 0.05 vs. Study I). The higher insulin clearance of obese did not change during the follow‐up period. Insulin‐induced glucose oxidation and nonoxidative glucose disposal were lower in the obese compared with the lean group (all p < 0.05). In Study II, the former increased slightly, whereas nonoxidative glucose disposal reached values similar to those of the control group. Fasting lipid oxidation was higher in the obese than in the control group and did not change significantly in Study II. The insulin effect on lipid oxidation was slightly improved (p = 0.01 vs. Study I). Discussion: The rapid weight loss after surgery in obese class III patients normalized insulinemia and improved insulin sensitivity almost entirely due to glucose storage, whereas fasting lipid oxidation remained high.  相似文献   

3.
Objective: To test the hypothesis that the greater β‐adrenoceptor (β‐AR)‐stimulated lipolysis and sensitivity (half‐maximal lipolytic response) in abdominal (ABD) adipocytes, greater gluteal (GLT) adipose tissue‐lipoprotein lipase (AT‐LPL) activity, and dyslipidemia associated with obesity in older women are modifiable by weight loss (WL) and are not due to menopause or aging. Research Methods and Procedures: The metabolic effects of 6 months of hypocaloric diet and low‐intensity walking WL program on the regional regulation of in vitro lipolysis and AT‐LPL activity in subcutaneous ABD and GLT adipocytes were measured in 34 obese (48.7 ± 0.7% body fat, mean ± SE) postmenopausal (59 ± 1 years) white women. Results: The lipolytic responsiveness to the β‐AR agonist isoproterenol and basal lipolysis in the presence of 1 U/mL adenosine deaminase‐uninhibited (lipolysis) were greater (p < 0.01) in ABD than GLT adipocytes before and after WL, but there were no regional differences in postreceptor (dibutyryl 3′, 5′‐cyclic adenosine monophosphate)‐stimulated lipolysis. β‐AR sensitivity was greater in ABD than GLT adipocytes before (p < 0.01) but not after WL. Regional AT‐LPL did not change after WL, but the change in the activity of ABD (but not GLT) AT‐LPL correlated with the baseline adenosine deaminase‐uninhibited lipolysis (r = 0.38, p = 0.03). There were no relationships between the declines in plasma triglyceride or increases in high‐density lipoprotein cholesterol associated with WL and the changes in regional fat cell metabolism. Discussion: Thus, despite improving lipoprotein lipid profiles in obese, postmenopausal women, WL does not affect the regulation of regional fat metabolism, and a greater tonic inhibition of basal lipolysis by endogenous adenosine may increase the activity of AT‐LPL after WL and predispose older women to develop ABD adiposity.  相似文献   

4.
Visceral obesity is associated with resistance to the antilipolytic effect of insulin in vivo. We investigated whether subcutaneous abdominal and gluteal adipocytes from viscerally obese women exhibit insulin resistance in vitro. Subjects were obese black and white premenopausal nondiabetic women matched for visceral adipose tissue (VAT), total adiposity, and age. Independently of race and adipocyte size, increased VAT was associated with decreased sensitivity to insulin's antilipolytic effect in subcutaneous abdominal and gluteal adipocytes. Absolute lipolytic rates at physiologically relevant concentrations of insulin or the adenosine receptor agonist N(6)-(phenylisopropyl)adenosine were higher in subjects with the highest vs. lowest VAT area. Independently of cell size, abdominal adipocytes were less sensitive to the antilipolytic effect of insulin than gluteal adipocytes, which may partly explain increased nonesterified fatty acid fluxes in upper vs. lower body obese women. Moreover, increased VAT was associated with decreased responsiveness, but not decreased sensitivity, to insulin's stimulatory effect on glucose transport in abdominal adipocytes. These data suggest that insulin resistance of subcutaneous abdominal and, to a lesser extent, gluteal adipocytes may contribute to increased systemic lipolysis in both black and white viscerally obese women.  相似文献   

