首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Staphylococcus aureus pathogenesis depends on a specialized protein secretion system (ESX-1) that delivers a range of virulence factors to assist infectivity. We report the characterization of two such factors, EsxA and EsxB, small acidic dimeric proteins carrying a distinctive WXG motif. EsxA crystallized in triclinic and monoclinic forms and high-resolution structures were determined. The asymmetric unit of each crystal form is a dimer. The EsxA subunit forms an elongated cylindrical structure created from side-by-side α-helices linked with a hairpin bend formed by the WXG motif. Approximately 25% of the solvent accessible surface area of each subunit is involved in interactions, predominantly hydrophobic, with the partner subunit. Secondary-structure predictions suggest that EsxB displays a similar structure. The WXG motif helps to create a shallow cleft at each end of the dimer, forming a short β-sheet-like feature with an N-terminal segment of the partner subunit. Structural and sequence comparisons, exploiting biological data on related proteins found in Mycobacterium tuberculosis, suggest that this family of proteins may contribute to pathogenesis by transporting protein cargo through the ESX-1 system exploiting a C-terminal secretion signal and/or are capable of acting as adaptor proteins to facilitate interactions with host receptor proteins.  相似文献   

2.
Proteins of the WXG100 family represent the prototypical substrates of bacterial type VII secretion systems that typically encompass 100 residues, lack canonical signal peptides, and form helix-turn-helix hairpin structures with WXG positioned in the turn element. Bacillus anthracis encodes six WXG100 proteins, herein referred to as EsxB, EsxL, EsxP, EsxQ, EsxV, and EsxW. With the exception of EsxB, B. anthracis proteins harbor C-terminal extensions that are appended to canonical WXG domains. When cultured in liquid broth, B. anthracis secretes two substrates, EsxB and EsxW, into the extracellular environment. EsxB is required for the stability and secretion of EsxW; however, EsxW is dispensable for EsxB secretion. In agreement with the hypothesis that EsxB binding to substrates promotes recognition and secretion by the type VII pathway, EsxB is reported to interact with EsxB and EsxW. Unlike deletions in mycobacterial EsxB, deletion of five N- or C-terminal residues does not affect the ability of mutant B. anthracis EsxB to travel the type VII pathway and initiate secretion of EsxW. Translational fusion of ubiquitin to the N or C terminus of EsxB also had no effect, while ubiquitin insertion into the center turn abrogated secretion. Anthrax-infected guinea pigs mounted humoral immune responses to EsxB, EsxP, and EsxW, which suggests that B. anthracis activates the type VII secretion pathway during infection.  相似文献   

3.
Staphylococcus aureus encodes the specialized ESAT‐6 Secretion System (ESS). EsxA and EsxB are secreted by the ESS pathway, and share sequence features of ESAT‐6 and CFP‐10 of the Type VII Secretion System (T7SS) of Mycobacterium tuberculosis. Unlike ESAT‐6 and CFP‐10, EsxA and EsxB do not interact. Instead, EsxB associates with a novel substrate, EsxD, and EsxA dimerizes with itself or EsxC (EsaC). Unlike EsxA and EsxB, EsxC and EsxD do not share obvious sequence features of WXG100 proteins nor PE/PPE and Esp families of proteins, all of which belong to the pfam EsxAB clan of mycobacterial T7SS. EsxD carries the C‐terminal motif YxxxD/E that has been proposed to target T7 substrates for secretion in mycobacteria. Here, we find that deletion, but not amino acid substitutions, in this motif prevent secretion of EsxA and EsxC but not EsxB or EsxD. This is unlike the genetic inactivation of esxA, esxB, esxC or esxD that leads to loss of secretion of all four substrates. Thus, substrate secretion can be uncoupled by deleting the last six amino acids of EsxD. The physical association of EsxC and EsxD with canonical WXG100 proteins suggests that these proteins belong to the EsxAB clan.  相似文献   

