首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Agrobacterium tumefaciens J73, a biotype 2 strain harboring a nopaline Ti plasmid, was found to produce an agrocin active against a broad range of A. tumefaciens strains, including grapevine isolates. Sensitivity to J73 is not encoded by a Ti plasmid. Optimal conditions for the production of the agrocin were determined.  相似文献   

2.
Agrobacterium tumefaciens strains isolated from crown gall tumors on grapevines in California were consistently of the biotype 3 group. All 11 of these strains were limited in their host range and harbored Ti plasmids with molecular masses between 119 and 142 megadaltons (Mdal) as well as a larger cryptic plasmid of greater than 200 Mdal; occasionally a smaller cryptic plasmid of 65 Mdal was also present. Ti plasmids o these strains have DNA sequences in common with Ti plasmids of octopine and nopaline strains belonging to the biotype 1 group and exhibited sequence homologies with the conserved region of the T-DNA. Ten of the 11 strains utilized octopine as a sole source of carbon and nitrogen and 3 strains catabolized both octopine and nopaline, whereas 1 strain catabolized only nopaline. All of these strains were resistant to the bacteriocin agrocin-84, except one grapevine strain that belonged to the biotype 1 group and was agrocin sensitive; it is also differed in its plasmid and virulence characteristics. Isolations from Rubus ursinus ollalieberry galls yielded exclusively biotype 2 strains. These strans were insensitive to agrocin-84, utilized nopaline as a sole carbon and nitrogen source, and were highly virulent on all host plants tested. They contained Ti plasmids ranging between 100 and 130 Mdal and occasionally a cryptic plasmid of 69 Mdal. Their Ti plasmids have DNA sequences in common with Ti plasmids of biotype 1 strains and with the conserved region of the T-DNA.  相似文献   

3.
Soil samples collected from a fallow field which had not been cultivated for 5 years harbored a population of Agrobacterium spp. estimated at 3 × 107 CFU/g. Characterization of 72 strains selected from four different isolation media showed the presence of biovar 1 (56%) and bv. 2 (44%) strains. Pathogenicity assays on five different test plants revealed a high proportion (33%) of tumorigenic strains in the resident population. All tumorigenic strains belonged to bv. 1. Differentiation of the strains by restriction fragment length polymorphism analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cellular proteins, and utilization patterns of 95 carbon substrates (Biolog GN microplate) revealed a diversified bv. 1 population, composed of five distinct chromosomal backgrounds (chr A, C, D, E, and F), and a homogeneous bv. 2 population (chr B). chr A, B, C, and D were detected at similar levels throughout the study site. According to opine metabolism, pathogenicity, and agrocin sensitivity, chr A strains carried a nopaline Ti plasmid (pTi), whereas chr C strains had an octopine pTi. In addition, four of six nontumorigenic bv. 1 strains (two chr D, one chr E, and one chr F) had distinct and unusual opine catabolism patterns. chr B (bv. 2) strains were nonpathogenic and catabolized nopaline. Although agrocin sensitivity is a pTi-borne trait, 14 chr B strains were sensitive to agrocin 84, apparently harboring a defective nopaline pTi similar to pAtK84b. The other two chr B strains were agrocin resistant. The present analysis of chromosomal and plasmid phenotypes suggests that in this Agrobacterium soil population, there is a preferential association between the resident plasmids and their bacterial host.  相似文献   

4.
Agrobacterium tumefaciens C58 forms “plaques” during layer cultivation. The “plaques” were shown not to be caused by the presence of a temperate bacteriophage or by random contamination. The “plaques” and their central microcolonies were used to repeatedly isolate cultures producing an antibiotic substance against the original strainA. tumefaciens C58, other nopaline strains, some octopine strains ofA. tumefaciens and some strains of the related genusRhizobium. The substance is thus a bacteriocin; in analogy to agrocins 84 and D286 it was named agrocin C58. The agrocin is not inactivated by trypsin. Its production by strain C58 was found only on cultivation on solid but not liquid media. The producing isolate ofA. tumefaciens C58 (strain C58i2) contains neither plasmid pTiC58 nor the plasmid analogous to pAgK84 which controls the production of agrocin 84 inA. radiobacter K84.  相似文献   