5.
Objective: Relative to whites, African Americans have lower circulating triglycerides (TG) and greater highdensity lipoprotein cholesterol. The metabolic basis for this difference is not known. This study was conducted to test the hypothesis that insulin‐induced suppression of free fatty acids (FFA) results in lower serum TG in African American versus white prepubertal children. Research Methods and Procedures: Insulin, FFA, and TG were determined at baseline and during a frequently sampled, intravenous glucose tolerance test in eight African American and eight white prepubertal males pair‐matched for whole‐body insulin sensitivity. Results: Baseline TG was lower in African Americans (0.43 ± 0.10 vs. 0.79 ± 0.37 mM/L; mean ± SD; p < 0.01). African Americans had higher peak insulin (218 ± 102 vs. 100 ± 30 pM/L; mean ± SD; p < 0.01) and a greater acute insulin response (9282 ± 4272 vs. 4230 ± 1326 pM/L × 10 minutes; mean ± SD; p < 0.05). FFA and TG values determined at the FFA nadir were lower in African Americans (0.26 ± 0.02 vs. 0.30 ± 0.03 mEq/L; mean ± SD; p < 0.01 for FFA nadir and 0.49 ± 0.07 vs. 0.77 ± 0.33 mM/L; mean ± SD; p < 0.05 for TG). Among all subjects, FFA nadir was correlated with peak insulin (r = ?0.54; p < 0.05). After adjusting for FFA nadir, neither baseline nor postchallenge TG differed with ethnicity (p = 0.073 and 0.192, respectively). The ethnic difference in FFA nadir disappeared after adjusting for peak insulin (p = 0.073). Discussion: These data suggest that hyperinsulinemiainduced suppression of FFA among African Americans is a determinant of lower TG in this group.  相似文献   

6.
The lipolytic effects of norepinephrine (a non-selective β-agonist) and BRL 37344 (a selective β3-agonist) were compared in isolated rat brown and white adipocytes. Norepinephrine and BRL 37344 maximally stimulated lipolysis in brown and white adipocytes, approximately 10 times above basal values. However, adipocyte sensitivity for BRL 37344 was greater than that for norepinephrine, particularly in brown adipocytes [the EC50 values (nM) for BRL 37344 and norepinephrine were 5 ± 1 and 103 ± 31 in brown adipocytes (P <0.01) versus 56 ± 9 and 124 ± 17 in white adipocytes (P <0.05), respectively]. On the other hand, the lipolytic effects of norepinephrine were totally blocked by 20–40 times superior concentrations of propranolol or bupranolol in brown as well as in white adipocytes. In contrast, the lipolytic effects of BRL 37344 were fully inhibited by concentrations of propranolol or bupranolol that were 200–1000 superior to the β3 agonist concentration. The results demonstrate that: (1) the (β3-agonist BRL 37344 is as effective as norepinephrine for maximally stimulating lipolysis in rat brown and white adipocytes, (2) both adipocyte types are more sensitive to the lipolytic effects of BRL 37344 than to those of norepinephrine, (3) although bupranolol is a better antagonist than propranolol on BRL 37344-stimulated lipolysis, it cannot be considered as a specific β3-antagonist, (4) brown adipocytes are 10 times more sensitive than white adipocytes to the lipolytic effects of BRL 37344, suggesting an important role of β3-receptors in brown adipose tissue.  相似文献   

7.
Objective: We determined whether fat accumulation in the liver is associated with features of insulin resistance independent of obesity. Research Methods and Procedures: We recruited 27 obese nondiabetic women in whom liver fat (LFAT) content was determined by proton spectroscopy, intra-abdominal and subcutaneous fat by magnetic resonance imaging, and insulin sensitivity by the euglycemic insulin clamp technique. The women were divided based on their median LFAT content (5%) to groups with low (3.2 ± 0.3%) and high (9.8 ± 1.5%) liver fat. The groups were almost identical with respect to age (36 ± 1 vs. 38 ± 1 years in low vs. high-LFAT), body mass index (32.2 ± 0.6 vs. 32.8 ± 0.5 kg/m2), waist-to-hip ratio, intra-abdominal, subcutaneous, and total fat content. Results: Women with high LFAT had features of insulin resistance including higher fasting serum triglyceride (1.93 ± 0.21 vs. 1.11 ± 0.09 mM, p < 0.01) and insulin (14 ± 3 vs. 10 ± 1 mU/L, p < 0.05) concentrations than women with low LFAT. The group with high LFAT also had higher 24-hour blood pressures, and lower whole-body insulin sensitivity compared with the low-LFAT group. Discussion: In obese women with previous gestational diabetes, LFAT, rather than any measure of body composition, is associated with features of insulin resistance.  相似文献   

