首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brain ankyrin. Purification of a 72,000 Mr spectrin-binding domain   总被引:19,自引:0,他引:19  
Polypeptides of Mr = 190,000-220,000 that cross-react with erythrocyte ankyrin were detected in immunoblots of membranes from pig lens, pig brain, and rat liver. The cross-reacting polypeptides from brain were cleaved by chymotrypsin to fragments of Mr = 95,000 and 72,000 which are the same size as fragments obtained with erythrocyte ankyrin. The brain 72,000 Mr fragment associated with erythrocyte spectrin, and the binding occurred at the same site as that of erythrocyte ankyrin 72,000 Mr fragment since (a) brain 72,000 Mr fragment was adsorbed to erythrocyte spectrin-agarose and (b) 125I-labeled erythrocyte spectrin bound to brain 72,000 Mr fragment following transfer of the fragment from a sodium dodecyl sulfate gel to nitrocellulose paper, and this binding was displaced by erythrocyte ankyrin 72,000 Mr fragment. Brain 72,000 Mr fragment was purified about 400-fold by selective extraction and by continuous chromatography on columns attached in series containing DEAE-cellulose followed by erythrocyte spectrin coupled to agarose, and finally hydroxylapatite. The brain 72,000 Mr fragment was not derived from contaminating erythrocytes since peptide maps of pig brain and pig erythrocyte 72,000 Mr fragments were distinct. The amount of brain 72,000 Mr fragment was estimated as 0.28% of membrane protein or 39 pmol/mg based on radioimmunoassay with 125I-labeled brain fragment and antibody against erythrocyte ankyrin. Brain spectrin tetramer was present in about the same number of copies (30 pmol/mg of membrane protein) based on densitometry of Coomassie blue-stained sodium dodecyl sulfate gels. The binding site on brain spectrin for both brain and erythrocyte ankyrin 72,000 Mr fragments was localized by electron microscopy to the midregion of spectrin tetramers about 90 nM from the near end and 110 nM from the far end. These studies demonstrate the presence in brain membranes of a protein closely related to erythrocyte ankyrin, and are consistent with a function of the brain ankyrin as a membrane attachment site for brain spectrin.  相似文献   

2.
Human erythrocyte and brain spectrin (fodrin, calspectin) have been compared quantitatively with respect to the extent and sites of antigenic and functional similarity. Brain spectrin cross-reacts strongly with approx. 1% of the epitopes in erythrocyte spectrin, but weakly with at least 50%. The distribution of shared determinants is not uniform. Brain spectrin is most deficient in epitopes characteristic of the 80 kDa and 52 kDa domains of the alpha-subunit (alpha-I and alpha-III) and of terminal portions of the 28 kDa and 74 kDa domains of the beta-subunit (beta-I and beta-IV). The functions associated with these domains also differ between the two proteins. Brain spectrin does not undergo extensive polymerization and binds calmodulin at a different site. The unique ability of erythrocyte spectrin to oligomerize beyond the tetramer reflects its role in the membrane skeleton. Non-erythroid spectrins probably function as specific linkers between membrane receptors and the filamentous cytoskeleton. In this sense, they may act as regulated transducers of information flow between the membrane and the cytoplasmic matrix.  相似文献   

