首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylmalonate semialdehyde dehydrogenase purified to homogeneity from rat liver possesses, in addition to its coupled aldehyde dehydrogenase and CoA ester synthetic activity, the ability to hydrolyze p-nitrophenyl acetate. The following observations suggest that this activity is an active site phenomenon: (a) p-nitrophenyl acetate hydrolysis was inhibited by malonate semialdehyde, substrate for the dehydrogenase reaction; (b) p-nitrophenyl acetate was a strong competitive inhibitor of the dehydrogenase activity; (c) NAD+ and NADH activated the esterase activity; (d) coenzyme A, acceptor of acyl groups in the dehydrogenase reaction, accelerated the esterase activity; and (e) the product of the esterase reaction proceeding in the presence of coenzyme A was acetyl-CoA. These findings suggest that an S-acyl enzyme (thioester intermediate) is likely common to both the esterase reaction and the aldehyde dehydrogenase/CoA ester synthetic reaction.  相似文献   

2.
An esterase hydrolyzing Tween 80 (polyoxyethylene sorbitan monooleate) was purified from sonicated cell lysates of Mycobacterium smegmatis ATCC 14468 by DEAE-cellulose, Sephadex G-150, phenyl Sepharose, and diethyl-(2-hydroxypropyl) aminoethyl column chromatography and by subsequent preparative polyacrylamide gel electrophoresis. The molecular weight was estimated to be 36,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 41,000 by gel filtration on a Sephadex G-150 column. The esterase contained a single polypeptide. The esterase was stable to heat treatment at 100 degrees C and to a wide range of pH. The temperature and pH optima for the hydrolysis of Tween 80 were 50 degrees C and 8.3, respectively. The esterase had a narrow substrate specificity; it exhibited a high activity only on compounds having both polyoxyethylene and fatty acyl moieties, such as Tweens. Monoacylglyceride was hydrolyzed more slowly by this esterase and this enzyme exhibited a nonspecific esterase activity on p-nitrophenyl acyl esters, especially those having short chain acyl moieties. The Km and Vmax were 19.2 mM and 1,670 mumol/min per mg of protein for Tween 20, 6.6 mM and 278 mumol/min per mg of protein for Tween 80, and 0.25 mM and 196 mumol/min per mg of protein for p-nitrophenyl acetate, respectively. Observations of the effects of various chemical modifications on the activity of the esterase indicated that tyrosine, histidine, arginine, and methionine (with tryptophan) residues may be active amino acids which play important roles in the expression of Tween 80-hydrolyzing activity of the enzyme.  相似文献   

3.
Morana A  Di Prizito N  Aurilia V  Rossi M  Cannio R 《Gene》2002,283(1-2):107-115
A genomic library of the hyperthermophilic archaeon Sulfolobus solfataricus strain MT4 was constructed in Escherichia coli using a cloning vector not designed for heterologous gene expression. One positive clone exhibiting acquired thermophilic acetylesterase activity was directly detected by an in situ plate assay using a colony staining procedure with the chromogenic substrate beta-naphthyl acetate. The plasmid isolated from the clone contained a 3.3 kb genomic fragment from S. solfataricus and a full-length esterase coding sequence could be identified. Expression of the active thermostable esterase in E. coli was independent of isopropyl-beta-D-thiogalactopyranoside and of the kind of vector, suggesting that the archaeal esterase gene was controlled by fortuitous bacterial-like sequences present in its own 5' flanking region, not by the bacterial lac promoter or other serendipitous vector-located sequences. The protein, partially purified by thermoprecipitation of the host proteins at high temperature and gel exclusion chromatography, showed a homo-tetrameric structure with a subunit of molecular mass of 32 kDa which was in perfect agreement with that deduced from the cloned gene. The same protein was revealed in S. solfataricus cell extracts, thus demonstrating its functional occurrence in vivo under the cell culture conditions tested. The recombinant enzyme exhibited high thermal activity and thermostability with optimal activity between pH 6.5 and 7.0. The hydrolysis of p-nitrophenyl esters of fatty acids (from C(2) to C(8)) allowed the enzyme to be classified as a short length acyl esterase.  相似文献   