8.
Objective: Recent data have suggested that the insulin resistance observed with aging may be more related to adiposity than aging per se. We asked whether the insulin resistance observed in aged rats was comparable (both in magnitude and location) to that of fat‐fed rats. Research Methods and Procedures: We performed hyperinsulinemic (5 mU/min per kg) euglycemic clamps with tracer in conscious, 6‐hour fasted young (YL), fat‐fed young (YF), fat‐fed old (OF), and calorically restricted old (OL) rats. Results: Intraabdominal fat measurements showed that OF and YF rats were more obese than YL (p ≤ 0.001; YF > OF > YL). Caloric restriction not only prevented age‐related obesity but also reduced the ratio of intraabdominal fat to lean body mass (LBM) compared with YL (OL: 0.59 ± 0.05 vs. YL: 1.07 ± 0.04; p = 0.017). Despite similar incremental insulin, YF and OF rats required 40% less infused glucose to maintain euglycemia than YL and OL rats (p < 0.001). Insulin‐stimulated glucose uptake (SiRd: ΔRd/(ΔInsulin × GlucoseSS) was impaired in OF rats (OF: 14.03 ± 1.79 vs. YL: 23.08 ± 1.87 × 103 dL/min × kg LBM per pM; p = 0.004) and improved in OL rats (29.41 ± 1.84 × 103 dL/min × kg LBM per pM; p = 0.031) compared with YL. Despite greater obesity, YF rats did not exhibit lower SiRd compared with OF rats (p = 0.58). In contrast, the ability of insulin to suppress endogenous glucose production (EGP; SiEGP: ΔEGP/(ΔInsulin × GlucoseSS) was not impaired in OF rats (OF vs. YL; p = 0.61) but was markedly impaired in YF rats by ~75% (1.72 ± 0.66 × 103 dL/min × kg per pM; p = 0.013). Surprisingly, separate regression analysis for old and young animals revealed that old rats exhibited a significantly steeper regression between Si (Rd and EGP) and adiposity than young rats (p < 0.05). Thus, older rats showed a proportionately greater decrement in insulin sensitivity with an equivalent increase in adiposity. Discussion: These data suggest that, in rodents, youth affords significant protection against obesity‐induced insulin resistance.  相似文献   

9.
Objective: We showed glucose‐dependent lipolytic oscillations in adipocytes that are modulated by free fatty acids (FFAs). We hypothesized that the oscillations are driven by oscillatory glucose metabolism that leads to oscillatory formation of α‐glycerophosphate (α‐GP), oscillatory removal of long‐chain coenzyme A (LC‐CoA) by α‐GP to form triglycerides, and oscillatory relief of LC‐CoA inhibition of triglyceride lipases. This study examined the effect of insulin on this hypothesis. Research Methods and Procedures: Samples were collected every minute from perifused rat adipocytes during the basal state followed by insulin (±glucose) or isoproterenol (±insulin; n = 4 each). Results: Insulin caused a significant increase in glycerol release (18%), with a concomitant significant decrease in FFA release (38%). Without glucose, insulin had no effect on glycerol release while still decreasing FFA release (35%). Insulin (5 μU/mL) attenuated the response of lipolysis to isoproterenol (~3‐fold increase with isoproterenol vs. 2‐fold increase with insulin + isoproterenol). However, 1 mU/mL insulin amplified the lipolytic response (~5‐fold increase in glycerol release with insulin + isoproterenol), with a concomitant increase in FFA reesterification (no increase in FFA release compared with isoproterenol alone). Discussion: We interpret these results to be due to insulin's ability to increase glucose uptake and conversion to α‐GP, thus removing LC‐CoA inhibition of triglyceride lipases. While the physiological importance of lipolytic oscillations remains to be determined, we hypothesize that such an oscillation may play an important role in the delivery of FFAs to the liver, β cells, and other tissues.  相似文献   