3.
cGMP-stimulated phosphodiesterase (PDE) has been directly photolabeled with [32P]cGMP using UV light. Sequence analysis of peptide fragments obtained from partial proteolysis or cyanogen bromide cleavage indicate that two different domains are labeled. One site, on a Mr = 36,000 chymotryptic fragment located near the COOH terminus, has characteristics consistent with it being close to or part of the catalytic site of the enzyme. This peptide contains a region of sequence that is highly conserved in all mammalian cyclic nucleotide PDEs and has been postulated to contain the catalytic domain of the enzyme. The other site, on a Mr = 28,000 cyanogen bromide cleavage fragment located near the middle of the molecule, probably makes up part of the allosteric site of the molecule. Labeling of the enzyme is concentration dependent and Scatchard analysis of labeling yields a biphasic plot with apparent half labeling concentrations of about 1 and 30 microM consistent with two types of sites being labeled. Limited proteolysis of the PDE by chymotrypsin yields five prominent fragments that separate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at Mr = 60,000, 57,000, 36,000, 21,000, and 17,000. Both the Mr = 60,000 and 57,000 apparently have blocked NH2 termini suggesting that the Mr = 57,000 fragment is a subfragment of the Mr = 60,000 fragment. Primary sequence analysis indicates that both the Mr = 21,000 and 17,000 fragments are subfragments of the Mr = 36,000 fragment. Autoradiographs of photolabeled then partially proteolyzed enzyme show labeled bands at Mr = 60,000, 57,000, and 36,000. Addition of 5 microM cAMP prior to photolabeling eliminates photolabeling of the Mr = 36,000 fragment but not the Mr = 60,000 or 57,000 fragments. The labeled site not blocked by cAMP is also contained in a Mr = 28,000 cyanogen bromide fragment of the enzyme that does not overlap with the Mr = 36,000 proteolytic fragment. Limited chymotryptic proteolysis also increases basal activity and eliminates cGMP stimulation of cAMP hydrolysis. The chymotryptic fragments can be separated by either ion exchange high performance liquid chromatography (HPLC) or solid-phase monoclonal antibody treatment. A solid-phase monoclonal antibody against the cGMP-stimulated PDE removes the Mr = 60,000 and 57,000 labeled fragments and any intact, unproteolyzed protein but does not remove the Mr = 36,000 fragment or the majority of activity. Ion exchange HPLC separates the fragments into three peaks (I, II, and III). Peaks I and II contain activity of approximately 40 and 100 units/mg, respectively. Peak II is the undigested or slightly nicked native enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The binding of the isolated alpha-subunit of human erythrocyte spectrin to calmodulin is demonstrated by partitioning in aqueous two-phase systems. The affinity of the alpha-subunit for calmodulin is slightly higher than that of the spectrin dimer, whereas the beta-subunit interacts only very weakly. The binding is in all cases calcium-dependent and is abolished on addition of chlorpromazine. At an ionic strength close to physiological conditions, about 1 microM free calcium is required to induce maximum binding of calmodulin to spectrin dimer.  相似文献   

5.
H Aiba  J S Krakow 《Biochemistry》1981,20(16):4774-4780
The cyclic AMP receptor protein (CRP) is a positive and negative regulatory protein for gene expression in Escherichia coli. The protein has been cleaved proteolytically to determine the relation between CRP structure and function. In the presence of sodium dodecyl sulfate (NaDodSO4), chymotrypsin dissects CRP into two stable fragments of molecular weight 9500 (9.5K) and 13 000 (13K). After removal of NaDodSO4, the two fragments are resolved by Bio-Rex 70 chromatography in 6 M urea. Analyses of the terminal amino acids released from each fragment and cyanogen bromide cleavage products indicate that the 9.5K fragment is amino proximal in CRP while the 13K fragment is carboxyl proximal. Notable features of amino acid composition are the relatively high amount of arginine and methionine in the 13K fragment and the retention in the 9.5K fragment of the two tryptophans present in the CRP subunit. Following isoelectric focusing in 8 M urea, the 9.5K fragment, 22.5K CRP, and 13K fragment migrate to pH 5.5, 8.3, and 10.3, respectively. While CRP is a cAMP-stimulated DNA binding protein, the 13K fragment binds to DNA in the presence and absence of cAMP. The 9.5K fragment associates to form dimers and decamers. These data are consonant with a model in which the DNA binding domain is present in the carboxyl proximal region of CRP while the amino proximal region contains the subunit-subunit interaction sites and much of the cAMP binding domain.  相似文献   

6.
Immunoaffinity-purified rat liver 5'-nucleotidase contained two subunits of Mr 70 000 (alpha) and 38 000 (beta). Charge-shift electrophoresis and chemical cross-linking revealed that approx. 80% of the solubilized enzyme activity occurred as an alpha alpha-dimer of Mr 140 000. The remaining 20% was an alpha beta-dimer of Mr 108 000. The beta-subunit did not possess enzymic activity. Peptide mapping and immunoblotting with antibodies against the alpha- and beta-subunits showed that the beta-subunit was homologous with a part of the alpha-subunit. Three monoclonal antibodies against rat liver 5'-nucleotidase were characterized as binding to the extracellular domain of the enzyme. All three monoclonal antibodies and concanavalin A bound to the alpha-subunit, but no binding could be detected to the beta-subunit. It was therefore concluded that the beta-subunit was a fragment of an alpha-subunit that had lost an extracellular domain. Both forms of the enzyme occurred in freshly solubilized membrane preparations as well.  相似文献   