4.
To separate the interfacial and catalytic reactions of lecithin cholesterol acyltransferase (LCAT), we carried out the first investigation of its reaction with water-soluble substrates. We used a continuous spectrophotometric assay for the hydrolysis of p-nitrophenyl esters of fatty acids to determine the chain length specificity of the enzyme and its modulation by anions and apolipoproteins in solution. By chemical modification of amino acid residues, we demonstrated that the active site serine and histidine residues participate in both the esterase and acyltransferase reactions but that cysteine residues are not involved in the esterase reaction. The kinetics of the LCAT reaction were measured for p-nitrophenyl esters of fatty acids having up to six (C-6) carbons in length. With increasing acyl chain lengths the optimal reaction rates occurred for the C-5 ester and Km and Vmax values decreased progressively, while the specificity constant, kcat/Km, increased. The same series of substrates and longer chain esters, up to C-16, were also reacted with LCAT in the presence of Triton X-100 in order to determine the general trends for the reaction rates as a function of chain length. The observed trends for the reaction rates and kinetic constants were attributed to an increasing binding affinity for the longer acyl chains in a large hydrophobic cavity, with a concomitant restriction in the motions of the substrates and a decreased probability for the correct positioning of the ester bond for hydrolysis, resulting in a decreased substrate turnover. Since the kinetics of the interfacial reactions of LCAT are very sensitive to the presence of anions and apolipoproteins, in particular apoA-I, we investigated the effects of these modulators on the reactions of LCAT in solution. Unlike the interfacial reactions, the hydrolysis of the p-nitrophenyl esters was not affected by 0.1 M concentrations of anions nor by water-soluble apolipoproteins (apoA-I, apoA-II, and apoCs). Thus the regulation of the activity of LCAT is mediated largely by the interfaces on which it acts.  相似文献   

5.
A new esterase activity from Bacillus licheniformis was characterized from an Escherichia coli recombinant strain. The protein was a single polypeptide chain with a molecular mass of 81 kDa. The optimum pH for esterase activity was 8-8.5 and it was stable in the range 7-8.5. The optimum temperature for activity was 45 degrees C and the half-life was 1 h at 64 degrees C. Maximum activity was observed on p-nitrophenyl caproate with little activity toward long-chain fatty acid esters. The enzyme had a KM of 0.52 mM for p-nitrophenyl caproate hydrolysis at pH 8 and 37 degrees C. The enzyme activity was not affected by either metal ions or sulfydryl reagents. Surprisingly, the enzyme was only slightly inhibited by PMSF. These characteristics classified the new enzyme as a thermostable esterase that shared similarities with lipases. The esterase might be useful for biotechnological applications such as ester synthesis.  相似文献   

6.
The gene encoding an esterase (HDE) was cloned from an oil-degrading bacterium, strain HD-1. HDE is a member of the hormone-sensitive lipase family and composed of 317 amino acid residues with a molecular weight of 33,633. The HDE-encoding gene was expressed in Escherichia coli, and the recombinant protein was purified and characterized. Amino acid sequence analysis indicated that the methionine residue was removed from its NH(2)-terminus. The good agreement of the molecular weights estimated by SDS-PAGE (35,000) and gel filtration (38,000) suggests that it acts in a monomeric form. HDE showed hydrolytic activity towards p-nitrophenyl esters of fatty acids with an acyl chain length of 2 to 14 and tributyrin, whereas it showed little hydrolytic activity towards p-nitrophenyl oleate (C(18)), tricaprylin and triolein. Determination of the kinetic parameters for the hydrolyses of the p-nitrophenyl substrates from C(2) to C(14) indicated that HDE shows a relatively broad substrate specificity. However, comparison of the k(cat)/K(m) values indicated that the C(10)-C(14) substrates are the most preferred ones. Such a preference for substrates with long acyl chains may be a characteristic of HDE.  相似文献   