10.
Objective: To investigate AGT secretion in cultured adipocytes from obese patients and its relationship with obesity‐related phenotypes, blood pressure, and the M235T polymorphism in the AGT gene. Research Methods and Procedures: Measurements, including anthropometry, body composition (DXA), and blood pressure, were performed in 61 overweight or obese women (BMI: 28 to 68 kg/m2). A subcutaneous abdominal adipose tissue biopsy was used for adipocyte size determination and quantification of AGT secretion in the medium of cultured adipocytes. AGT M235T genotype was determined using polymerase chain reaction‐restriction fragment length polymorphism. Results: Adipose secretion of the AGT protein (range, 140 to 2575 ng/106 cells/24 h) was not significantly correlated with BMI, body fat, or blood pressure and did not vary according to the M235T polymorphism in the AGT gene. However, the AGT M235T polymorphism was associated with adipocyte size (111.6 ± 2.8, 108.8 ± 1.9, 118.2 ± 2.6 μm in MM, MT, and TT genotypes, respectively; p < 0.01) after adjustment for age and fat mass. An association between the AGT M235T polymorphism and adipocyte size (p < 0.02 adjusted for sex, age, and BMI) was found in another independent sample of 106 obese subjects (sex ratio, M/F 16/90; BMI, 29 to 70 kg/m2). Discussion: In cultured adipocytes from obese subjects, AGT secretion was not associated with body fat phenotypes, blood pressure, or fat cell size. However, results from two independent studies suggest an association between the AGT M235T polymorphism and adipocyte size.  相似文献   

11.
Objective: To investigate the health-related quality of life (HR-QOL) in African-American (AA) and white (W) obese women. Research Methods and Procedures: Participants were 145 obese women (80 AA and 65 W; 87 premenopausal and 58 postmenopausal) who completed the Medical Outcomes Study short form, the Brief Symptom Inventory, the Life Distress Inventory, the Satisfaction With Life Scale, and the Rosenberg Self-Esteem Scale before entering a weight-loss study. The mean age of the subjects was 46.3 ± 11.1 years and the mean body mass index was 35.2 ± 4.2 kg/m2. Results: Although AA women were slightly heavier (95.3 ± 10.3 kg vs. 91.5 ± 11.6 kg, p < 0.05) and less educated (14.2 ± 3.7 years vs. 15.7 ± 3.7 years, p < 0.05) than the W women in the sample, there was no difference between the two ethnic groups in any of the reported HR-QOL variables. Menopausal status had a significant effect on HR-QOL, with premenopausal women being more distressed (p = 0.002), having more limitations in social activity (p = 0.007), and having less vitality (p < 0.001) than the postmenopausal women. This was especially true in the AA women. Discussion: These data show no difference in HR-QOL between AA and W obese women and suggest that menopausal status may have an impact on HR-QOL, especially in AA women.  相似文献   