5.
Summary The successful biocontrol agent for crown gall disease, Agrobacterium radiobacter strain K84, is unable to protect grapevines from infection. We have identified a strain of Agrobacterium tumefaciens, J73, which produces an agrocin active both in vitro and in vivo against grapevine pathogens (Webster et al. 1986). We now report on the curing of this strain of its nopaline-type Ti plasmid and the location, by transposon mutagenesis, of the genes involved in the production of the agrocin. The Ti plasmid was cured by the introduction of selectable plasmids carrying the origins of replication of either the nopaline Ti plasmid, pTiC58, or the octopine Ti plasmid, pTi15955. Tn5 mutagenesis indicated that the genes responsible for agrocin production and/or export are located both on the chromosome and on a plasmid, pAgJ73, which co-migrated in agarose gels with pTiJ73. As the two plasmids were separable after transposon mutagenesis, we postulate that during or after mutagenesis of the agrocin plasmid, DNA rearrangements occurred between it and pTiJ73, resulting in an increase in size of pAgJ73. We provide evidence that the rearrangements involved the duplication of nopaline catabolism genes from pTiJ73 and their insertion into pAgJ73, which facilitated the resolution of the two plasmids. As expected pTiJ73 has homology with the nopaline Ti plasmid, pTiC58.  相似文献   

6.
Ninety Agrobacterium strains were isolated from naturally appearing crown galls in Japan. They were classified into several groups based on opine type, biovars, tumorigenicity, and indigeneous plasmid profiles. Twenty-nine strains utilized nopaline, but none utilized octopine. Eighteen isolates were tumorigenic, nopaline type strains and thus classified as Agrobacterium tumefaciens. Some strains possessed anomalous traits such as lysine utilization, resistance to agrocin 84, and a lack of motility. Pathogenic strains contained Ti plasmids of either 200 kb or 260 kb, as identified by hybridization to T-DNA of the known Ti plasmid. However, the restriction enzyme cleavage patterns, arising from hybridization to the probe, were different from each other and indicated that nopaline type Ti plasmids possess more diverse T-DNA structures than previously reported. Five of 6 representative strains induced tumors on 6 plant species (tomato, petunia, poplar, kalanköe, apple, and grape). Among these, apple was notable, since only a few strains have been reported to be pathogenic to this plant. On petunia, 4 strains developed large tumors while 2 produced only small tumors. Teratomas were formed on poplar in a strain-dependent manner, but not on tomato. These results suggest that our isolates are wide host range strains, and that host-specificity of these strains is related to diverse T-DNA structures.  相似文献   

7.
8.
Fingerprints of Agrobacterium Ti plasmids   总被引:1,自引:0,他引:1  
Many crown gall-inducing Agrobacterium tumefaciens strains have multiple plasmids, only one of which, the tumor-inducing (Ti) plasmid, is essential for oncogenicity. For comparison of Ti plasmids, single-plasmid-containing transconjugant or transformant derivatives were used as sources of pure Ti-plasmid DNA. Fingerprinting was undertaken using the restriction endonuclease SmaI because it produced a relatively simple cleavage pattern. Three groups of Ti plasmids are discernible based upon both their genetic characteristics and their SmaI fingerprints: (1) Octopine-type Ti plasmids, which confer oncogenicity and octopine utilization on the bacterium. Tumors incited produce octopine. This group of plasmids is highly conservative; fingerprints of all members were identical except for two minor variations. (2) Nopaline-type Ti plasmids, which confer oncogenicity and nopaline utilization on the bacterium. Tumors incited may or may not produce nopaline; these plasmids have fingerprints that suggest variable degrees of relationship, including one that appears unrelated to the rest (3) Null-type plasmids, which confer oncogenicity but neither utilization trait on the bacterium. Tumors incited by this class of strains produce neither octopine nor nopaline. Only one member of this group has been examined thus far. Fingerprints of plasmids from several nononcogenic strains examined bore no resemblance to fingerprints of any of the Ti plasmids.  相似文献   

9.
Sixty-five strains and isolates of Agrobacterium tumefaciens representing each of the known biotypes, were tested for in vitro and in vivo susceptibility to the agrocin-producing strains Agrobacterium radiobacter 84 and A. tumefaciens D286. No biotype 3 strain was susceptible to the effects of either of the agrocinogenic strains in vitro. On datura and tobacco, the best inhibition of tumor formation was obtained when the agrocinogenic strains were applied to wounds 24 h before the pathogens and by the concomitant application of agrocin producer and pathogen at cell ratios of 10:1 or 3:1; inhibition of infection tended to decrease progressively as the cell ratio decreased from 10:1 to 3:1 to 1:1. Generally, strain 84 was superior to D286 in inhibiting tumor formation. A combined cell suspension of 84 and D286 was as effective as 84 alone. The overall pattern of inhibition of tumor formation by biotype 1 and 2 pathogens resistant to the agrocinogenic strains in vitro was similar to that obtained with strains that were susceptible in vitro.  相似文献   

