首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 494 毫秒
1.
Polyamines of the four families and the five related genera within the gamma subclass of the class Proteobacteria were analyzed by HPLC with the objective of developing a chemotaxonomic system. The production of putrescine, diaminopropane, cadaverine, and agmatine are not exactly correlated to the phylogenetic genospecies within 36 strains of the genus Aeromonas (the family Aeromonadaceae) lacking in triamines. The occurrence of norspermidine was limited but not ubiquitous within the family Vibrionaceae, including 20 strains of Vibrio, Listonella, Photobacterium, and Salinivibrio. Spermidine was not substituted for the absence of norspermidine in the family. Agmatine was detected only in Photobacterium. Salinivibrio and some strains of Vibrio were devoid of polyamines. Vibrio ("Moritella") marinus contained cadaverine. Within the family Pasteurellaceae, Haemophilus contained cadaverine only and Actinobacillus contained no polyamine. Halomonas, Chromohalobacter, and Zymobacter, belonging to the family Halomonadaceae, ubiquitously contained spermidine and sporadically cadaverine and agmatine. Shewanella contained putrescine and cadaverine; Alteromonas macleodii, putrescine, 2-hydroxyputrescine, cadaverine, 2-hydroxyspermidine, and spermidine; Pseudoalteromonas, putrescine, cadaverine, and spermidine; Marinobacter, spermidine; and Marinomonas, putrescine and spermidine. Their polyamine profiles serve as a chemotaxonomic marker within the gamma subclass.  相似文献   

2.
Synthesis of novel polyamines in Paracoccus, Rhodobacter and Micrococcus   总被引:1,自引:0,他引:1  
Abstract The Gram-negative facultative chemolithotroph, Paracoccus denitrificans contains putrescine, cadaverine, agmatine, spermidine, aminopropylcadaverine, spermine, thermospermine and aminopentylnorspermidine. This bacterium has the ability to produce norspermidine from supplemented diaminopropane. The halophile, Paracoccus halodenitrificans is devoid of any polyamines. Neither decarboxylation of ornithine, lysine or arginine, nor triamine synthetic activity from diamines was detected in this halophile. Two Gram-negative facultative photoautotrophs, Rhodobacter sphaeroides and Rhodobacter capsulatus contain putrescine, cadaverine, agmatine and spermidine and can produce norspermidine from supplemented diaminopropane. A Gram-negative eubacterium, Micrococcus cryophilus , contains histamine and homospermidine in addition to putrescine, cadaverine and spermidine. Hence, polyamine distribution patterns and polyamine biosynthetic activities were very different among the four groups of Gram-negative eubacteria examined.  相似文献   

3.
In growing Lathyrus sativus seedlings, the levels of DNA, RNA and protein markedly decreased in the cotyledons and progressively increased in the embryo-axis. In cotyledons, spermidine and spermine contents were substantially reduced while those of agmatine and putrescine were sharply increased. By contrast the embryo-axis progressively accumulated relatively larger amounts of agmatine, homoagmatine. putrescine, cadaverine, spermidine and spermine in parallel with similar changes in its DNA, RNA and protein content. While the cotyledons contained ca 50% of the total agmatine and putrescine present in the plant embryo by day 10, the embryo-axis, though representing less than 20% of the dry wt, contained 90 and 75% of total cadaverine and homoagmatine respectively of the seedlings. Spermidine and spermine levels of this tissue were also comparatively higher, being of the order of 80 and 50% respectively of the total. The root and shoot portions of the embryo-axis also exhibited a similar relationship between changes in DNA, RNA and protein and all the above amines during development. However, the polyamine content of the shoots was relatively higher than those of the roots during the growth period.  相似文献   

4.
The biosynthesis of certain amines in Lathyrus sativus seedlings was studied in isolated shoots and cotyledons. In shoots, arginine was about 14 times more efficient than ornithine for the synthesis of agmatine, putrescine, spermidine and spermine. Isotope dilution experiments, and the changes in specific activities of the 4 amines with time when 14C-arginine served as the precursor, indicated that putrescine and the polyamines were formed mainly from arginine, via agmatine. Similar experiments showed that cadaverine was formed at least in part from homoarginine, though lysine was ca 4 times more effective as a precursor. The pattern of changes in specific activity of homoagmatine and cadaverine with time when 14C-homoarginine served as the precursor support the conclusion that homoarginine and arginine follow analogous metabolic routes in the biosynthesis of putrescine and cadaverine respectively.  相似文献   