7.
Treatment of the multifunctional alpha 2 beta 2 anthranilate synthase complex of Neurospora crassa with elastase produced two fragments of the complex, one possessing anthranilate synthase activity and the other having both indole-3-glycerol phosphate (InGP) synthase and N-(5'-phosphoribosyl)anthranilate (PRA) isomerase activities. Sequencing the NH2 terminus of the InGP synthase-PRA isomerase fragment revealed that cleavage was between positions 237 and 238 of the beta-subunit within a segment of the polypeptide chain which links the glutamine-binding (G) domain with the InGP synthase-PRA isomerase domains. The fragment containing anthranilate synthase activity has a molecular weight of 98,000, as estimated by gel filtration, and is composed of an apparently intact alpha-subunit (70 kDa) associated with the G-domain fragment (29 kDa) derived from the beta-subunit. The alpha X G-domain complex was resistant to further degradation by elastase. When either the alpha 2 beta 2 complex or the alpha X G-domain complex was incubated with trypsin, the alpha-subunit was degraded to a 66-kDa alpha-fragment with reduced enzymatic activity, which was resistant to further cleavage. In contrast, incubation of alpha-subunit alone with either elastase or trypsin resulted in its complete degradation, indicating that association of the alpha-subunit with either G-domain or beta-subunit protected the alpha-subunit from this extensive degradation. A model for the anthranilate synthase complex is proposed in which the trifunctional beta-subunit forms a dimer by the self-association of the InGP synthase-PRA isomerase domains; the G-domain is connected to the InGP synthase-PRA isomerase domain by a relatively disordered region of the peptide chain which, in the alpha 2 beta 2 complex, remains susceptible to proteases; and neither alpha-subunit nor G-domain significantly self-associates.  相似文献   

8.
An assay has been developed to measure association of brain ankyrin with protein site(s) in brain membranes that are independent of spectrin and tubulin, behave as integral membrane proteins, and appear to be similar in several respects to the erythrocyte anion channel. Brain membranes were depleted of ankyrin, spectrin, and other peripheral membrane proteins by a brief incubation in 0.1 M sodium hydroxide. Binding of ankyrin to these membranes fulfilled experimentally testable criteria for a specific protein-protein association. Binding was optimal at physiological values for ionic strength and pH, was of high affinity (Kd = 20-60 nM), and the capacity of 25 pmol/mg of brain membrane protein is in the same range as the number of spectrin tetramers (30 pmol/mg). The membrane-binding site(s) for brain ankyrin are likely to be related in some way to the cytoplasmic domain of the erythrocyte anion channel since binding was inhibited by the anion channel domain and by erythrocyte ankyrin. The binding site(s) for brain ankyrin were released from the membrane by limited proteolysis as active water-soluble fragments capable of inhibiting binding of ankyrin to membranes. Ankyrin-binding fragments of Mr = 40,000 and 68,000 were selectively bound to an erythrocyte ankyrin affinity column. The fragment of Mr = 40,000 is close to the size of the cytoplasmic domain of the erythrocyte anion channel. It is likely based on these results that membrane attachment proteins for ankyrin are present in brain and other tissues and that these membrane proteins have domains homologous at least in conformation to the ankyrin-binding site of the erythrocyte anion channel.  相似文献   

9.
Digitalis compounds that are extensively used in the treatment of cardiovascular disorders are known to bind specifically at the extracellular side of (Na+,K+)ATPase. We have recently reported the synthesis of [3H]p- nitrophenyltriazene -ouabain, a derivative of ouabain, which specifically alkylates the catalytic chain of the (Na+,K+)ATPase at a defined region of the sequence. The peptidic segment involved in the binding of digitalis to (Na+,K+)ATPase has been located after mild trypsin treatment of the labeled enzyme. In the presence of 100 mM KCl, tryptic fragmentation results in two peptide fragments of mol. wt. 58 000 and 41 000, respectively. The radioactive probe labeled only the 41 000 fragment indicating that the digitalis binding site is located on the 41 000 domain situated at the N-terminal part of the sequence of the alpha-subunit.  相似文献   