10.
Biotype 1 and 2 strains of Agrobacterium tumefaciens were isolated from crown gall tumors of Lippia canescens plants growing as ground cover in Arizona. The isolates were agrocin 84 sensitive, did not catabolize octopine, nopaline, agropine, or mannopine, and were limited in their tumorigenic host range. One biotype 2 strain, AB2/73, showed the most limited host range; it incited tumors only on Lippia strains, the cucurbit family of plants, and Nicotiana glauca. Megaplasmids were detected in the isolates by vertical agarose gel electrophoresis. The unusual host range, as well as sensitivity to agrocin 84, were plasmid specified since they were conjugally cotransferred with plasmids from donor strain AB2/73. Correlation of deletions with concomitant loss of virulence and agrocin 84 sensitivity identified the megaplasmid pAtAB2/73d as the virulence element in strain AB2/73. The estimated size of this tumor-inducing plasmid was 500 kilobases. Axenic growth of tumor tissue incited by strains carrying pAtAB2/73d was phytohormone independent. Although the limited-host-range megaplasmid pAtAB2/73d lacked any detectable homology to the phytohormone-biosynthetic genes in wide-host-range transferred DNA (tms-1, tms-2, tmr), it showed homology to the wide-host-range virB, virC, virD, and virG loci. Therefore, pAtAB2/73d represents a new class of tumor-inducing plasmids distinguished by its large size, the absence of determinants for the catabolism of several known opines, the presence of agrocin 84 sensitivity, and its lack of homology to wide-host-range transferred DNA contrasted with its conservation of sequences from the wise-host-range vir region.  相似文献   

11.
Abstract From a secondary tumor in a bean stem we have isolated a Gram-negative bacteria, named by us T.2. These bean stems had crown gall tumors induced by the ATV strain of Agrobacterium tumefaciens . This bacterium was classified as belonging to the genus Aeromonas and possesses the capacity of inducing overgrowths in plants, synthesizing indole acetic acid (IAA). The codified phenotypic characteristics of bacterium T.2. via the Ti-plasmid of A. tumefaciens , such as opine utilization and sensitivity to agrocin 84, have been studied. Neither octopine nor nopaline is utilized by T.2. and it is resistant to agrocin 84, whereas the strain ATV of A. tumefaciens utilizes nopaline, and is sensitive to agrocin 84.  相似文献   

12.
    
Summary We report four new opines that have been discovered in sterile crown gall tumour tissue. These compounds have been partially characterised as phosphorylated sugar derivatives. Two were detected in tumours induced by nopaline strains of Agrobacterium tumefaciens and two in tumours induced by an agropine strain. These compounds are involved in interesting interactions with the nucleotide bacteriocin, agrocin 84 and we propose that they be called agocinopines.  相似文献   

13.
The effectiveness of Agrobacterium radiobacter K84, 0341, and a K84 non-agrocin-producing mutant (K84 Agr-) in biological control of crown gall on rootstocks of stone fruit trees was determined in three experiments. In experiment 1, K84 and 0341 controlled crown gall on plum plants in soil inoculated with two strains of Agrobacterium tumefaciens resistant to agrocin 84. In experiment 2, K84 controlled crown gall on peach plants in soils inoculated with strains of A. tumefaciens sensitive or resistant to agrocin 84 or with a mixture of both. However, the effectiveness of K84 was higher against the sensitive strain than against the resistant strain. There was a residual effect of K84 from one year to another in soil inoculated with the sensitive strains. In experiment 3, K84 and K84 Agr- controlled crown gall on plum and peach plants in soils inoculated with strains of A. tumefaciens sensitive or resistant to agrocin 84. The control afforded by K84 was higher than that provided by K84 Agr- against the sensitive strain but was similar against the resistant strain.  相似文献   

