首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
LacI and PurR are highly homologous proteins. Their functional units are homodimers, with an N-terminal DNA binding domain that comprises the helix-turn-helix (HTH), N-linker, and hinge regions from both monomers. Hinge structural changes are known to occur upon DNA dissociation but are difficult to monitor experimentally. The initial steps of hinge unfolding were therefore examined using molecular dynamics simulations, utilizing a truncated, chimeric protein comprising the LacI HTH/N-linker and PurR hinge. A terminal Gly-Cys-Gly was added to allow "dimerization" through disulfide bond formation. Simulations indicate that differences in LacI and PurR hinge primary sequence affect the quaternary structure of the hinge x hinge' interface. However, these alternate hinge orientations would be sterically restricted by the core domain. These results prompted detailed comparison of recently available DNA-bound structures for LacI and truncated LacI(1-62) with the PurR structure. Examination revealed that different N-linker and hinge contacts to the core domain of the partner monomer (which binds effector molecule) affect the juxtapositions of the HTH, N-linker, and hinge regions in the DNA binding domain. In addition, the two full-length repressors exhibit significant differences in the interactions between the core and the C-linker connection to the DNA binding domain. Both linkers and the hinge have been implicated in the allosteric response of these repressors. Intriguingly, one functional difference between these two proteins is that they exhibit opposite allosteric response to effector. Simulations and observed structural distinctions are correlated with mutational analysis and sequence information from the LacI/GalR family to formulate a mechanism for fine-tuning individual repressor function.  相似文献   

2.
3.
Escherichia coli cyclic AMP Receptor Protein (CRP) undergoes conformational changes with cAMP binding and allosterically promotes CRP to bind specifically to the DNA. In that, the structural and dynamic properties of apo CRP prior to cAMP binding are of interest for the comprehension of the activation mechanism. Here, the dynamics of apo CRP monomer/dimer and holo CRP dimer were studied by Molecular Dynamics (MD) simulations and Gaussian Network Model (GNM). The interplay of the inter-domain hinge with the cAMP and DNA binding domains are pre-disposed in the apo state as a conformational switch in the CRP''s allosteric communication mechanism. The hinge at L134-D138 displaying intra- and inter-subunit coupled fluctuations with the cAMP and DNA binding domains leads to the emergence of stronger coupled fluctuations between the two domains and describes an on state. The flexible regions at K52-E58, P154/D155 and I175 maintain the dynamic coupling of the two domains. With a shift in the inter-domain hinge position towards the N terminus, nevertheless, the latter correlations between the domains loosen and become disordered; L134-D138 dynamically interacts only with the cAMP and DNA binding domains of its own subunit, and an off state is assumed. We present a mechanistic view on how the structural dynamic units are hierarchically built for the allosteric functional mechanism; from apo CRP monomer to apo-to-holo CRP dimers.  相似文献   

4.
In the current study, we have combined molecular simulations and energetic analysis with dynamics-based network modeling and perturbation response scanning to determine molecular signatures of mutational hotspot residues in the p53, PTEN, and SMAD4 tumor suppressor proteins. By examining structure, energetics and dynamics of these proteins, we have shown that inactivating mutations preferentially target a group of structurally stable residues that play a fundamental role in global propagation of dynamic fluctuations and mediating allosteric interaction networks. Through integration of long-range perturbation dynamics and network-based approaches, we have quantified allosteric potential of residues in the studied proteins. The results have revealed that mutational hotspot sites often correspond to high centrality mediating centers of the residue interaction networks that are responsible for coordination of global dynamic changes and allosteric signaling. Our findings have also suggested that structurally stable mutational hotpots can act as major effectors of allosteric interactions and mutations in these positions are typically associated with severe phenotype. Modeling of shortest inter-residue pathways has shown that mutational hotspot sites can also serve as key mediating bridges of allosteric communication in the p53 and PTEN protein structures. Multiple regression models have indicated that functional significance of mutational hotspots can be strongly associated with the network signatures serving as robust predictors of critical regulatory positions responsible for loss-of-function phenotype. The results of this computational investigation are compared with the experimental studies and reveal molecular signatures of mutational hotspots, providing a plausible rationale for explaining and localizing disease-causing mutations in tumor suppressor genes.  相似文献   