10.
Trypsin exerts insulin-like effects in intact cells and on partially purified preparations of insulin receptors. To elucidate the mechanism of these insulinomimetic effects, we compared the structures of insulin- and trypsin-activated receptor species with their functions, including insulin binding, autophosphorylation, and tyrosine kinase activity. In vitro treatment of wheat germ agglutinin-purified receptor preparations with trypsin resulted in proteolysis of both alpha- and beta-subunits. The activated form of the receptor had an apparent molecular mass of 110 kDa under nonreducing conditions, compared to the 400-kDa intact receptor, and was separated following reduction into an 85-kDa beta-subunit related fragment and a 25-kDa alpha-subunit related fragment. Treatment of whole cells with trypsin prior to isolation of the insulin receptor resulted in proteolytic modification of the alpha-subunit only. In this case, the total molecular mass of the activated species was 116 kDa, comprised of an intact 92-kDa beta-subunit and again a 25-kDa alpha-subunit related fragment. Values of Km for peptide substrate phosphorylation and Ki for inhibition of receptor autophosphorylation, and sites of autophosphorylation within the beta-subunits were similar for receptors activated either by insulin or trypsin. Insulin had no additional effect on the rate of autophosphorylation of the truncated receptor, and no binding of insulin by the truncated receptor was detected either by direct assay or cross-linking with bifunctional reagents. Based on the deduced amino acid sequence of the insulin receptor and the structural studies presented here we concluded that this activated form of the receptor resulted from tryptic cleavage at the dibasic site Arg576-Arg577. This was accompanied by loss of the insulin binding site and separation of alpha-beta heterodimers. As truncation of the alpha-subunit results in beta-subunit activation, it appears that the beta-subunit is a constitutively activated kinase and that the function of the alpha-subunit in the intact receptor is to inhibit the beta-subunit.  相似文献   

11.
Brain ankyrin was purified from pig brain membranes in milligram quantities by a procedure involving affinity chromatography on erythrocyte spectrinagarose. Brain ankyrin included two polypeptides of Mr = 210,000 and 220,000 that were nearly identical by peptide mapping and were monomers in solution. Brain ankyrin and erythrocyte ankyrin are closely related proteins with the following properties in common: 1) shared antigenic sites, 2) high-affinity binding to the spectrin beta subunit at the midregion of spectrin tetramers, 3) a binding site for the cytoplasmic domain of the erythrocyte anion channel, 4) a binding site for tubulin, 5) a similar domain structure with a protease-resistant domain of Mr = 72,000 that contains the spectrin-binding activity and domains of Mr = 95,000 (brain ankyrin) or 90,000 (erythrocyte ankyrin) that contain binding sites for both tubulin and the anion channel. Brain ankyrin is present at about 100 pmol/mg of membrane protein in demyelinated membranes based on radioimmunoassay with antibody raised against brain ankyrin and affinity purified on brain ankyrin-agarose. Brain spectrin tetramers are present at 30 pmol/mg of membrane protein. Brain ankyrin thus is present in sufficient amounts to attach spectrin to membranes. Brain ankyrin also may attach microtubules to membranes independently of spectrin and has the potential to interconnect microtubules and spectrin-associated actin filaments.  相似文献   

12.
Peptides derived from plasmic and cyanogen bromide (CNBr) cleavage of highly cross-linked fibrin were isolated and characterized by sodium dodecyl sulfate-gel electrophoresis, amino acid analyses, cyanoethylation, and NH2-terminal analyses. Extended plasmic digestions of human fibrin containing four epsilon-(gamma-glutamyl)lysine cross-links per molecule produced a peptide of alpha-chain origin (Mr congruent to 21,000) which was comprised of a small donor peptide cross-linked to the acceptor site peptide from the middle of the alpha-chain. CNBr cleavage of highly cross-linked in vitro fibrin or of fibrin from a spontaneously formed in vivo arterial embolus produced about three cross-linked species of molecular weights 30,000 to 40,000, each of which contained the largest CNBr fragment (Mr = 29,000) from the alpha-chain. The predominant cross-link-containing CNBr fragments derived their donor group from the near COOH-terminal region of the alpha-chain as judged by difference amino acid compositions and NH2-terminal analyses. Additionally, cross-linked fragments of molecular weights 68,000 to 70,000 which appeared to contain two acceptor site peptides (Mr = 29,000) were detected in minor amounts in the CNBr digests of fibrin formed from whole plasma or from purified, plasminogen-free fibrinogen. No larger polymeric cross-linked CNBr fragment was generated from any of the highly cross-linked fibrin preparations examined. A model for the predominant mode of alpha-chain polymerization is proposed.  相似文献   