14.
Stable cointegrates between incRh-1 octopine (Ach5) and nopaline (C58) Ti-plasmids, present in ten independently isolated Agrobacterium tumefaciens strains, showed identical restriction endonuclease patterns. Each cointegration event had taken place in the common sequence between the T-regions of both Ti-plasmids. This illustrates a high preference for this region when used in the formation of cointegrates. Four crown gall tissues, obtained after transformation of Nicotiana tabacum cells by one of the mutants, were analysed by using Southern blot analysis for their T-DNA structure. The borders of T-DNA frequently appeared to differ from T-DNA borders previously detected in tumour tissues that had been induced by Agrobacterium strain C58 or Ach5. Therefore, it was concluded that possibly a less stringent mechanism exists for the integration into plant DNA of T-DNA, derived from a composite (octopine/nopaline) T-region than for integration of T-DNA from a normal (octopine or nopaline) T-region.Abbreviations Agr sensitivity to agrocin 84 - Ape phage Apl exclusion - Cb resistance to carbenicillin - Occ octopine catabolism - Ocs octopine synthesis - Noc nopaline catabolism - Nos nopaline synthesis - Rec recombination - Tra transfer - Vir virulence  相似文献   

15.
We characterized five isolates of Agrobacterium tumefaciens from naturally occurring galls on Chrysanthemum morifolium. The isolates are similar, possibly identical, members of a single strain of A. tumefaciens that we designate Chry5. The strain is a biotype I, as indicated by its response to both newly described and traditional biotype tests. Chry5 produces tumors on at least 10 plant species. It is unusual in its ability to form efficiently large tumors on soybean (Glycine max), a species normally refractory to transformation. Chry5 is unable to utilize octopine or mannopine as a carbon source. Although Chry5 can catabolize a single isomer each of nopaline and succinamopine, it differs from other known nopaline and succinamopine strains in its insensitivity to agrocin 84. This pattern of opine catabolism is unique among Agrobacterium strains examined to date. All five isolates of Chry5 contain at least two plasmids, one of which shares homology with pTiB6.  相似文献   

16.
Production of the plant cytokinin, trans-zeatin, by a number of strains of Agrobacterium tumefaciens was measured by a combination of traceenrichment, HPLC and radioimmunoassay and confirmed by mass spectrometry. Secretion of trans-zeatin into a culture medium is a constitutive function of those strains which harbor a nopaline Ti plasmid. Strains cured of the nopaline Ti plasmid and those which harbor octopine or agropine plasmids are non-producers. Reacquisition of nopaline plasmids by cured strains restores production.  相似文献   

17.
The efficacies of Agrobacterium radiobacter K84 and K1026 in root colonization, crown gall control, and plasmid transfer were compared. Levels of root colonization by K84 and K1026 of Montclar and Nemaguard peach seedlings were similar during the 21 days of the experiment. Four strains of A. tumefaciens bv. 1 were used for soil inoculations in biological control experiments on GF677 and Adafuel peach × almond rootstocks; two were sensitive and two were resistant to agrocin 84. Both strains K84 and K1026 were very efficient in controlling the sensitive strains, but some tumors appeared with both treatments. In the biocontrol of resistant strains, no galls were observed in K1026-treated plants, but some K84-treated plants had galls. Recovery of agrobacteria from galls in experiments with sensitive and resistant strains showed that all of the isolates from the controls or K1026-treated plants and most of the isolates from K84-treated plants had the same characteristics as the inoculated strains. Nine isolates from the K84-treated plants growing in soil inoculated with one resistant strain were virulent and produced agrocin 84. These isolates had a plasmid that hybridized with a probe prepared with the BamHI C fragment from pAgK84. These results show the efficiency of K1026 in biocontrol of agrocin 84-sensitive and -resistant strains of A. tumefaciens and suggest the use of K1026 as a safer organism than K84 for biological control of crown gall.  相似文献   

18.
The 47.7-kb plasmid pAgK84, present in Agrobacterium radiobacter strain K84, confers production of a novel, highly specific, antiagrobacterial antibiotic called agrocin 84. Strain K84 is used commercially to biocontrol crown gall caused by agrocin 84-susceptible strains of Agrobacterium tumefaciens. Efficient biocontrol is dependent upon production of agrocin 84 by strain K84. Starting with a derivative of pAgK84 containing a Tn5 insertion, a series of deletion derivatives of the plasmid were isolated. The smallest of these, pJS500, contains about 8 kb of the original agrocin plasmid and localized the replication functions to between 4 and 6 o'clock on the physical map. A smaller derivative, produced by clonal rescue of a Tn5 insertion in the 4 o'clock region, further localized the minimal replication functions to a 1.5-kb region mapping between coordinates 18.1 and 19.6. Analysis of plasmid stability indicated that functions required for maintenance of the plasmid under nonselective conditions are tightly linked to the minimal replication region. This region also encodes incompatibility functions; the deletion derivatives were all incompatible with the wild-type pAgK84. The stability/replication locus of pAgK84 maps just anticlockwise from the Tra region. This region is retained fully in pAgK1026, the directed Tra- derivative of pAgK84 which is now in use as the primary crown gall biocontrol agent in Australia. One of the deletion derivatives, the 15-kb pJS400, was used as a vector to clone the KpnI fragments of an octopine-type Ti plasmid. Traits known to be encoded on these fragments were expressed and properly regulated in Agrobacterium hosts. One clone, encoding the Ti plasmid replication/incompatibility region, was used to cure IncRh1 Ti plasmids from their hosts. This clone also was found to be incompatible with pAtK84b, a large plasmid encoding opine catabolism present in A. radiobacter strain K84. This indicates that the opine catabolic plasmid is closely related to the IncRh1 Ti plasmids.  相似文献   