4.
Type IV pili are expressed from a wide variety of Gram‐negative bacteria and play a major role in host cell adhesion and bacterial motility. PilC is one of at least a dozen different proteins that are implicated in Type IV pilus assembly in Thermus thermophilus and a member of a conserved family of integral inner membrane proteins which are components of the Type II secretion system (GspF) and the archeal flagellum. PilC/GspF family members contain repeats of a conserved helix‐rich domain of around 100 residues in length. Here, we describe the crystal structure of one of these domains, derived from the N‐terminal domain of Thermus thermophilus PilC. The N‐domain forms a dimer, adopting a six helix bundle structure with an up‐down‐up‐down‐up‐down topology. The monomers are related by a rotation of 170°, followed by a translation along the axis of the final α‐helix of approximately one helical turn. This means that the regions of contact on helices 5 and 6 in each monomer are overlapping, but different. Contact between the two monomers is mediated by a network of hydrophobic residues which are highly conserved in PilC homologs from other Gram‐negative bacteria. Site‐directed mutagenesis of residues at the dimer interface resulted in a change in oligomeric state of PilC from tetramers to dimers, providing evidence that this interface is also found in the intact membrane protein and suggesting that it is important to its function. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
6.
Burkoldheria pseudomallei is a Gram-negative bacterium that possesses a protein secretion system similar to those found in Salmonella and Shigella. Recent work has indicated that the protein encoded by the BipD gene of B. pseudomallei is an important secreted virulence factor. BipD is similar in sequence to IpaD from Shigella and SipD from Salmonella and is therefore likely to be a translocator protein in the type-III secretion system of B. pseudomallei. The crystal structure of BipD has been solved at a resolution of 2.1 A revealing the detailed tertiary fold of the molecule. The overall structure is appreciably extended and consists of a bundle of antiparallel alpha-helical segments with two small beta-sheet regions. The longest helices of the molecule form a four-helix bundle and most of the remaining secondary structure elements (three helices and two three-stranded beta-sheets) are formed by the region linking the last two helices of the four-helix bundle. The structure suggests that the biologically active form of the molecule may be a dimer formed by contacts involving the C-terminal alpha-helix, which is the most strongly conserved part of the protein. Comparison of the structure of BipD with immunological and other data for IpaD indicates that the C-terminal alpha-helix is also involved in contacts with other proteins that form the translocon.  相似文献   

7.
D.M. Engelman  T.A. Steitz 《Cell》1981,23(2):411-422
We propose that the initial event in the secretion of proteins across membranes and their insertion into membranes is the spontaneous penetration of the hydrophobic portion of the bilayer by a helical hairpin. Energetic considerations of polypeptide structures in a nonpolar, lipid environment compared with an aqueous environment suggest that only α and 310 helices will be observed in the hydrophobic interior of membranes. Insertion of a polypeptide is accomplished by a hairpin structure composed of two helices, which will partition into membranes if the free energy arising from burying hydrophobic helical surfaces exceeds the free energy “cost” of burying potentially charged and hydrogen-bonding groups. We suggest, for example, that the hydrophobic leader peptide found in secreted proteins and in many membrane proteins forms one of these helices and is oriented in the membrane with its N terminus inside. In secreted proteins, the leader functions by pulling polar portions of a protein into the membrane as the second helix of the hairpin. The occurrence of all categories of membrane proteins can be rationalized by the hydrophobic or hydrophilic character of the two helices of the inserted hairpin and, for some integral membrane proteins, by events in which a single terminal helix is inserted. We propose that, because of the distribution of polar and nonpolar sequences in the polypeptide sequence, secretion and the insertion of membrane proteins are spontaneous processes that do not require the participation of additional specific membrane receptors or transport proteins.  相似文献   

8.
Widely spread in Gram‐negative bacteria, the type VI secretion system (T6SS) secretes many effector‐immunity protein pairs to help the bacteria compete against other prokaryotic rivals, and infect their eukaryotic hosts. Tle5 and Tle5B are two phospholipase effector protein secreted by T6SS of Pseudomonas aeruginosa. They can facilitate the bacterial internalization process into human epithelial cells by interacting with Akt protein of the PI3K‐Akt signal pathway. Tli5 and PA5086‐5088 are cognate immunity proteins of Tle5 and Tle5B, respectively. They can interact with their cognate effector proteins to suppress their virulence. Here, we report the crystal structure of Tli5 at 2.8Å resolution and successfully fit it into the Small angle X‐ray scattering (SAXS) model of the complete Tle5–Tli5 complex. We identified two important motifs in Tli5 through sequence and structural analysis. One is a conserved loop‐β‐hairpin motif that exists in the Tle5 immunity homologs, the other is a long and sharp α‐α motif that directly interacts with Tle5 according to SAXS data. We also distinguished the structural features of Tle5 and Tle5B family immunity proteins. Together, our work provided insights into a novel inhibition mechanism that may enhance our understanding of phospholipase D family proteins.  相似文献   