7.
Specific trypsin substrates (esters, anilides, amides, peptides) were shown to accelerate deacetylation of monoacetylated trypsin. The amidase activity of monoacetyl-, monopropyonyl-, and tetraformyl-trypsin was not manifested if the amidase activity of native enzyme was suppressed in these preparations by the ester substrates (benzoylarginine ethyl ester or p-nitrophenyl acetate). Therefore the differences in the residual amidase and esterase activities of these acylated trypsin preparations found earlier did not contradict the universality of the acylenzyme mechanism. These differences are due to the strong deacylating effect of specific substrate in its complex with the enzyme modified with nonspecific acyl residue. The latter fact is suggested to be an experimental confirmation of the "induced fit" hypothesis.  相似文献   

8.
Dolichyl ester hydrolase activity is broadly distributed among the organs of the rat. The highest activity was found in spleen, brain, lung, and thyroid tissues, whereas this activity is very low in stomach and intestine. The esterase involved is localized to the lumen of lysosomes and, to some extent, in the plasma membranes. Hydrolysis occurs with both alpha-saturated and alpha-unsaturated polyisoprenes esterified with different fatty acids, but the rate of hydrolysis is strongly dependent on the nature of the substrate. The enzyme involved is inhibited by divalent cations, EDTA and EGTA and also by one of the products, dolichol. The esterase is activated by 3-[(3-cholamidopropyl) dimethylammonio]-1-propranesulfonic acid and taurodeoxycholate and inhibited by Triton X-100. Dolichyl esterase activity is completely inhibited by alpha- and beta-naphthyl acetate, phenylmethylsulfonyl fluoride, and beta-chloromethylmercurisulfate. These inhibitors, as well as the pH optimum for dolichyl ester hydrolysis, clearly differentiate the enzyme involved from cholesteryl esterase and triglyceride lipase. Microsomal phospholipase A hydrolyzes dolichyl esters at a slow rate only. In vivo labeling experiments with [3H]mevalonate demonstrated that newly synthesized dolichol is transported in esterified form to the lysosomes, where this lipid is slowly hydrolyzed by the esterase. The possibility is raised that the role of the fatty acyl moiety may be to target dolichol to its final location in the cell.  相似文献   

9.
Escherichia coli thioesterase I/protease I/lysophospholipase L(1) (TAP) possesses multifunctional enzyme with thioesterase, esterase, arylesterase, protease, and lysophospholipase activities. Leu109, located at the substrate-binding tunnel, when substituted with proline (Pro) in TAP, shifted the substrate-preference from medium-to-long acyl chains to shorter acyl chains of triglyceride and p-nitrophenyl ester, and increased the preference for aromatic-amino acid-derived esters. In the three-dimensional TAP structures, the only noticeable alteration of backbone and side chain conformation was located at the downstream Pro110-Ala123 region rather than at Pro109 itself. The residue Pro110, adjacent to Leu109 or Pro109, was found to contribute to the substrate preference of TAP enzymes for esters containing acyl groups with pi bond(s) or aromatic group(s). Some of the interactions between the enzyme protein and the substrate may be contributed by an attractive force between the Pro110 C-H donor and the substrate pi-acceptor.  相似文献   

10.
Incubations of p-nitrophenyl fatty acyl esters and estradiol-17 beta fatty acyl 17-esters with porcine esterase, human mammary tumor cytosol and rat uterine cytosol leads to ester hydrolysis of compounds with short chain fatty acids. Esters with long chain fatty acids show no hydrolysis except in the presence of Tween 80. Short chain fatty acid esters have a higher binding potency to the estrogen receptor than long chain fatty acid esters. Extraction of the nuclear receptor peak sedimenting at 4.6S and identification of the steroid showed that about 90% of the radioactivity was associated with estradiol and only 10% with estradiol esters. These studies show that estradiol fatty acyl esters act as a storage form from which estradiol is released by enzymatic hydrolysis.  相似文献   