5.
Selenomonas ruminantium synthesizes cadaverine and putrescine from L-lysine and L-ornithine as the essential constituents of its peptidoglycan by a constitutive lysine/ornithine decarboxylase (LDC/ODC). S. ruminantium grew normally in the presence of the specific inhibitor for LDC/ODC, DL-alpha-difluoromethylornithine, when arginine was supplied in the medium. In this study, we discovered the presence of arginine decarboxylase (ADC), the key enzyme in agmatine pathway for putrescine synthesis, in S. ruminantium. We purified and characterized ADC and cloned its gene (adc) from S. ruminantium chromosomal DNA. ADC showed more than 60% identity with those of LDC/ODC/ADCs from Gram-positive bacteria, but no similarity to that from Gram-negative bacteria. In this study, we also cloned the aguA and aguB genes, encoding agmatine deiminase (AguA) and N-carbamoyl-putrescine amidohydrolase (AguB), both of which are involved in conversion from agmatine into putrescine. AguA and AguB were expressed in S. ruminantium. Hence, we concluded that S. ruminantium has both ornithine and agmatine pathways for the synthesis of putrescine.  相似文献   

6.
The polyamines agmatine, cadaverine, putrescine, spermidineand spermine were measured by means of thin layer chromatographyand high performance liquid chromatography in buds and in 5mm long subapical sections of the 3rd internode of 6-day-oldetiolated pea seedlings. The polyamine pattern of each organwas specific, relative quantities varying with age and growth.While agmatine, putrescine, spermidine and spermine were presentin buds and in tissues of the 3rd internode, cadaverine wasfound in the 3rd internode only. Concentrations of spermidineand spermine were higher in the bud than in the 3rd internode,and the highest putrescine titer was found in the internode.Short exposure of etiolated seedlings to red light (5 min) increasedbud development while inhibiting growth of the 3rd internode.In general, exposure to red light increased the titer of putrescine,agmatine and spermidine in the bud, whereas in the internodea reverse pattern was found, i.e., internodes of seedlings growingin the dark yielded higher titer of polyamines in general, andagmatine in particular. These results are particularly pronounced18 hr after exposure to red light. A link between phytochrome-controlledgrowth and polyamine titer is suggested. 2 On sabbatical leave from the Hebrew University of Jerusalem,Department of Horticulture, Rehovot, Israel. 3 Supported by a grant from the Turkish Government; Permanentaddress: Department of General Botany, University of Istanbul,Suleymaniye, Istanbul, Turkey. 1 Supported by a grant from NSF to A.W.G. (Received August 24, 1981; Accepted October 22, 1981)  相似文献   

7.
Polyamine depletion produced by exogenous arginine in Escherichia coliK-12 cultures defective in agmatine ureohydrolase activity resulted in a marked inhibition of the rates of growth and nucleic acid synthesis. Addition of putrescine or spermidine to such depleted cultures restored the control rate of growth and nucleic acid accumulation. The omission of lysine resulted in a further decrease in the rates of growth and nucleic acid synthesis in polyamine-depleted cells. The addition of exogenous cadaverine increased the rates of growth and ribonucleic acid synthesis to those observed in lysine-supplemented cultures, suggesting that lysine or a derivative of lysine serves a function similar to cadaverine. Addition of lysine to polyamine-depleted cultures at neutral pH results in the synthesis of cadaverine and a new spermidine analogue, both containing lysine carbon. This new metabolite has been isolated and identified as N-3-aminopropyl-1, 5-diaminopentane. T4D infection of the polyamine-depleted mutant resulted in a very low rate of DNA synthesis and phage maturation. The addition of putrescine or spermidine 15 min before infection restored phage DNA synthesis and phage maturation to control rates, i.e., rates observed in infected cells grown in the absence of arginine.  相似文献   