12.
The size of adipocytes influences their function suggesting a differential responsiveness to intervention. We hypothesized that weight loss in patients with type 2 diabetes mellitus (T2DM) predominantly decreases the size of large and very‐large adipocyte subfractions in parallel with beneficial changes in serum adipokines and improved insulin sensitivity. A total of 44 volunteers from the Look Action for Health in Diabetes trial, who lost weight after 1‐year of intense lifestyle intervention, were included. Insulin sensitivity (hyperinsulinemic–euglycemic clamp), size of subcutaneous abdominal adipocytes (osmium fixation), and selected serum adipokines were measured. A 13% weight loss was accompanied by 46% improvement in insulin sensitivity (increased glucose disposal rate from 5.9 ± 2.2 to 8.6 ± 2.7 mg/min/kg fat‐free mass, P < 0.05) in parallel with a 36% increase in plasma adiponectin concentration (6.1 ± 3.1 to 8.3 ± 3.9 µg/ml, P < 0.05], but no changes in the proinflammatory cytokines interleukin‐6 and tumor necrosis factor‐α. Change in adiponectin correlated with changes in glucose disposal rate (r = 0.34, P < 0.05). Mean adipocyte size decreased (0.84 ± 0.25 to 0.64 ± 0.23 µl, P < 0.05), mainly due to changes in the large adipocyte subfraction (size 0.75–0.44 µl, relative number 19–26%; P < 0.05). Our data suggest that change in the large adipocyte subfraction may contribute to the improvement in insulin sensitivity via an increase in serum adiponectin. Such a relationship, which does not imply cause and effect, could not be obtained by measuring only mean adipocyte size. These data provide support for the measures of adipocyte size distribution in concert with in vitro adipokine secretion and lipolysis in future studies.  相似文献   

13.
Black South African women are more insulin resistant than BMI‐matched white women. The objective of the study was to characterize the determinants of insulin sensitivity in black and white South African women matched for BMI. A total of 57 normal‐weight (BMI 18–25 kg/m2) and obese (BMI > 30 kg/m2) black and white premenopausal South African women underwent the following measurements: body composition (dual‐energy X‐ray absorptiometry), body fat distribution (computerized tomography (CT)), insulin sensitivity (SI, frequently sampled intravenous glucose tolerance test), dietary intake (food frequency questionnaire), physical activity (Global Physical Activity Questionnaire), and socioeconomic status (SES, demographic questionnaire). Black women were less insulin sensitive (4.4 ± 0.8 vs. 9.5 ± 0.8 and 3.0 ± 0.8 vs. 6.0 ± 0.8 × 10?5/min/(pmol/l), for normal‐weight and obese women, respectively, P < 0.001), but had less visceral adipose tissue (VAT) (P = 0.051), more abdominal superficial subcutaneous adipose tissue (SAT) (P = 0.003), lower SES (P < 0.001), and higher dietary fat intake (P = 0.001) than white women matched for BMI. SI correlated with deep and superficial SAT in both black (R = ?0.594, P = 0.002 and R = 0.495, P = 0.012) and white women (R = ?0.554, P = 0.005 and R = ?0.546, P = 0.004), but with VAT in white women only (R = ?0.534, P = 0.005). In conclusion, body fat distribution is differentially associated with insulin sensitivity in black and white women. Therefore, the different abdominal fat depots may have varying metabolic consequences in women of different ethnic origins.  相似文献   

14.
Objective: To determine whether key appetite‐regulating neuropeptides such as melanin‐concentrating hormone (MCH), neuropeptide Y (NPY), and α‐melanocyte—stimulating hormone (α‐MSH), which are known to mediate energy balance through centrally mediated pathways, also have direct acute effects on the lipolytic activity of murine adipocytes. Research Methods and Procedures: Fully differentiated 3T3‐L1 adipocytes serum starved overnight in Dulbecco's modified Eagle medium containing 2% bovine serum albumin or freshly isolated mouse adipocytes were incubated for up to 2 hours in the absence and presence of 100 nM each of NPY, MCH, α‐MSH, the melanocortin receptor agonist MTII, or isoproterenol as a control. Free fatty acids secreted into the incubation medium were measured using a commercially available nonesterified fatty acid C test kit. Results: Treatment of 3T3‐L1 cells with 100 nM NPY decreased basal free fatty acid secretion (basal, 0.006 ± 0.001 vs. NPY, 0.001 ± 0.0003 nM at 90 minutes; p < 0.05), whereas both α‐MSH and MTII stimulated up to a 7‐fold increase in free fatty acid release (MTII, 0.238 ± 0.004 vs. basal, 0.024 ± 0.002 nM at 2 hours; p < 0.05; and α‐MSH, 0.22 ± 0.005 vs. basal, 0.04 ± 0.003 nM at 2 hours; p < 0.05). Treatment with 100 nM MCH had no effect on basal free fatty acid release or on α‐MSH—induced lipolysis during concurrent treatment. Conversely, concurrent treatment with 100 nM NPY dramatically inhibited (by ~90%) α‐MSH—induced lipolysis. Similar treatment of freshly isolated mouse adipocytes showed virtually identical results. Discussion: In addition to their centrally mediated actions, appetite‐regulating neuropeptides modulate adipose tissue mass through direct peripheral effects. Systemic administration of pharmacological agents altering the effects of these neuropeptides may form the basis of future obesity therapies. Thus, some of these agents will likely have direct effects on adipocytes that may serve to alter their therapeutic effectiveness.  相似文献   