5.
6.
Allosteric interactions of the molecular chaperone Hsp90 with a large cohort of cochaperones and client proteins allow for molecular communication and event coupling in signal transduction networks. The integration of cochaperones into the Hsp90 system is driven by the regulatory mechanisms that modulate the progression of the ATPase cycle and control the recruitment of the Hsp90 clientele. In this work, we report the results of computational modeling of allosteric regulation in the Hsp90 complexes with the cochaperones p23 and Aha1. By integrating protein docking, biophysical simulations, modeling of allosteric communications, protein structure network analysis and the energy landscape theory we have investigated dynamics and stability of the Hsp90-p23 and Hsp90-Aha1 interactions in direct comparison with the extensive body of structural and functional experiments. The results have revealed that functional dynamics and allosteric interactions of Hsp90 can be selectively modulated by these cochaperones via specific targeting of the regulatory hinge regions that could restrict collective motions and stabilize specific chaperone conformations. The protein structure network parameters have quantified the effects of cochaperones on conformational stability of the Hsp90 complexes and identified dynamically stable communities of residues that can contribute to the strengthening of allosteric interactions. According to our results, p23-mediated changes in the Hsp90 interactions may provide “molecular brakes” that could slow down an efficient transmission of the inter-domain allosteric signals, consistent with the functional role of p23 in partially inhibiting the ATPase cycle. Unlike p23, Aha1-mediated acceleration of the Hsp90-ATPase cycle may be achieved via modulation of the equilibrium motions that facilitate allosteric changes favoring a closed dimerized form of Hsp90. The results of our study have shown that Aha1 and p23 can modulate the Hsp90-ATPase activity and direct the chaperone cycle by exerting the precise control over structural stability, global movements and allosteric communications in Hsp90.  相似文献   

7.
The allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs) and is directly linked to pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions. One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS) that couples elastic network models with linear response theory (LRT) to predict key residues in allosteric transitions of the two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain). With PRS, we first identify the residues that give the highest mean square fluctuation response upon perturbing the binding sites. Strikingly, we observe that the residues with the highest mean square fluctuation response agree with experimentally determined residues involved in allosteric transitions. Second, we construct the allosteric pathways by linking the residues giving the same directional response upon perturbation of the binding sites. The predicted intramolecular communication pathways reveal that PSD-95 and hPTP1E have different pathways through the dynamic coupling of different residue pairs. Moreover, our analysis provides a molecular understanding of experimentally observed hidden allostery of PSD-95. We show that removing the distal third alpha helix from the binding site alters the allosteric pathway and decreases the binding affinity. Overall, these results indicate that (i) dynamics plays a key role in allosteric regulations of PDZs, (ii) the local changes in the residue interactions can lead to significant changes in the dynamics of allosteric regulations, and (iii) this might be the mechanism that each PDZ uses to tailor their binding specificities regulation.  相似文献   

8.
Oligomerization is a functional requirement for many proteins. The interfacial interactions and the overall packing geometry of the individual monomers are viewed as important determinants of the thermodynamic stability and allosteric regulation of oligomers. The present study focuses on the role of the interfacial interactions and overall contact topology in the dynamic features acquired in the oligomeric state. To this aim, the collective dynamics of enzymes belonging to the amino acid kinase family both in dimeric and hexameric forms are examined by means of an elastic network model, and the softest collective motions (i.e., lowest frequency or global modes of motions) favored by the overall architecture are analyzed. Notably, the lowest-frequency modes accessible to the individual subunits in the absence of multimerization are conserved to a large extent in the oligomer, suggesting that the oligomer takes advantage of the intrinsic dynamics of the individual monomers. At the same time, oligomerization stiffens the interfacial regions of the monomers and confers new cooperative modes that exploit the rigid-body translational and rotational degrees of freedom of the intact monomers. The present study sheds light on the mechanism of cooperative inhibition of hexameric N-acetyl-L-glutamate kinase by arginine and on the allosteric regulation of UMP kinases. It also highlights the significance of the particular quaternary design in selectively determining the oligomer dynamics congruent with required ligand-binding and allosteric activities.  相似文献   