8.
A new enzyme, agmatine oxidase, was found in Penicillium chrysogenum. The oxidation products of agmatine with the enzyme were identified as γ-guanidinobutyraldehyde, NH3 and H2O2. The enzyme rapidly oxidized agmatine, and slightly oxidized histamine, putrescine, 1,3-diaminopropane and cadaverine. Monoamines, polyamines and guanidyl derivatives were not oxidized by the enzyme. Maximal formation of the enzyme of P. chrysogenum was observed in the early stationary phase of growth, and thereafter the enzyme disappeared with consumption of substrate. In addition to agmatine, spermine, spermidine and putrescine were also effective as nitrogen sources. Agmatine oxidase was found in mycelia of fungi belonging to the genera of Aspergillus, Penicillium, Absidia, Fusarium, Mucor, Gibberella, Cylindrocarpon and Monascus when they were grown in agmatine-containing medium.  相似文献   

9.
Qualitative and quantitative determinations of polyamines have been done in 4 photosynthetic eubacteria and 6 extreme-halophilic archaebacteria. For comparison, 5 moderate-halophilic eubacteria were also analyzed to determine their polyamine contents. Not only putrescine and spermidine but also homospermidine were found in the photosynthetic eubacteria, especially in the N2-fixing species, Rhodospirillum and Chromatium. Norspermidine, norspermine, and spermine were not detected in the phototrophic eubacteria. No appreciable amount of any polyamine was found in extreme-halophilic archaebacteria, Halobacterium and Halococcus, while moderate-halophilic eubacteria contained quite high concentrations of putrescine and spermidine and cadaverine. When arginine was incubated with cell lysates of these two archaebacteria, appreciable amounts of agmatine were produced; neither putrescine nor cadaverine was formed in the presence of ornithine or lysine. No detectable amount of spermidine was produced by the lysates on incubation with putrescine.  相似文献   

10.
We have previously described a polyamine-deficient strain of Escherichia coli that contained deletions in speA (arginine decarboxylase), speB (agmatine ureohydrolase), speC (ornithine decarboxylase), and speD (adenosylmethionine decarboxylase). Although this strain completely lacked putrescine and spermidine, it was still able to grow at a slow rate indefinitely on amine-deficient media. However, these cells contained some cadaverine (1,5-diaminopentane). To rule out the possibility that the presence of cadaverine permitted the growth of this strain, we isolated a mutant (cadA) that is deficient in cadaverine biosynthesis, namely, a mutant lacking lysine decarboxylase, and transduced this cadA gene into the delta (speA-speB) delta speC delta D strain. The resultant strain had essentially no cadaverine but showed the same phenotypic characteristics as the parent. Thus, these results confirm our previous findings that the polyamines are not essential for the growth of E. coli or for the replication of bacteriophages T4 and T7. We have mapped the cadA gene at 92 min; the gene order is mel cadA groE ampA purA. A regulatory gene for lysine decarboxylase (cadR) was also obtained and mapped at 46 min; the gene order is his cdd cadR fpk gyrA.  相似文献   

11.
Synthesis and content of polyamines in bloodstream Trypanosma brucei   总被引:2,自引:0,他引:2  
The sensitive dansyl procedure was used to detect putrescine and spermidine, but not spermine and cadaverine, in pleomorphic Trypanosoma brucei. The polyamines were synthesized in vitro from [3H]ornithine, [14C]arginine and [14C]methionine. Proline, agmatine, and citrulline, but not glutamine, glutamic or pyroglutamic acids, stimulated spermidine formation from [4C]methionine. Putrescine and sperimidine synthesis occurred rapidly from ornithine: putrescine synthesis peaked in 0.5 h, spermidine in 1 h. Trypanosoma brucei assimilated exogenous 14C-labeled putrescine, spermidine, and spermine; spermidine and spermine were taken up 5 times as rapidly as putrescine. Polyamine syntheses may therefore be a practical target for novel trypanocies.  相似文献   