19.
The 47.7-kb plasmid pAgK84, present in Agrobacterium radiobacter strain K84, confers production of a novel, highly specific, antiagrobacterial antibiotic called agrocin 84. Strain K84 is used commercially to biocontrol crown gall caused by agrocin 84-susceptible strains of Agrobacterium tumefaciens. Efficient biocontrol is dependent upon production of agrocin 84 by strain K84. Starting with a derivative of pAgK84 containing a Tn5 insertion, a series of deletion derivatives of the plasmid were isolated. The smallest of these, pJS500, contains about 8 kb of the original agrocin plasmid and localized the replication functions to between 4 and 6 o'clock on the physical map. A smaller derivative, produced by clonal rescue of a Tn5 insertion in the 4 o'clock region, further localized the minimal replication functions to a 1.5-kb region mapping between coordinates 18.1 and 19.6. Analysis of plasmid stability indicated that functions required for maintenance of the plasmid under nonselective conditions are tightly linked to the minimal replication region. This region also encodes incompatibility functions; the deletion derivatives were all incompatible with the wild-type pAgK84. The stability/replication locus of pAgK84 maps just anticlockwise from the Tra region. This region is retained fully in pAgK1026, the directed Tra derivative of pAgK84 which is now in use as the primary crown gall biocontrol agent in Australia. One of the deletion derivatives, the 15-kb pJS400, was used as a vector to clone the KpnI fragments of an octopine-type Ti plasmid. Traits known to be encoded on these fragments were expressed and properly regulated in Agrobacterium hosts. One clone, encoding the Ti plasmid replication/incompatibility region, was used to cure IncRh1 Ti plasmids from their hosts. This clone also was found to be incompatible with pAtK84b, a large plasmid encoding opine catabolism present in A. radiobacter strain K84. This indicates that the opine catabolic plasmid is closely related to the IncRh1 Ti plasmids.  相似文献   

20.
Transposon-insertion mutants with vir? Ti plasmids were characterized and then used in complementation experiments. One of the mutants (LBA 1517) had a mutation in a newly discovered vir locus called virF. The virF mutation led to a strongly diminished virulence on tomato and tobacco, but not on certain other plant species. Also a mutant (LBA 1505) was isolated with a mutation somewhere in the bacterial genome but outside the octopine Ti plasmid that caused a restriction in host range for tumor induction. Introduction of a nopaline Ti plasmid or an Ri plasmid into LBA 1505 did not restore normal virulence, showing that the vir gene affected in LBA 1505 determines a factor which is essential for normal tumor induction both by different types of Ti plasmids and by the Ri plasmid. The introduction of R primes containing part or all of the octopine Ti plasmid virulence region led to a restoration of virulence in strains with a vir? nopaline Ti plasmid. Also the transfer of an Ri plasmid to a large number of different vir? octopine or nopaline Ti plasmid mutants rendered these strains virulent. These results indicate that the octopine Ti plasmid, the nopaline Ti plasmid, and the Ri plasmid each have a similar virulence system which can mediate the transfer of T-DNA to plant cells from different types of Ti or Ri plasmids. In complementation experiments between vir? octopine Ti plasmid mutations and vir? nopaline Ti plasmid mutations it was found that equivalent functions are determined by the areas of DNA homology in the virulence regions of these two types of Ti plasmids. The previously defined octopine Ti plasmid virC locus appeared to consist of two different loci. One of these loci was found to be in a region of the octopine Ti plasmid which does not share DNA homology with the nopaline Ti plasmid, and was therefore called virO (octopine Ti plasmid specific). For the other locus the name virC was retained. Whereas mutations in the virC locus were avirulent on all plant species tested, mutations in virO were avirulent on tomato and pea, but virulent on sunflower and Nicotiana rustica. VirO? mutants produced rooty tumors on Kalanchoë tubiflora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号