9.
Allostery is a key biological control mechanism, and dynamic information flow provides a perspective to describe allosteric interactions in causal relationships. Here, as a novel implementation of the Gaussian Network Model (GNM) based Transfer Entropy (TE) calculations, we show that the dissection of dynamic information into subsets of slow dynamic modes discloses different layers of multi-directional allosteric pathways inherent in a given protein structure. In these subsets of slow modes, the degree of collectivity (Col) in the information transfer of residues with their TE values (TECol score) identifies distinct residues as powerful effectors, global information sources; showing themselves with a high dynamic capacity to collectively disseminate information to others. As exemplified on aspartate transcarbamoylase (ATCase), Na+/K+-adenosine triphosphatase (Na+/K+-ATPase), and human transient receptor potential melastatin 2 (TRPM2) along with a dataset of 20 proteins, these specific residues are associated with known active and allosteric sites. These information source residues, which collectively control others and lead allosteric communication pathways, hint at plausible binding sites for structure-based rational drug design.  相似文献   

10.
Despite significant efforts toward understanding the molecular basis of allosteric communication, the mechanisms by which local energetic and conformational changes cooperatively diffuse from ligand-binding sites to distal regions across the 3-dimensional structure of allosteric proteins remain to be established. Recent experimental and theoretical evidence supports the view that allosteric communication is facilitated by the intrinsic ability of the biomolecules to undergo collective changes in structure, triggered by ligand binding. Two groups of studies recently proved to provide insights into such intrinsic, structure-induced effects: elastic network models that permit us to visualize the cooperative changes in conformation that are most readily accessible near native state conditions, and information-theoretic approaches that elucidate the most efficient pathways of signal transmission favored by the overall architecture. Using a combination of these two approaches, we highlight, by way of application to the bacterial chaperonin complex GroEL-GroES, how the most cooperative modes of motion play a role in mediating the propagation of allosteric signals. A functional coupling between the global dynamics sampled under equilibrium conditions and the signal transduction pathways inherently favored by network topology appears to control allosteric effects.  相似文献   

11.
Clarkson MW  Gilmore SA  Edgell MH  Lee AL 《Biochemistry》2006,45(25):7693-7699
Long-range intraprotein interactions give rise to many important protein behaviors. Understanding how energy is transduced through protein structures to either transmit a signal or elicit conformational changes is therefore a current challenge in structural biology. In an effort to understand such linkages, multiple V --> A mutations were made in the small globular protein eglin c. The physical responses, as mapped by NMR spin relaxation, residual dipolar couplings (RDCs), and scalar couplings, illustrate that the interior of this nonallosteric protein forms a dynamic network and that local perturbations are transmitted as dynamic and structural changes to distal sites as far as 16 A away. Two basic types of propagation responses were observed: contiguous pathways of enhanced (attenuated) dynamics with no change in structure; and dispersed (noncontiguous) changes in methyl rotation rates that appear to result from subtle deformation of backbone structure. In addition, energy transmission is found to be unidirectional. In one mutant, an allosteric conformational change of a side chain is seen in the context of a pathway of propagated changes in picosecond to nanosecond dynamics. The observation of so many long-range interactions in a small, rigid system lends experimental weight to the idea that all well-folded proteins inherently possess allosteric features [Gunasekaran et al. (2004) Proteins 57, 433-443], and that dynamics are a rich source of information for mapping and gaining mechanistic insight into communication pathways in individual proteins.  相似文献   