9.
Using molecular dynamics simulations, we studied the structure, interhelix interactions, and dynamics of transmembrane proteins. Specifically, we investigated homooligomeric helical bundle systems consisting of synthetic α-helices with either the sequence Ac-(LSLLLSL)3-NH2 (LS2) or Ac-(LSSLLSL)3-NH2 (LS3). The LS2 and LS3 helical peptides are designed to have amphipathic characteristics that form ion channels in membrane. We simulated bundles containing one to six peptides that were embedded in palmitoyl-oleoyl-phosphatidylcholine (POPC) lipid bilayer and placed between two lamellae of water. We aim to provide a fundamental understanding of how amphipathic helical peptides interact with each other and their dynamical behaviors in different homooligomeric states. To understand structural properties, we examined the helix lengths, tilt angles of individual helices and the entire bundle, interhelix distances, interhelix cross-angles, helix hydrophobic-to-hydrophilic vector projections, and the average number of interhelix hydrophilic (serine–serine) contacts lining the pore of the transmembrane channel. To analyze dynamical properties, we calculated the rotational autocorrelation function of each helix and the cross-correlation of the rotational velocity between adjacent helices. The observed structural and dynamical characteristics show that higher order bundles containing four to six peptides are composed of multiple lower order bundles of one to three peptides. For example, the LS2 channel was found to be stable in a tetrameric bundle composed of a “dimer of dimers.” In addition, we observed that there is a minimum of two strong hydrophilic contacts between a pair of adjacent helices in the dimer to tetramer systems and only one strong hydrophilic interhelix contact in helix pairs of the pentamer and hexamer systems. We believe these results are general and can be applied to more complex ion channels, providing insight into ion channel stability and assembly.  相似文献   

10.
Using molecular dynamics simulations, we studied the structure, interhelix interactions, and dynamics of transmembrane proteins. Specifically, we investigated homooligomeric helical bundle systems consisting of synthetic α-helices with either the sequence Ac-(LSLLLSL)3-NH2 (LS2) or Ac-(LSSLLSL)3-NH2 (LS3). The LS2 and LS3 helical peptides are designed to have amphipathic characteristics that form ion channels in membrane. We simulated bundles containing one to six peptides that were embedded in palmitoyl-oleoyl-phosphatidylcholine (POPC) lipid bilayer and placed between two lamellae of water. We aim to provide a fundamental understanding of how amphipathic helical peptides interact with each other and their dynamical behaviors in different homooligomeric states. To understand structural properties, we examined the helix lengths, tilt angles of individual helices and the entire bundle, interhelix distances, interhelix cross-angles, helix hydrophobic-to-hydrophilic vector projections, and the average number of interhelix hydrophilic (serine–serine) contacts lining the pore of the transmembrane channel. To analyze dynamical properties, we calculated the rotational autocorrelation function of each helix and the cross-correlation of the rotational velocity between adjacent helices. The observed structural and dynamical characteristics show that higher order bundles containing four to six peptides are composed of multiple lower order bundles of one to three peptides. For example, the LS2 channel was found to be stable in a tetrameric bundle composed of a “dimer of dimers.” In addition, we observed that there is a minimum of two strong hydrophilic contacts between a pair of adjacent helices in the dimer to tetramer systems and only one strong hydrophilic interhelix contact in helix pairs of the pentamer and hexamer systems. We believe these results are general and can be applied to more complex ion channels, providing insight into ion channel stability and assembly.  相似文献   

11.
Esat-6 protein secretion systems (ESX or Ess) are required for the virulence of several human pathogens, most notably Mycobacterium tuberculosis and Staphylococcus aureus. These secretion systems are defined by a conserved FtsK/SpoIIIE family ATPase and one or more WXG100 family secreted substrates. Gene clusters coding for ESX systems have been identified amongst many organisms including the highly tractable model system, Bacillus subtilis. In this study, we demonstrate that the B. subtilis yuk/yue locus codes for a nonessential ESX secretion system. We develop a functional secretion assay to demonstrate that each of the locus gene products is specifically required for secretion of the WXG100 virulence factor homolog, YukE. We then employ an unbiased approach to search for additional secreted substrates. By quantitative profiling of culture supernatants, we find that YukE may be the sole substrate that depends on the FtsK/SpoIIIE family ATPase for secretion. We discuss potential functional implications for secretion of a unique substrate.  相似文献   