12.
Phaseolus mungo seeds 0 to 10 days after germination contained putrescine, spermidine, spermine, cadaverine, agmatine and tyramine. The rate of biosynthesis of total polyamines, proteins and RNA in the developing seeds follows similar profiles, reaching maxima 3 hr from germination. Putrescine, cadaverine, spermidine, spermine and agmatine were the major amines found in Pisum sativum 0–7 days after germination. RNA and proteins seem to follow the same pattern as polyamines during the first 12 hr in the developing pea seeds. RNA reaches a peak at 15 hr and polyamines and proteins peak 24 hr after germination. A rise to total polyamine concentration was also observed in seeds of Tragopogon porrifolius, Zea mays and Triticum aestivum 2–12 hr after germination.  相似文献   

13.
Cadaverine, a 5-carbon diamine, was identified as the cofactorof uricase activity previously found in soybean seedlings. Thesubstance purified from freeze dried hypocotyls was subjectedto liquid chromatography, mass spectrometry, 1H- and 13C-nuclearmagnetic resonance spectrometry for identification. The concentrationsof cadaverine in 3-day-old radicles and hypocotyls were 2.37mM and 5.09 mM, respectively. Other polyamine concentrationswere low. Biogenic polyamines (cadaverine, putrescine, spermidineand spermine) functioned as cofactors, whereas conjugated polyamines(tyramine and histamine) and amino acids had no effect. Theaddition of catalase to the assay system counteracted the effectof cadaverine. Peroxide at appropriate concentrations actedlike cadaverine with an identical Km value, suggesting thaturate degrading activity can be ascribed to the diamine oxidase-peroxidasesystem. (Received October 19, 1982; Accepted December 23, 1982)  相似文献   

14.
R.K. Sindhu  H.V. Desai 《Phytochemistry》1979,18(12):1937-1938
Agmatine iminohydrolase was purified ca 375-fold from groundnut cotyledons. The enzyme exhibited an optimum pH between 5.5 and 8.5 and the energy of activation was 22 kcal/mol. The Km for agmatine was (7.57 ± 0.77) × 10?4 M. The enzyme was inhibited by tryptamine, putrescine, cadaverine, spermidine and spermine. Inhibition by cadaverine and spermidine was competitive. The Ki values for cadaverine and spermidine were 4.1 × 10?3 and 7.5 × 10?4 M, respectively.  相似文献   

15.
Streptococcus faecalis ATCC 11700 uses agmatine as its sole energy source for growth. Agmatine deiminase and putrescine carbamoyltransferase are coinduced by growth on agmatine. Glucose and arginine were found to exert catabolite repression on the agmatine deiminase pathway. Four mutants unable to utilize agmatine as an energy source, isolated from the wild-type strain, exhibited three distinct phenotypes. Two of these strains showed essentially no agmatine deiminase, one mutant showed negligible activity of putrescine carbamoyltransferase, and one mutant was defective in both activities. Two carbamate kinases are present in S. faecalis, one belonging to the arginine deiminase pathway, the other being induced by growth on agmatine. These two enzymes have the same molecular weight, 82,000, and seem quite different in size from the kinases isolated from other streptococci.  相似文献   

16.
Enterococcus faecalis ATCC 11700 is able to use arginine and the diamine agmatine as a sole energy source. Via the highly homologous deiminase pathways, arginine and agmatine are converted into CO2, NH3, and the end products ornithine and putrescine, respectively. In the arginine deiminase pathway, uptake of arginine and excretion of ornithine are mediated by an arginine-ornithine antiport system. The translocation of agmatine was studied in whole cells grown in the presence of arginine, agmatine, or glucose. Rapid uncoupler-insensitive uptake of agmatine was observed only in agmatine-grown cells. A high intracellular putrescine pool was maintained by these cells, and this pool was rapidly released by external putrescine or agmatine but not by arginine or ornithine. Kinetic analysis revealed competitive inhibition for uptake between putrescine and agmatine. Agmatine uptake by membrane vesicles was observed only when the membrane vesicles were preloaded with putrescine. Uptake of agmatine was driven by the outwardly directed putrescine concentration gradient, which is continuously sustained by the metabolic process. Uptake of agmatine and extrusion of putrescine by agmatine-grown cells of E. faecalis appeared to be catalyzed by an agmatine-putrescine antiporter. This transport system functionally resembled the previously described arginine-ornithine antiport, which was exclusively induced when the cells were grown in the presence of arginine.  相似文献   