15.
NICKLAS, BARBARA S., DORA M. BERMAN, DAWN C. DAVIS, C. LYNNE DOBROVOLNY, AND KAREN E. DENNIS. Racial differences in metabolic predictors of obesity among postmenopausal women. Ober Res. Objective: This study determined whether there are racial differences in resting metabolic rate (RMR), fat oxidation, and maximal oxygen consumption (VO,max) in obese [body mass index (BMI = 34±2 kg/m2)], postmenopausal (58±2 years) women. Research Methods and Procedures: Twenty black and 20 white women were matched for fat mass and lean mass (LM), as determined by dual energy X-ray absorptiometry. RMR and fat oxidation were measured by indirect calorimetry in the early morning after a 12-hour fast using the ventilated hood technique. VO2max was measured on a treadmill during a progressive exercise test to voluntary exhaustion. Results: RMR, adjusted for differences in LM, was 5% higher in white than black women (1566±27 and 1490±26 kcal/day, respectively; p<0. 05); and fat oxidation rate was 17% higher in white than black women (87±4 and 72±3 g/day, respectively; p<0. 01). VO2max (L/minute) was 150 mL per minute (8%) higher (p<0. 05) in white than black women. VO2max correlated with LM in black (r = 0. 44, p = 0. 05) and white (r=0. 53, p<0. 05) women, but the intercept of the regression line was higher in white than black women (p<0. 05), with no significant difference in slopes. In a multiple regression model including race, body weight, LM, and age, LM was the only independent predictor of RMR (r2 = 0. 46, p<0. 0001), whereas race was the only independent predictor of fat oxidation (r2 = 0. 18,p<0. 05). The best predictors of VO,max were LM (r2 = 0. 22, p<0. 05) and race (cumulative r2 = 0. 30, p<0. 05). Discussion: These results show there are racial differences in metabolic predictors of obesity. Determination of whether these ethnic differences lead to, or are an effect of, obesity status or other lifestyle factors requires further study.  相似文献   

16.
Visceral adipose tissue (VAT) is associated with increased risk for cardiovascular disease, and therefore, accurate methods to estimate VAT have been investigated. Computerized tomography (CT) is the gold standard measure of VAT, but its use is limited. We therefore compared waist measures and two dual‐energy X‐ray absorptiometry (DXA) methods (Ley and Lunar) that quantify abdominal regions of interest (ROIs) to CT‐derived VAT in 166 black and 143 white South African women. Anthropometry, DXA ROI, and VAT (CT at L4–L5) were measured. Black women were younger (P < 0.001), shorter (P < 0.001), and had higher body fat (P < 0.05) than white women. There were no ethnic differences in waist (89.7 ± 18.2 cm vs. 90.1 ± 15.6 cm), waist:height ratio (WHtR, 0.56 ± 0.12 vs. 0.54 ± 0.09), or DXA ROI (Ley: 2.2 ± 1.5 vs. 2.1 ± 1.4; Lunar: 2.3 ± 1.4 vs. 2.3 ± 1.5), but black women had less VAT, after adjusting for age, height, weight, and fat mass (76 ± 34 cm2 vs. 98 ± 35 cm2; P < 0.001). Ley ROI and Lunar ROI were correlated in black (r = 0.983) and white (r = 0.988) women. VAT correlated with DXA ROI (Ley: r = 0.729 and r = 0.838, P < 0.01; Lunar: r = 0.739 and r = 0.847, P < 0.01) in black and white women, but with increasing ROI android fatness, black women had less VAT. Similarly, VAT was associated with waist (r = 0.732 and r = 0.836, P < 0.01) and WHtR (r = 0.721 and r = 0.824, P < 0.01) in black and white women. In conclusion, although DXA‐derived ROIs correlate well with VAT as measured by CT, they are no better than waist or WHtR. Neither DXA nor anthropometric measures are able to accurately distinguish between high and low levels of VAT between population groups.  相似文献   