12.
Earlier studies have shown that the helical content of α‐helical peptide decreases upon its interaction with carbon nanotube (CNT). Further, the length of the α‐helix varies from few residues in the small globular protein to several number of residues in structural and membrane proteins. In structural and membrane proteins, helices are widely present as the supercoil i.e., helical bundles. Thus, in this study, the length‐dependent interaction pattern of α‐helical peptides with CNT and the stability of isolated α‐helical fragment versus supercoiled helical bundle upon interaction with CNT have been investigated using classical molecular dynamics (MD) simulation. Results reveal that the disruption in the helical motif on interaction with CNT is directly proportional to the length of the helix. Also it is found that the shorter helix does not undergo noticeable changes in the helicity upon adsorption with CNT. On the other hand, helicity of longer peptides is considerably affected by its interaction with CNT. In contrast to the known fact that the stability of the helix increases with its length, the disruption in the helical peptide increases with its length upon its interaction with CNT. Comparison of results shows that structural changes in the isolated helical fragment are higher than that in supercoiled helix. In fact, helical chain in supercoiled bundle does not undergo significant changes in the helicity upon interaction with CNT. Both the length of the helical peptide and the inherent stability of the helical unit in the supercoiled helix influence the interaction pattern with the CNT. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 357–369, 2013.  相似文献   

13.
Consistent information about protein secretion in Gram-positive bacteria is essentially restricted to the model organism Bacillus subtilis. Among genome-sequenced clostridia, Clostridium acetobutylicum has been the most extensively studied from a physiological point of view and is the organism for which the largest variety of molecular biology tools have been developed. Following in silico analyses, both secreted proteins and protein secretion systems were identified. The Tat (Twin arginine translocation; TC #2.A.64) pathway and ABC (ATP binding cassette) protein exporters (TC #3.A.1.) could not be identified, but the Sec (secretion) pathway (TC #3.A.5) appears to be used prevalently. Similarly, a flagella export apparatus (FEA; TC #3.A.6.), holins (TC #1.E.), and an ESAT-6/WXG100 (early secreted antigen target of 6 kDa/proteins with a WXG motif of approximately 100 residues) secretion system were identified. Here, we report for the first time the identification of a fimbrilin protein exporter (FPE; TC #3.A.14) and a Tad (tight adherence) export apparatus in C. acetobutylicum. This investigation highlights the potential use of this saprophytic bacterium in biotechnological and biomedical applications as well as a model organism for studying protein secretion in pathogenic Gram-positive bacteria.  相似文献   

14.
Apolipoprotein (apo) A-I mediates many of the anti-atherogenic functions attributed to high density lipoprotein. Unfortunately, efforts toward a high resolution structure of full-length apoA-I have not been fruitful, although there have been successes with deletion mutants. Recently, a C-terminal truncation (apoA-IΔ185–243) was crystallized as a dimer. The structure showed two helical bundles connected by a long, curved pair of swapped helical domains. To compare this structure to that existing under solution conditions, we applied small angle x-ray scattering and isotope-assisted chemical cross-linking to apoA-IΔ185–243 in its dimeric and monomeric forms. For the dimer, we found evidence for the shared domains and aspects of the N-terminal bundles, but not the molecular curvature seen in the crystal. We also found that the N-terminal bundles equilibrate between open and closed states. Interestingly, this movement is one of the transitions proposed during lipid binding. The monomer was consistent with a model in which the long shared helix doubles back onto the helical bundle. Combined with the crystal structure, these data offer an important starting point to understand the molecular details of high density lipoprotein biogenesis.  相似文献   