11.
Phytopathogenic fungi penetrate plants by breaking down the cuticular barrier with cutinase. Cutinases are extracellular hydrolytic enzymes that degrade cutin, a polyester composed of hydroxy and epoxy fatty acids. Until now, cutinase has been recognized by its ability to release labeled cutin monomers or by a non-specific esterase assay based on the hydrolysis of p-nitrophenyl esters of short fatty acids. In this work, an insoluble p-nitrophenyl derivative was synthesized and purified, and its structure was determined to be 4-nitrophenyl (16-methyl sulfone ester) hexadecanoate (pNMSEH) by nuclear magnetic resonance (H+ NMR) analysis. pNMSEH was tested as a new cutinase substrate with Pseudomonas mandocino cutinase and porcine liver esterase. While a linear release over time of p-nitrophenol (pNP) was recorded in the presence of cutinase, no response was obtained with the esterase. The calculated kinetic parameters of pNMSEH hydrolysis by cutinase revealed a high specificity (Km=1.8mM), albeit a low catalytic rate (Vmax=10.5 micromol min(-l)l(-1)). This new synthetic substrate may be helpful for detecting and assaying cutinase activity in mixed solutions, such as crude fungal extracellular extracts.  相似文献   

12.
During stress or senescence, thylakoid membranes in chloroplasts are disintegrated, and chlorophyll and galactolipid are broken down, resulting in the accumulation of toxic intermediates, i.e., tetrapyrroles, free phytol, and free fatty acids. Chlorophyll degradation has been studied in detail, but the catabolic pathways for phytol and fatty acids remain unclear. A large proportion of phytol and fatty acids is converted into fatty acid phytyl esters and triacylglycerol during stress or senescence in chloroplasts. We isolated two genes (PHYTYL ESTER SYNTHASE1 [PES1] and PES2) of the esterase/lipase/thioesterase family of acyltransferases from Arabidopsis thaliana that are involved in fatty acid phytyl ester synthesis in chloroplasts. The two proteins are highly expressed during senescence and nitrogen deprivation. Heterologous expression in yeast revealed that PES1 and PES2 have phytyl ester synthesis and diacylglycerol acyltransferase activities. The enzymes show broad substrate specificities and can employ acyl-CoAs, acyl carrier proteins, and galactolipids as acyl donors. Double mutant plants (pes1 pes2) grow normally but show reduced phytyl ester and triacylglycerol accumulation. These results demonstrate that PES1 and PES2 are involved in the deposition of free phytol and free fatty acids in the form of phytyl esters in chloroplasts, a process involved in maintaining the integrity of the photosynthetic membrane during abiotic stress and senescence.  相似文献   

13.
Substrate specificity of human mitochondrial low Km aldehyde dehydrogenase (EC 1.2.1.3) E2 isozyme has been investigated employing p-nitrophenyl esters of acyl groups of two to six carbon atoms and comparing with that of aldehydes of one to eight carbon atoms. The esterase reaction was studied under three conditions: in the absence of coenzyme, in the presence of NAD (1 mM), and in the presence of NADH (160 microM). The maximal velocity of the esterase reaction with p-nitrophenyl acetate and propionate as substrates in the presence of NAD was 3.9-4.7 times faster than that of the dehydrogenase reaction. Under all other conditions the velocities of dehydrogenase and esterase reactions were similar; the lowest kcat was for p-nitrophenyl butyrate in the presence of NAD. Stimulation of esterase activity by coenzymes was confined to esters of short acyl chain length; with longer acyl chain lengths or increased bulkiness (p-nitrophenyl guanidinobenzoate) no effect or even inhibition was observed. Comparison of kinetic constants for esters demonstrates that p-nitrophenyl butyrate is the worst substrate of all esters tested, suggesting that the active site topography is uniquely unfavorable for p-nitrophenyl butyrate. This fact is, however, not reflected in kinetic constants for butyraldehyde, which is a good substrate. The substrate specificity profile as determined by comparison of kcat/Km ratios was found to be quite different for aldehydes and esters. For aldehydes kcat/Km ratios increased with the increase of chain length; with esters under all three conditions, a V-shaped curve was produced with a minimum at p-nitrophenyl butyrate.  相似文献   