13.
Native calponin is able to bind 2 mol of calcium binding protein (CaBP) per mole calponin. This study extends this observation to define the 2 domains of interaction, one of which is near the actin binding site, and the other in the amino-terminal region of calponin. Also, the first evidence for a differentiation in the response of calponin to interaction with caltropin versus calmodulin is demonstrated. The binding of caltropin to cleavage and recombinant fragments of calponin was determined by 3 techniques: tryptophan fluorescence of the fragments, CD measurements to determine secondary structure changes, and analytical ultracentrifugation. In order to delineate the sites of interaction, 3 fragments of calponin have been studied. From a cyanogen bromide cleavage of calponin, residues 2-51 were isolated. This fragment is shown to bind to CaBPs and the affinity for caltropin is slightly higher than that for calmodulin. A carboxyl-terminal truncated mutant of calponin comprising residues 1-228 (CP 1-228) has been produced by recombinant techniques. Analytical ultracentrifugation has shown that CP 1-228, like the parent calponin, is able to bind 2 mol of caltropin per mol of 1-228 in a Ca(2+)-dependent fashion, indicating that there is a second site of interaction between residues 52-228. Temperature denaturation of the carboxyl-terminal truncated fragment compared with whole calponin show that the carboxyl-terminal region does not change the temperature at which calponin melts; however, there is greater residual secondary structure with whole calponin versus the fragment. A second mutant produced through recombinant techniques comprises residues 45-228 and is also able to bind caltropin, thus mapping the location of the second site of interaction to near the actin binding site.  相似文献   

14.
The transmembrane topology of the nucleoside transporter of human erythrocytes, which had been covalently photolabelled with [3H]nitrobenzylthioinosine, was investigated by monitoring the effect of proteinases applied to intact erythrocytes and unsealed membrane preparations. Treatment of unsealed membranes with low concentrations of trypsin and chymotrypsin at 1 degree C cleaved the nucleoside transporter, a band 4.5 polypeptide, apparent Mr 66 000-45 000, to yield two radioactive fragments with apparent Mr 38 000 and 23 000. The fragment of Mr 38 000, in contrast to the Mr 23 000 fragment, migrated as a broad peak (apparent Mr 45 000-31 000) suggesting that carbohydrate was probably attached to this fragment. Similar treatment of intact cells under iso-osmotic saline conditions at 1 degree C had no effect on the apparent Mr of the [3H]nitrobenzylthioinosine-labelled band 4.5, suggesting that at least one of the trypsin cleavage sites resulting in the apparent Mr fragments of 38 000 and 23 000 is located at the cytoplasmic surface. However, at low ionic strengths the extracellular region of the nucleoside transporter is susceptible to trypsin proteolysis, indicating that the transporter is a transmembrane protein. In contrast, the extracellular region of the [3H]cytochalasin B-labelled glucose carrier, another band 4.5 polypeptide, was resistant to trypsin digestion. Proteolysis of the glucose transporter at the cytoplasmic surface generated a radiolabelled fragment of Mr 19 000 which was distinct from the Mr 23 000 fragment radiolabelled with [3H]nitrobenzylthioinosine. The affinity for the reversible binding of [3H]cytochalasin B and [3H]nitrobenzylthioinosine to the glucose and nucleoside transporters, respectively, was lowered 2-3-fold following trypsin treatment of unsealed membranes, but the maximum number of inhibitor binding sites was unaffected despite the cleavage of band 4.5 to lower-Mr fragments.  相似文献   