15.
16.
The myogenic determination factor MyoD is a member of the basic-helix-loop-helix (bHLH) protein family. A 68-residue fragment of MyoD encompassing the entire bHLH region (MyoD-bHLH) is sufficient for protein dimerization, sequence-specific DNA binding in vitro, and conversion of fibroblasts into muscle cells. The circular dichroism spectrum of MyoD-bHLH indicates the presence of significant alpha-helical secondary structure; however, the NMR spectrum lacks features of a well-defined tertiary structure. There is a naturally occurring cysteine at residue 135 in mouse MyoD that when oxidized to a disulfide induces MyoD-bHLH to form a symmetric homodimer with a defined tertiary structure as judged by sedimentation equilibrium ultracentrifugation and NMR spectroscopy. Oxidized MyoD-bHLH retains sequence-specific DNA-binding activity, albeit with an apparent 100-1000-fold decrease in affinity. Here, we report the structural characterization of the oxidized MyoD-bHLH homodimer by NMR spectroscopy. Our findings indicate that the basic region is unstructured and flexible, while the HLH region consists of two alpha-helices of unequal length connected by an as yet undetermined loop structure. Qualitative examination of interhelical NOEs suggests several potential arrangements for the two helix 1/helix 2 pairs in the symmetric oxidized dimer. These arrangements were evaluated for whether they could incorporate the disulfide bond, satisfy loop length constraints, and juxtapose the two basic regions. Only a model that aligns helix 1 parallel to helix 1' and antiparallel to helix 2 was consistent with all constraints. Thus, an antiparallel four-helix bundle topology is proposed for the symmetric dimer. This topology is hypothesized to serve as a general model for other bHLH protein domains.  相似文献   