12.
The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90 interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We have found that cochaperone-induced conformational changes in Hsp90 may be determined by specific interaction networks that can inhibit or promote progression of the ATPase cycle and thus control the recruitment of client proteins.  相似文献   

13.
Information on protein dynamics has been usually inferred from spectroscopic studies of parts of the proteins, or indirectly from the comparison of the conformations assumed in the presence of different substrates or ligands. While molecular simulations also provide information on protein dynamics, they usually suffer from incomplete sampling of conformational space, and become prohibitively expensive when exploring the collective dynamics of large macromolecular structures. Here, we explore the dynamics of a well-studied allosteric protein, hemoglobin (Hb), to show that a simple mechanical model based on Gaussian fluctuations of residues can efficiently predict the transition between the tense (T, unliganded) and relaxed (R or R2, O(2) or CO-bound) forms of Hb. The passage from T into R2 is shown to be favored by the global mode of motion, which, in turn is driven by entropic effects. The major difference between the dynamics of the T and R2 forms is the loss of the hinge-bending role of alpha(1)-beta(2) (or alpha(2)-beta(1)) interfacial residues at alpha Phe36-His45 and beta Thr87-Asn102 in the R2 form, which implies a decreased cooperativity in the higher affinity (R2) form of Hb, consistent with many experimental studies. The involvement of the proximal histidine beta His92 in this hinge region suggests that the allosteric propagation of the local structural changes (induced upon O(2) binding) into global ones occur via hinge regions. This is the first demonstration that there is an intrinsic tendency of Hb to undergo T-->R2 transition, induced by purely elastic forces of entropic origin that are uniquely defined for the particular contact topology of the T form.  相似文献   

14.
15.
Phenylalanine hydroxylase (PAH) catalyzes the conversion of L-Phe to L-Tyr. Defects in PAH activity, caused by mutations in the human gene, result in the autosomal recessively inherited disease hyperphenylalaninemia. PAH activity is regulated by multiple factors, including phosphorylation and ligand binding. In particular, PAH displays positive cooperativity for L-Phe, which is proposed to bind the enzyme on an allosteric site in the N-terminal regulatory domain (RD), also classified as an ACT domain. This domain is found in several proteins and is able to bind amino acids. We used molecular dynamics simulations to obtain dynamical and structural insights into the isolated RD of PAH. Here we show that the principal motions involve conformational changes leading from an initial open to a final closed domain structure. The global intrinsic motions of the RD are correlated with exposure to solvent of a hydrophobic surface, which corresponds to the ligand binding-site of the ACT domain. Our results strongly suggest a relationship between the Phe-binding function and the overall dynamic behaviour of the enzyme. This relationship may be affected by structure-disturbing mutations. To elucidate the functional implications of the mutations, we investigated the structural effects on the dynamics of the human RD PAH induced by six missense hyperphenylalaninemia-causing mutations, namely p.G46S, p.F39C, p.F39L, p.I65S, p.I65T and p.I65V. These studies showed that the alterations in RD hydrophobic interactions induced by missense mutations could affect the functionality of the whole enzyme.  相似文献   

16.
Enzymes undergo a range of internal motions from local, active site fluctuations to large‐scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post‐translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus‐responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine.  相似文献   