15.
E M Click  G Balian 《Biochemistry》1985,24(23):6685-6696
The domain structure of human plasma fibronectin was investigated by using heparin-binding and antibody reactivity of fibronectin and its proteolytically derived fragments. Digestion of human plasma fibronectin with a combination of trypsin and cathepsin D produced six major fragments. Affinity chromatography showed that one fragment (Mr 45 000) binds to gelatin and three fragments (Mr 31 000, 36 000, and 61 000) bind to heparin. The 31K fragment corresponds to NH2-terminal fragments isolated from other species. The 36K and 61K fragments are derived from a region near the C-terminus of the molecule and appear to be structurally related as demonstrated by two-dimensional peptide maps. A protease-sensitive fragment (Mr 137 000), which binds neither gelatin nor heparin but which has been shown previously to be chemotactic for cells [Postlethwaite, A. E., Keski-Oja, J., Balian, G., & Kang, A. H. (1981) J. Exp. Med. 153, 494-499], separates the NH2-terminal heparin- and gelatin-binding fragments from the C-terminal 36K and 61K heparin-binding fragments. A monoclonal antibody to fibronectin that recognized the 61K heparin-binding fragment was used to isolate a sixth fragment (Mr 34 000) that did not bind to heparin or gelatin and that represents a difference between the 61K and 36K heparin-binding fragments. Cathepsin D digestion produced an 83K heparin-binding, monoclonal antibody reactive fragment that contains the interchain disulfide bond(s) linking the two fibronectin chains at their C-termini. The data indicate that plasma fibronectin is a heterodimeric molecule consisting of two very similar but not identical chains (A and B). In contrast, enzymatic digestion of cellular fibronectin produced a 50K heparin-binding fragment lacking monoclonal antibody reactivity which suggests that the cellular fibronectin subunit is similar to the plasma A chain in enzyme susceptibility but contains a larger heparin-binding domain. A model relating the differences in the three fibronectin polypeptides to differences in published cDNA sequences is presented.  相似文献   

16.
Fodrin (brain spectrin) binds calmodulin and is susceptible to proteolysis by calcium-dependent protease I (CDP-I, calcium-activated neutral protease I, or calpain I). Both events involve the central region of the alpha-fodrin subunit, and calmodulin binding enhances the sensitivity of fodrin to CDP-I mediated proteolysis. Fragments of fodrin, generated chemically or proteolytically, which retain calmodulin binding activity have been identified and analyzed by two-dimensional peptide mapping and by direct protein sequencing. Both CDP-I and calmodulin interact with the terminal portion of the eleventh repetitive unit in fodrin, which is at the center of the molecule. CDP-I cleavage occurs between Tyr104 and Gly105 and preserves the calmodulin binding activity of the carboxyl-terminal fragment. In contrast, chymotryptic cleavage at Trp120 reduces the ability of this fragment to bind calmodulin, and tryptic cleavage beyond Trp120 completely eliminates calmodulin binding activity. It is concluded that Ser-Lys-Thr-Ala-Ser-Pro-Trp-Lys-Ser-Ala-Arg-Leu-Met-Val-His-Thr-Val-Ala- Thr- Phe-Asn-Ser-Ile-Lys, a 24-residue peptide which bridges repeats 11 and 12 of brain alpha spectrin contains the high affinity calmodulin binding domain.  相似文献   

17.
Brain spectrin, through its beta subunit, binds with high affinity to protein-binding sites on brain membranes quantitatively depleted of ankyrin (Steiner, J., and Bennett, V. (1988) J. Biol. Chem. 263, 14417-14425). In this study, calmodulin is demonstrated to inhibit binding of brain spectrin to synaptosomal membranes. Submicromolar concentrations of calcium are required for inhibition of binding, with half-maximal effects at pCa = 6.5. Calmodulin competitively inhibits binding of spectrin to protein(s) in stripped synaptosomal membranes, with Ki = 1.3 microM in the presence of 10 microM calcium. A reversible receptor-mediated process, and not proteolysis, is responsible for inhibition since the effect of calcium/calmodulin is reversed by the calmodulin antagonist trifluoperazine and by chelation of calcium with sodium [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. The target of calmodulin is most likely the spectrin attachment protein(s) rather than spectrin itself since: (a) membrane binding of the brain spectrin beta subunit, which does not associate with calmodulin, is inhibited by calcium/calmodulin, and (b) red cell spectrin which binds calmodulin very weakly, is inhibited from interacting with membrane receptors in the presence of calcium/calmodulin. Ca2+/calmodulin inhibited association of erythrocyte spectrin with synaptosomal membranes but had no effect on binding of erythrocyte or brain spectrin to ankyrin in erythrocyte membranes. These experiments demonstrate the potential for differential regulation of spectrin-membrane protein interactions, with the consequence that Ca2+/calmodulin can dissociate direct spectrin-membrane interactions locally or regionally without disassembly of the areas of the membrane skeleton stabilized by linkage of spectrin to ankyrin. A membrane protein of Mr = 88,000 has been identified that is dissociated from spectrin affinity columns by calcium/calmodulin and is a candidate for the calmodulin-sensitive spectrin-binding site in brain.  相似文献   