17.
Black women suffer a disproportionately higher rate of obesity than their white counterparts. Reasons for this racial disparity may reflect underlying differences in the appetite suppressing peptide‐YY (PYY). The PYY response to food is differentially influenced by macronutrient content but the effect of glycemic load on PYY response is unknown. This study examined whether glycemic load influences fasting and postprandial PYY levels and whether fasting and postprandial PYY levels are lower in obese black women compared to normal weight black women and to white women. Data were collected from 40 women (20 black, 20 white; 10 each normal weight vs. obese) at the University of North Carolina Clinical and Translational Research Center (CTRC). Participants completed in counterbalanced order two 4½‐day weight‐maintenance, mixed macronutrient high vs. low glycemic load diets followed by a test meal of identical composition. Total PYY levels were assessed before and after each test meal. Results show no differences in fasting PYY levels but significantly less postprandial PYY area under the curve (PYYAUC) in the group of obese black women compared to each other group (race × obesity interaction, P < 0.04). PYYAUC was positively related to insulin sensitivity (P < 0.004) but was not affected by glycemic load (main and interactive effects, P > 0.27). These findings indicate that postprandial PYY secretion is not affected by glycemic load but is blunted in obese black women compared with normal weight black women and with white women; additionally, they begin to address whether blunted PYY secretion contributes uniquely to the pathogenesis of obesity in black women.  相似文献   

18.
Objective: We examined short-term effects of arginine infusion on plasma leptin in diabetic and healthy subjects. Research Methods and Procedures: Arginine stimulation tests were performed in C-peptide negative type 1 [DM1; hemoglobin A1c; 7.3 ± 0.3%], hyperinsulinemic type 2 diabetic (DM2; 7.6 ± 0.7%), and nondiabetic subjects (CON; 5.4 ± 0.1%). Results: Fasting plasma leptin correlated linearly with body mass index among all groups (r = 0.61, p = 0.001). During arginine infusion, peak plasma insulin was lower in DM1 than in DM2 (p < 0.05) and CON (p < 0.01). Plasma leptin decreased within 30 minutes by ∼11% in DM1 (p < 0.001), DM2 (p < 0.01), and CON (p < 0.005), slowly returning to baseline thereafter. Plasma free fatty acids (FFAs) were higher in DM1 (0.6 ± 0.1 mM) and DM2 (0.6 ± 0.1 mM) than in CON (0.4 ± 0.1 mM, p < 0.05) and transiently declined by ∼50% (p < 0.05) at 45 minutes in all groups before rebounding toward baseline. To examine the direct effects of FFAs on plasma leptin, we infused healthy subjects with lipid/heparin and glycerol during fasting, and somatostatin-insulin (∼35 pM) -glucagon (∼90 ng/mL) clamps were performed. In both protocols, plasma leptin continuously declined by ∼25% (p < 0.05) during 540 minutes without any difference between the high and low FFA conditions. Discussion: Arginine infusion transiently decreased plasma leptin concentrations both in insulin-deficient and hyperinsulinemic diabetic patients, indicating a direct inhibitory effect of the amino acid but not of insulin or FFAs.  相似文献   