17.
Mycobacterium tuberculosis EsxA and EsxB proteins are founding members of the WXG100 (WXG) protein family, characterized by their small size (∼100 amino acids) and conserved WXG amino acid motif. M. tuberculosis contains 11 tandem pairs of WXG genes; each gene pair is thought to be coexpressed to form a heterodimer. The precise role of these proteins in the biology of M. tuberculosis is unknown, but several of the heterodimers are secreted, which is important for virulence. However, WXG proteins are not simply virulence factors, since nonpathogenic mycobacteria also express and secrete these proteins. Here we show that three WXG heterodimers have structures and properties similar to those of the M. tuberculosis EsxBA (MtbEsxBA) heterodimer, regardless of their host species and apparent biological function. Biophysical studies indicate that the WXG proteins from M. tuberculosis (EsxG and EsxH), Mycobacterium smegmatis (EsxA and EsxB), and Corynebacterium diphtheriae (EsxA and EsxB) are heterodimers and fold into a predominately α-helical structure. An in vivo protein-protein interaction assay was modified to identify proteins that interact specifically with the native WXG100 heterodimer. MtbEsxA and MtbEsxB were fused into a single polypeptide, MtbEsxBA, to create a biomimetic bait for the native heterodimer. The MtbEsxBA bait showed specific association with several esx-1-encoded proteins and EspA, a virulence protein secreted by ESX-1. The MtbEsxBA fusion peptide was also utilized to identify residues in both EsxA and EsxB that are important for establishing protein interactions with Rv3871 and EspA. Together, the results are consistent with a model in which WXG proteins perform similar biological roles in virulent and nonvirulent species.The WXG100 (WXG; pfam06013) proteins are a class of effector molecules found in gram-positive bacteria (26). WXG proteins are characterized by their small size (∼ 100 amino acids [aa]) and the presence of a WXG motif, or its structural equivalent, near the midpoint of their primary sequence (26). Bioinformatic analyses have shown that one WXG gene is frequently positioned near, or directly adjacent to, a second, related, WXG gene (14). The gene pairs characterized thus far encode proteins that associate to form 1:1 complexes (20, 31). The WXG proteins were once thought to be restricted to the mycobacteria, but homologues have now been detected in species of Bacillus, Listeria, Streptomyces, and Corynebacterium, among others, and the Pfam server lists >89 distinct WXG-encoding species and strains (10).The identification of WXG proteins encoded by the pathogens Mycobacterium tuberculosis (15, 17, 19, 36), Mycobacterium marinum (13), and Staphylococcus aureus (5) has created significant interest in the proteins'' biological activity. Nevertheless, these proteins are not a priori virulence factors (39), since organisms expressing WXG proteins are not necessarily capable of causing disease. In addition to pathogenesis, the WXG proteins are associated with processes as disparate as zinc homeostasis (24) and conjugal gene transfer (9, 11). A model for the mechanism(s) of action of these proteins that includes an explanation for their apparent functional versatility is at present lacking. One reason for this ambiguity may be the near-absence of studies comparing virulence-associated and non-virulence-associated WXG proteins, which is a goal of this study.The M. tuberculosis secreted virulence factors EsxA (also called ESAT-6, or Rv3875) and EsxB (CFP-10; Rv3874) are the founding members of the WXG family, and M. tuberculosis derivatives defective in EsxA and EsxB are attenuated (17, 19, 36). The results of biochemical and structural studies indicate that EsxA and EsxB form a tightly associated heterodimer, EsxAB (25, 30, 31). The M. tuberculosis genome contains 23 WXG genes, named esxA to esxW, and the majority of these are expressed as tandem pairs (26). Of the pairs, five, including esxA and esxB, are contained within larger, highly conserved genetic loci, called esx-1 to esx-5 (Fig. (Fig.1).1). These loci have been the focus of much research, since mutants of esx-1 are attenuated, and esx-3 and esx-5 are necessary for in vitro growth of M. tuberculosis and M. marinum (1, 2, 32-34). The esx loci are proposed to encode secretory apparatuses dedicated to the secretion of their cognate WXG proteins (1).Open in a separate windowFIG. 1.Genetic map of the esx-1 loci of M. tuberculosis and M. smegmatis. The M. tuberculosis esx-1 genes discussed in the text are indicated by white arrows, as are their M. smegmatis homologues. The M. tuberculosis map also shows the Rv3884 and Rv3885 genes, which are part of the adjacent esx-2 locus. pRD1-2F9 is the cosmid that was used to create an esx-1-specific prey library. pRD1-2F9 includes the Rv3860 to Rv3885 genes, thus encompassing the entire esx-1 locus and part of esx-2. The four genes below the M. smegmatis map include defective insertion sequences (ISs) inserted into MSMEG_0075.Although the majority of genes required for the secretion of the EsxAB heterodimer are encoded from within esx-1, additional non-esx-1 genes are necessary for secretion. In particular, one M. tuberculosis locus, esp, encodes three proteins essential for EsxAB secretion (12, 23). The first gene of the operon encodes a protein, EspA, that is cosecreted with EsxAB via the ESX-1 apparatus (12). Although no direct physical evidence has been presented, the inference from the interdependent cosecretion of the three proteins is that they likely form a complex, which is secreted by the ESX-1 apparatus. In this paper we provide the first genetic evidence that these three proteins interact.The lack of a genetic assay for the study of ESX-1 activity in M. tuberculosis has hindered the identification of all of the protein components of the apparatus and all of the substrates that it secretes. However, the fast-growing, nonpathogenic organism Mycobacterium smegmatis has a conserved esx-1 locus that is essential for DNA transfer, and we have exploited this requirement for genetic studies (9). These analyses have shown that the M. smegmatis ESX-1 apparatus is functionally related to that of M. tuberculosis (11) and that M. smegmatis encodes non-esx-1 genes necessary for the secretion of the EsxAB heterodimer, including orthologues of EspA (9).Here we have examined whether the secondary and quaternary structures of M. tuberculosis EsxA and EsxB are prototypical for other, functionally distinct and evolutionarily distant members of the WXG family (Fig. (Fig.2A).2A). Comparisons were made to homologues encoded by M. smegmatis (esxA and esxB), Corynebacterium diphtheriae (esxA and esxB), and an additional non-virulence-related pair from M. tuberculosis (esxG and esxH, encoded from the esx-3 locus). Structural characterization of these proteins establishes that their secondary and quaternary structures are conserved, with each pair folding into a predominately α-helical structure and associating to form a heterodimer. We next devised and tested the utility of a novel strategy to identify proteins that interact specifically with these WXG heterodimers. This involved fusing EsxB and EsxA to create a biomimetic heterodimer for use in mycobacterial two-hybrid experiments. We reasoned that the use of this unique bait would allow the detection of proteins that interact with both components of the native heterodimer and that these proteins would normally go undetected in the conventional, single-protein two-hybrid screens. Indeed, using this approach, we identified novel protein partners of M. tuberculosis EsxBA (MtbEsxBA). We show for the first time that EspA proteins from M. tuberculosis and M. smegmatis interact with the EsxBA heterodimer (from both species) but not with EsxA or EsxB alone. We also provide evidence for promiscuity between the different M. tuberculosis ESX apparatuses by showing that EsxBA, encoded by esx-1, can interact with Esx proteins encoded by esx-2. Taken together, our studies suggest that the WXG proteins possess similar structures and properties, regardless of the host species and the apparent biological function.Open in a separate windowFIG. 2.Sequence alignment of WXG proteins characterized in this study and the strategy used to facilitate their expression. (A) Amino acid sequence alignment of four pairs of WXG proteins. Conserved sequences are in boldface, and the signature WXG motif is indicated with asterisks. Three residues in Rv3874 (EsxB) and a single residue in Rv3875 (EsxA) are underlined; they are the sites of amino acid substitutions discussed in the text that abrogate Rv3871 interactions. (B) (Bottom) Scheme for coexpression of tandemly arranged WXG genes. (Top) The ribbon cartoon (30) shows how the two monomers are freed from the expressed fusion protein by thrombin cleavage (scissors) at the peptide tether (balls and sticks).  相似文献   