18.
Three forms of protein phosphatase-1 were isolated from rabbit skeletal muscle that had Mr values of 37 000, 34 000 and 33 000 determined by sodium dodecyl sulphate (SDS) gel electrophoresis. Each species dephosphorylated the beta-subunit of phosphorylase kinase very much faster than the alpha-subunit, was inhibited by inhibitors 1 and 2 with equal potency, and was converted to a form dependent on glycogen synthase kinase-3 and Mg-ATP for activity by incubation with inhibitor-2. Digestion with cyanogen bromide or Staphylococcus aureus proteinase followed by SDS gel electrophoresis showed a very similar pattern of cleavage products for all three forms. The Mr-37 000 and Mr-34 000 species were converted to the Mr-33 000 form by incubation with chymotrypsin. It is concluded that the Mr-33 000 and Mr-34 000 forms are derived from the Mr-37 000 component by limited proteolysis. Conversion of the Mr-37 000 to the Mr-33 000 form was accompanied by a two-fold increase in activity, indicating that an Mr-4000 fragment at one end of the polypeptide is an inhibitory domain that decreases enzyme activity. The catalytic subunit of protein phosphatase 2A from rabbit skeletal muscle had an Mr of 36 000 determined by SDS gel electrophoresis and its specific activity (3 kU/mg) was much lower than that of the Mr-37 000 (15-20 kU/mg) or Mr-33/34 000 (40-50 kU/mg) forms of protein phosphatase-1. It dephosphorylated the alpha-subunit of phosphorylase kinase 4-5-fold faster than the beta-subunit, was unaffected by inhibitor-1 or inhibitor-2, and preincubation with the latter protein did not result in the production of a glycogen synthase kinase-3 and Mg-ATP-dependent form of the enzyme. Digestion with chymotrypsin did not alter the electrophoretic mobility of protein phosphatase 2A under conditions that caused quantitative conversion of the Mr-37 000 form of protein phosphatase-1 to the Mr-33 000 species. Digestion with cyanogen bromide or S. aureus proteinase, followed by SDS gel electrophoresis, showed a quite different pattern of cleavage products to those observed with protein phosphatase 1. Antibody to protein phosphatase-2A raised in sheep did not cross-react with any of the forms of protein phosphatase-1, as judged by immunoelectrophoretic and immunotitration experiments. It is concluded that protein phosphatase-1 and protein phosphatase-2A are distinct gene products.  相似文献   

19.
Hemoglobin, aldolase and glyceraldehyde 3-phosphate dehydrogenase are known to bind to the cytoplasmic domain of band 3 protein. Binding of glycolytic enzymes to band 3 protein is inhibited by its amino-terminal fragments. To precisely localize the sequence portion of band 3 protein to which hemoglobin binds and to see whether the same region of amino-acid sequence binds both hemoglobin and glycolytic enzymes, a simple, direct solid-phase binding assay was developed. Peptides generated from the 23-kDa fragment by trypsin, cyanogen bromide and mild acid hydrolysis were used as inhibitors to determine the minimal sequence structure involved in the binding of the 23-kDa fragment to hemoglobin. The shortest peptide which inhibits the binding of the 23-kDa fragment is an acid cleavage peptide containing the sequence positions 1 to 23. This sequence is unusual as 14 of its residues are negatively charged, it contains no basic residues and has its amino terminus blocked. Using aldolase, glyceraldehyde-3-phosphate dehydrogenase and hemoglobin as competitive inhibitors in the binding of 23-kDa fragment, the affinity of hemoglobin to this fragment appears several-fold weaker than that of both the enzymes. These findings demonstrate that glycolytic enzymes and hemoglobin bind competitively to the same polyanionic sequence region of band 3 protein.  相似文献   

20.
To shed light on the paradoxical behaviour of calmodulin, whose phosphorylation is inhibited by the regulatory beta-subunit of protein kinase CK2, a series of peptides encompassing the phosphoacceptor sites of calmodulin have been synthesized and assayed as substrates of CK2 alpha-subunit either alone or combined with the beta-subunit. The shortest peptide whose phosphorylation is reduced instead of being enhanced by the beta-subunit encompasses the sequence 68-106, including the central helix and the Ca2+-binding loop-III. In contrast, the phosphorylation of a peptide encompassing loop II and the central helix (54-92) is stimulated, like that of several shorter peptides, by the beta-subunit. Our data localize to the C-terminal domain of calmodulin the structural elements that are responsible for inverted susceptibility to beta-subunit regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号