17.
Dror Tobi 《Proteins》2016,84(2):267-277
The dynamics of the ligand‐binding domain (LBD) and the intact ionotropic glutamate receptor (iGluR) were studied using Gaussian Network Model (GNM) analysis. The dynamics of LBDs with various allosteric modulators is compared using a novel method of multiple alignment of GNM modes of motion. The analysis reveals that allosteric effectors change the dynamics of amino acids at the upper lobe interface of the LBD dimer as well as at the hinge region between the upper‐ and lower‐ lobes. For the intact glutamate receptor the analysis show that the clamshell‐like movement of the LBD upper and lower lobes is coupled to the bending of the trans‐membrane domain (TMD) helices which may open the channel pore. The results offer a new insight on the mechanism of action of allosteric modulators on the iGluR and support the notion of TMD helices bending as a possible mechanism for channel opening. In addition, the study validates the methodology of multiple GNM modes alignment as a useful tool to study allosteric effect and its relation to proteins dynamics. Proteins 2016; 84:267–277. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Knowledge of the structural basis of protein-protein interactions (PPI) is of fundamental importance for understanding the organization and functioning of biological networks and advancing the design of therapeutics which target PPI. Allosteric modulators play an important role in regulating such interactions by binding at site(s) orthogonal to the complex interface and altering the protein''s propensity for complex formation. In this work, we apply an approach recently developed by us for analyzing protein surfaces based on steered molecular dynamics simulation (SMD) to the study of the dynamic properties of functionally distinct conformations of a model protein, calmodulin (CaM), whose ability to interact with target proteins is regulated by the presence of the allosteric modulator Ca2+. Calmodulin is a regulatory protein that acts as an intracellular Ca2+ sensor to control a wide variety of cellular processes. We demonstrate that SMD analysis is capable of pinpointing CaM surfaces implicated in the recognition of both the allosteric modulator Ca2+ and target proteins. Our analysis of changes in the dynamic properties of the CaM backbone elicited by Ca2+ binding yielded new insights into the molecular mechanism of allosteric regulation of CaM-target interactions.  相似文献   

19.

Background

DNMT3A, as de novo DNA methyltransferase, is essential for regulating gene expression through cellular development and differentiation. The functions of DNMT3A rely on its oligomeric states and allosteric regulations between its catalytic domain and binding partners. Despite recent resolution of autoinhibitory and active DNMT3A/3L crystal structures, the mechanism of their functional motions and interdomain allostery in regulating the activity remains to be established.

Methods

The hybrid approach, comprising Elastic Network Models coupled with information theory, Protein Structure Network, and sequence evolution analysis was employed to investigate intrinsic dynamics and allosteric properties of DNMT3A resolved in autoinhibitory and active states.

Results

The conformational transition between two states is characterized by global motions, and the homo-dimer displays the similar dynamic properties as tetramer, acting as the basic functional unit. The hinge residues with restricted fluctuations are clustered at the dimer interface, which are predicted to enjoy remarkably efficient signal transduction properties. The allosteric pathways through the dimer interface are achieved by a cascade of interactions predominantly involving conserved and co-evolved residues.

Conclusions

Our results suggest that structural topology coupled with global motions indicates the structural origin of the functional transformation of DNMT3A. The comprehensive analysis further highlights the pivotal role of the dimer interface of DNMT3A both in defining the quaternary structure dynamics and establishing interdomain communications.

General significance

Understanding the global motions of DNMT3As not only provides mechanical insights into the functions of such molecular machines, but also reveals the mediators that determine their allosteric regulations.  相似文献   

20.
Allosteric communication between distant protein sites represents a key mechanism of biomolecular regulation and signal transduction. Compared to other processes such as protein folding, however, the dynamical evolution of allosteric transitions is still not well understood. As an example of allosteric coupling between distant protein regions, we consider the global open-closed motion of the two domains of T4 lysozyme, which is triggered by local motion in the hinge region. Combining extensive molecular dynamics simulations with a correlation analysis of interresidue contacts, we identify a network of interresidue distances that move in a concerted manner. The cooperative process originates from a cogwheel-like motion of the hydrophobic core in the hinge region, which constitutes an evolutionary conserved and flexible transmission network. Through rigid contacts and the protein backbone, the small local changes of the hydrophobic core are passed on to the distant terminal domains and lead to the emergence of a rare global conformational transition. As in an Ising-type model, the cooperativity of the allosteric transition can be explained via the interaction of local fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号