18.
For over 2 decades, continuous efforts to organize the jungle of available protein structures have been underway. Although a number of discrepancies between different classification approaches for soluble proteins have been reported, the classification of membrane proteins has so far not been comparatively studied because of the limited amount of available structural data. Here, we present an analysis of α‐helical membrane protein classification in the SCOP and CATH databases. In the current set of 63 α‐helical membrane protein chains having between 1 and 13 transmembrane helices, we observed a number of differently classified proteins both regarding their domain and fold assignment. The majority of all discrepancies affect single transmembrane helix, two helix hairpin, and four helix bundle domains, while domains with more than five helices are mostly classified consistently between SCOP and CATH. It thus appears that the structural constraints imposed by the lipid bilayer complicate the classification of membrane proteins with only few membrane‐spanning regions. This problem seems to be specific for membrane proteins as soluble four helix bundles, not restrained by the membrane, are more consistently classified by SCOP and CATH. Our findings indicate that the structural space of small membrane helix bundles is highly continuous such that even minor differences in individual classification procedures may lead to a significantly different classification. Membrane proteins with few helices and limited structural diversity only seem to be reasonably classifiable if the definition of a fold is adapted to include more fine‐grained structural features such as helix–helix interactions and reentrant regions. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Lipase LipA from Serratia marcescens is a 613-amino acid enzyme belonging to family I.3 of lipolytic enzymes that has an important biotechnological application in the production of a chiral precursor for the coronary vasodilator diltiazem. Like other family I.3 lipases, LipA is secreted by Gram-negative bacteria via a type I secretion system and possesses 13 copies of a calcium binding tandem repeat motif, GGXGXDXUX (U, hydrophobic amino acids), in the C-terminal part of the polypeptide chain. The 1.8-A crystal structure of LipA reveals a close relation to eukaryotic lipases, whereas family I.1 and I.2 enzymes appear to be more distantly related. Interestingly, the structure shows for the N-terminal lipase domain a variation on the canonical alpha/beta hydrolase fold in an open conformation, where the putative lid helix is anchored by a Ca(2+) ion essential for activity. Another novel feature observed in this lipase structure is the presence of a helical hairpin additional to the putative lid helix that exposes a hydrophobic surface to the aqueous medium and might function as an additional lid. The tandem repeats form two separated parallel beta-roll domains that pack tightly against each other. Variations of the consensus sequence of the tandem repeats within the second beta-roll result in an asymmetric Ca(2+) binding on only one side of the roll. The analysis of the properties of the beta-roll domains suggests an intramolecular chaperone function.  相似文献   

20.
Talin is an adaptor protein that couples integrins to F-actin. Structural studies show that the N-terminal talin head contains an atypical FERM domain, whereas the N- and C-terminal parts of the talin rod include a series of α-helical bundles. However, determining the structure of the central part of the rod has proved problematic. Residues 1359–1659 are homologous to the MESDc1 gene product, and we therefore expressed this region of talin in Escherichia coli. The crystal structure shows a unique fold comprised of a 5- and 4-helix bundle. The 5-helix bundle is composed of nonsequential helices due to insertion of the 4-helix bundle into the loop at the C terminus of helix α3. The linker connecting the bundles forms a two-stranded anti-parallel β-sheet likely limiting the relative movement of the two bundles. Because the 5-helix bundle contains the N and C termini of this module, we propose that it is linked by short loops to adjacent bundles, whereas the 4-helix bundle protrudes from the rod. This suggests the 4-helix bundle has a unique role, and its pI (7.8) is higher than other rod domains. Both helical bundles contain vinculin-binding sites but that in the isolated 5-helix bundle is cryptic, whereas that in the isolated 4-helix bundle is constitutively active. In contrast, both bundles are required for actin binding. Finally, we show that the MESDc1 protein, which is predicted to have a similar fold, is a novel actin-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号