14.
An esterase catalyzing the hydrolysis of acetyl ester moieties in cellulose acetate was purified 1,110-fold to electrophoretic homogeneity from the culture supernatant of Neisseria sicca SB, which can assimilate cellulose acetate as the sole carbon and energy source. The purified enzyme was a monomeric protein with a molecular mass of 40 kDa and the isoelectric point was 5.3. The pH and temperature optima of the enzyme were 8.0-8.5 and 45 degrees C. The enzyme catalyzed the hydrolysis of acetyl saccharides, p-nitrophenyl esters of short-chain fatty acids, and was slightly active toward aliphatic and aromatic esters. The K(m) and Vmax for cellulose acetate (degree of substitution, 0.88) and p-nitrophenyl acetate were 0.0162% (716 microM as acetyl content in the polymer) and 36.0 microM, and 66.8 and 39.1 mumol/min/mg, respectively. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate, which indicated that the enzyme was a serine esterase.  相似文献   

15.
The possibility that some factor in serum changes the substrate specificity of purified human plasma carboxyl esterase, which hydrolyzes the short chain fatty acid ester, tributyrin, was investigated. The purified carboxyl esterase from human plasma hydrolyzed 48 mmol of tributyrin/mg of protein/h, monoolein at 1560 mumol of released fatty acids/mg of protein/h, diolein at 133 mumol of released fatty acids/mg of protein/h, and triolein at less than 10 mumol of released fatty acids/mg of protein/h. When human serum was applied to phenyl-Sepharose, a triolein hydrolysis-promoting factor (THPF) for purified carboxyl esterase was bound to the gel and was eluted with water. This partially purified human serum THPF enhanced carboxyl esterase-catalyzed triolein hydrolysis about 30-fold, diolein hydrolysis 2-fold, and monoolein hydrolysis 1.5-fold. Hydrolysis of triolein in very low density lipoproteins (d less than 1.006) and intermediate lipoproteins (1.006 less than d less than 1.019) by carboxyl esterase was also enhanced by addition of THPF. THPF activity was reduced by treatment of delipidation, but resistant to trypsin treatment or heating at 50 degrees C. These results indicated that serum carboxyl esterase can hydrolyze the long chain fatty acid ester, triolein, in the presence of triolein hydrolysis-promoting factor in serum.  相似文献   

16.
The reaction mechanism of the esterase 2 (EST2) from Alicyclobacillus acidocaldarius was studied at the kinetic and structural level to shed light on the mechanism of activity and substrate specificity increase previously observed in its double mutant M211S/R215L. In particular, the values of kinetic constants (k1, k(-1), k2, and k3) along with activation energies (E1, E(-1), E2, and E3) were measured for wild type and mutant enzyme. The previously suggested substrate-induced switch in the reaction mechanism from kcat=k3 with a short acyl chain substrate (p-nitrophenyl hexanoate) to kcat=k2 with a long acyl chain substrate (p-nitrophenyl dodecanoate) was validated. The inhibition afforded by an irreversible inhibitor (1-hexadecanesulfonyl chloride), structurally related to p-nitrophenyl dodecanoate, was studied by kinetic analysis. Moreover the three-dimensional structure of the double mutant bound to this inhibitor was determined, providing essential information on the enzyme mechanism. In fact, structural analysis explained the observed substrate-induced switch because of an inversion in the binding mode of the long acyl chain derivatives with respect to the acyl- and alcohol-binding sites.  相似文献   

17.
An enzyme preparation that catalyses the deacylation of mono- and di-acyl phospholipids, galactosyl diglycerides, mono- and di-glycerides has been partially purified from potato tubers. The preparation also hydrolyses methyl and p-nitrophenyl esters and acts preferentially on esters of long-chain fatty acids. Triglycerides, wax esters and sterol esters are not hydrolysed. The same enzyme preparation catalyses acyl transfer reactions in the presence of alcohols and also catalyses the synthesis of wax esters from long-chain alcohols and free fatty acids. Gel filtration, DEAE-cellulose chromatography and free-flow electrophoresis failed to achieve any separation of the acyl-hydrolase activities towards different classes of acyl lipids (phosphatidylcholine, monogalactosyl diglyceride, mono-olein, methyl palmitate and p-nitrophenyl palmitate) or any separation of these activities from a major protein component. For each class of lipid the acyl-hydrolase activity was subject to substrate inhibition, was inhibited by relatively high concentrations of di-isopropyl phosphorofluoridate and the pH responses were changed by Triton X-100. The hydrolysis of phosphatidylcholine was stimulated 30-40-fold by Triton X-100. The specific activities of the potato enzyme with galactolipids were at least 70 times higher than those reported for a homogeneous galactolipase enzyme purified from runner bean leaves. The possibility that a single lipolytic acyl-hydrolase enzyme is responsible for the deacylation of several classes of acyl lipid is discussed.  相似文献   