19.
Objective: Recently, an activation of the endocannabinoid system during obesity has been reported. More particularly, it has been demonstrated that hypothalamic levels of both endocannabinoids, 2‐arachidonoylglycerol and anandamide (N‐arachidonoylethanolamine), are up‐regulated in genetically obese rodents. Circulating levels of both endocannabinoids were also shown to be higher in obese compared with lean women. Yet, the direct production of endocannabinoids by human adipocytes has never been demonstrated. Our aim was to evaluate the ability of human adipocytes to produce endocannabinoids. Research Methods and Procedures: The production of endocannabinoids by human adipocytes was investigated in a model of human white subcutaneous adipocytes in primary culture. The effects of leptin, adiponectin, and peroxisome proliferator‐activated receptor (PPAR)‐γ activation on endocannabinoid production by adipocytes were explored. Endocannabinoid levels were determined by high‐performance liquid chromatography (HPLC)‐atmospheric pressure chemical ionization (APCI)‐mass spectrometry (MS) analysis, leptin and adiponectin secretion measured by enzyme‐linked immunosorbent assay (ELISA), and PPAR‐γ protein expression examined by Western blotting. Results: We show that 2‐arachidonoylglycerol, anandamide, and both anandamide analogs, N‐palmitoylethanolamine and N‐oleylethanolamine, are produced by human white subcutaneous adipocytes in concentrations ranging from 0.042 ± 0.004 to 0.531 ± 0.048 pM/mg lipid extract. N‐palmitoylethanolamine is the most abundant cannabimimetic compound produced by human adipocytes, and its levels are significantly down‐regulated by leptin but not affected by adiponectin and PPAR‐γ agonist ciglitazone. N‐palmitoylethanolamine itself does not affect either leptin or adiponectin secretion or PPAR‐γ protein expression in adipocytes. Discussion: This study has led to the identification of human adipocytes as a new source of endocannabinoids and related compounds. The biological significance of these adipocyte cannabimimetic compounds and their potential implication in obesity should deserve further investigations.  相似文献   

20.
Obesity can increase the risk of complex metabolic diseases, including insulin resistance. Moreover, obesity can be caused by environmental and genetic factors. However, the epigenetic mechanisms of obesity are not well defined. Therefore, the identification of novel epigenetic biomarkers of obesity allows for a more complete understanding of the disease and its underlying insulin resistance. The aim of our study was to identify DNA methylation changes in whole-blood that were strongly associated with obesity and insulin resistance. Whole-blood was obtained from lean (n = 10; BMI = 23.6 ± 0.7 kg/m2) and obese (n = 10; BMI = 34.4 ± 1.3 kg/m2) participants in combination with euglycemic hyperinsulinemic clamps to assess insulin sensitivity. We performed reduced representation bisulfite sequencing on genomic DNA isolated from the blood. We identified 49 differentially methylated cytosines (DMCs; q < 0.05) that were altered in obese compared with lean participants. We identified 2 sites (Chr.21:46,957,981 and Chr.21:46,957,915) in the 5’ untranslated region of solute carrier family 19 member 1 (SLC19A1) with decreased methylation in obese participants (lean 0.73 ± 0.11 vs. obese 0.09 ± 0.05; lean 0.68 ± 0.10 vs. obese 0.09 ± 0.05, respectively). These 2 DMCs identified by obesity were also significantly predicted by insulin sensitivity (r = 0.68, P = 0.003; r = 0.66; P = 0.004). In addition, we performed a differentially methylated region (DMR) analysis and demonstrated a decrease in methylation of Chr.21:46,957,915–46,958,001 in SLC19A1 of ?34.9% (70.4% lean vs. 35.5% obese). The decrease in whole-blood SLC19A1 methylation in our obese participants was similar to the change observed in skeletal muscle (Chr.21:46,957,981, lean 0.70 ± 0.09 vs. obese 0.31 ± 0.11 and Chr.21:46,957,915, lean 0.72 ± 0.11 vs. obese 0.31 ± 0.13). Pyrosequencing analysis further demonstrated a decrease in methylation at Chr.21:46,957,915 in both whole-blood (lean 0.71 ± 0.10 vs. obese 0.18 ± 0.06) and skeletal muscle (lean 0.71 ± 0.10 vs. obese 0.30 ± 0.11). Our findings demonstrate a new potential epigenetic biomarker, SLC19A1, for obesity and its underlying insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号