17.
Veillonella alcalescens ATCC 17745, a strictly anaerobic, gram-negative small coccus, requires putrescine or cadaverine for growth (M. B. Ritchey, and E. A. Delwiche, J. Bacteriol. 124:1213-1219, 1975). Both putrescine and cadaverine were demonstrated to be incorporated exclusively into the peptidoglycan layer of V. alcalescens ATCC 17745. V. parvula GAI 0574 also proved to contain putrescine as a component of peptidoglycan. The primary chemical structure of the peptidoglycan common to the two Veillonella species is N-acetylglucosamine-N-acetylmuramic acid-L-alanine-D-glutamic acid gamma-meso-diaminopimelic acid-D-alanine. Putrescine or cadaverine links covalently to the alpha-carboxyl group of the D-glutamic acid residue of the peptidoglycan is necessary for normal cell growth. In V. alcalescens ATCC 17745, above 40% saturation at cadaverine linked to the alpha-carboxyl group of the D-glutamic acid residue of the peptidoglycan is necessary for normal growth.  相似文献   

18.
Germination of soybean seeds is accompanied by a rapid increasein amine oxidase activity in the root and hypocotyl but notin the cotyledons. The partially purified enzyme from cotyledonlessspecimens readily oxidizes cadaverine, putrescine, spermidineand agmatine, while spermine, L-lysine and D-lysine are oxidizedmore slowly. Inhibition experiments showed that carbonyl andheavy metal chela ting reagents are effective inhibitors ofsoybean amine oxidase. The diethyldithiocarbamate-treated enzymewas reactivated specifically by cupric copper. These resultssuggest that the amine oxidase in soybean seedlings should beregarded as a diamine oxidase (E.C. 1.4.3.6 [EC] ). (Received November 15, 1972; )  相似文献   

19.
The main free amines identified during growth and development of grapevine microcuttings of rootstock 41 B, (Vitis vinifera cv. Chasselas × Vitis berlandieri) cultivated in vitro were agmatine, putrescine, spermidine, spermine, diaminopropane and tyramine (an aromatic amine). Amine composition differed according to tissue, with diaminopropane the major polyamine in the apical parts, internodes and leaves. Putrescine predominated in the roots. There was also a decreasing general polyamine and specific tyramine gradient along the stem from the top to the bottom. Conjugated amines were only found in roots. The application of exogenous amines (agmatine, putrescine, spermidine, tyramine) stimulated development and growth of microcuttings, suggesting that the endogenous concentrations of these amines can be growth limiting. Diaminopropane (the product of oxidation of spermidine or spermine by polyamine oxydases) strongly inhibited microcutting growth and development. -DL-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of the putrescine-synthesizing enzyme, arginine decarboxylase (ADC), led to inhibition of microcutting development. Application of agmatine or putrescine to the inhibited system resulted in a reversal of inhibition indicating that polyamines are involved in regulating the growth and development of grapevine microcuttings. -DL-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of putrescine biosynthesis from ornithine decarboxylase (ODC), had no effect on microcutting development and growth. We propose that ADC regulates putrescine biosynthesis during microcutting development.  相似文献   

20.
Growth of the Vicia faba seedling is accompanied by a rapid15-day increase in amine oxidase activity of the apical parts.Cotyledons and roots were found to be devoid of activity. Thepartially purified enzyme from leaves readily oxidized putrescine,cadaverine, agmatine and spermidine, while dopamine (3-hydroxytyramine)and L- and D-lysine were oxidized more slowly. The Km valueswere 1.9?10–3 M for cadaverine, 3.7?10–5 M for putrescine,7.8?10–4 M for spermidine, and 5.9?10–3 M for dopamine.Carbonyl reagents and copper-binding agents were effective inhibitorsof Vicia faba amine oxidase. The diethyldithiocarbamate-treatedenzyme could be reactivated specifically by cupric copper. (Received May 25, 1977; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号