18.
Yeast fatty acid synthase: structure to function relationship   总被引:5,自引:0,他引:5  
N Singh  S J Wakil  J K Stoops 《Biochemistry》1985,24(23):6598-6602
The yeast fatty acid synthase is a multifunctional enzyme composed of two nonidentical subunits in an alpha 6 beta 6 complex that is active in synthesizing fatty acids. The seven catalytic activities required for fatty acid synthesis are divided between the alpha and beta subunits such that the alpha 6 beta 6 complex has six complements of each activity. It has been proposed that these are organized into six centers for fatty acid synthesis. There are different opinions regarding the operation of these centers in the alpha 6 beta 6 complex, on view being that they are functionally independent and the other proposes half-sites activity for the complex. We have attempted to distinguish between these proposals by the most direct method of active site titration, i.e., quantitation of fatty acyl product in the absence of turnover. This was accomplished by using p-nitrophenyl thioacetate and thiophenyl malonate (in place of the coenzyme A analogues) as substrates along with NADPH, thereby depriving the yeast synthase of coenzyme A required to release product as fatty acyl coenzyme A. The amount of fatty acyl product formed was quantitated by gas-liquid chromatography, as well as by direct estimation of radioactivity in the product when p-nitrophenyl thio [1-14C] acetate was used as a substrate. In both cases, a stoichiometry of close to six was found for mole of fatty acid synthesized per mole of alpha 6 beta 6 complex. This indicates that there are six functional centers for fatty acid synthesis in the multifunctional yeast alpha 6 beta 6 fatty acid synthase and that these centers operate independently.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Originally annotated as the initiator of fatty acid synthesis (FAS), β‐ketoacyl‐acyl carrier protein synthase III (KAS III) is a unique component of the bacterial FAS system. Novel variants of KAS III have been identified that promote the de novo use of additional extracellular fatty acids by FAS. These KAS III variants prefer longer acyl‐groups, notably octanoyl‐CoA. Acinetobacter baumannii, a clinically important nosocomial pathogen, contains such a multifunctional KAS III (AbKAS III). To characterize the structural basis of its substrate specificity, we determined the crystal structures of AbKAS III in the presence of different substrates. The acyl‐group binding cavity of AbKAS III and co‐crystal structure of AbKAS III and octanoyl‐CoA confirmed that the cavity can accommodate acyl groups with longer alkyl chains. Interestingly, Cys264 formed a disulfide bond with residual CoA used in the crystallization, which distorted helices at the putative interface with acyl‐carrier proteins. The crystal structure of KAS III in the alternate conformation can also be utilized for designing novel antibiotics.  相似文献   

20.
Native polyacrylamide gels of extracellular proteins produced by several Streptomyces isolates grown with suberin were assayed in situ for esterase activity. Two pathogenic isolates of Streptomyces scabies from different geographical regions were found to produce a similar esterase activity that was not produced by nonpathogenic strains. After treatment with EDTA, suberin no longer induced esterase production. Expression was restored when EDTA-treated suberin was supplemented with zinc. The optimal concentration of zinc required for esterase production was 2 microM. This esterase was purified from one of the pathogenic isolates and characterized. The enzyme was 38,000 daltons when determined by gel filtration on Sephadex G-100 and 36,000 daltons when determined by denaturing polyacrylamide gel electrophoresis. The esterase showed maximal activity in sodium phosphate buffer above pH 8.0, was stable to temperatures of up to 60 degrees C, and had an apparent Km of 125 microM p-nitrophenyl butyrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号