首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mixed culture was utilized to evaluate methyl tert-butyl ether (MTBE) removal under various conditions and to isolate a MTBE-degrading pure culture. The results showed that high MTBE removal efficiencies can be reached even in the presence of other substrates. The biodegradation sequence of the target compounds by the mixed culture, in order of removal rate, was toluene, ethyl benzene, p-xylene, benzene, MTBE, ethyl ether, tert-amyl methyl ether, and ethyl tert-butyl ether. In addition, preincubation of the mixed cultures with benzene and toluene showed no negative effect on MTBE removal; on the contrary, it could even increase the degradation rate of MTBE. The kinetic behavior showed that the maximum specific growth rate and the saturation constant of the mixed culture degrading MTBE are 0.000778 h−1 and 0.029 mg l−1, respectively. However, a high MTBE concentration (60 mg l−1) was slightly inhibiting to the growth of the mixed culture. The pure culture isolated from the enrichments in the bubble-air bioreactor showed better efficiency in MTBE removal than the mixed culture; whereas, tert-butyl alcohol was formed as a metabolic intermediate during the breakdown of MTBE.  相似文献   

2.
Fusarium solani degraded methyl tert-butyl ether (MTBE) and other oxygenated compounds from gasoline including tert-butyl alcohol (TBA). The maximum degradation rate of MTBE was 16 mg protein h and 46 mg/g protein h for TBA. The culture transformed 77% of the total carbon to 14CO2. The estimated yield for MTBE was 0.18 g dry wt/g MTBE.  相似文献   

3.
Methyl tert-butyl ether (MTBE) is a major gasoline oxygenate worldwide and a widespread groundwater contaminant. Natural attenuation of MTBE is of practical interest as a cost effective and non-invasive approach to remediation of contaminated sites. The effectiveness of MTBE attenuation can be difficult to demonstrate without verification of the occurrence of in-situ biodegradation. The aim of this paper is to discuss the recent progress in assessing in-situ biodegradation. In particular, compound-specific isotope analysis (CSIA), molecular techniques based on nucleic acids analysis and in-situ application of stable isotope labels will be discussed. Additionally, attenuation of tert-butyl alcohol (TBA) is of particular interest, as this compound tends to occur alongside MTBE introduced from the gasoline or produced by (mainly anaerobic) biodegradation of MTBE.  相似文献   

4.
The filamentous fungus Graphium sp. (ATCC 58400) co-metabolically oxidizes the gasoline oxygenate methyl tertiary butyl ether (MTBE) after growth on gaseous n-alkanes. In this study, the enzymology and regulation of MTBE oxidation by propane-grown mycelia of Graphium sp. were further investigated and defined. The trends observed during MTBE oxidation closely resembled those described for propane-grown cells of the bacterium Mycobacterium vaccae JOB5. Propane-grown mycelia initially oxidized the majority (∼95%) of MTBE to tertiary butyl formate (TBF), and this ester was biotically hydrolyzed to tertiary butyl alcohol (TBA). However, unlike M. vaccae JOB5, our results collectively suggest that propane-grown mycelia only have a limited capacity to degrade TBA. None of the products of MTBE exerted a physiologically relevant regulatory effect on the rate of MTBE or propane oxidation, and no significant effect of TBA was observed on the rate of TBF hydrolysis. Together, these results suggest that the regulatory effects of MTBE oxidation intermediates proposed for MTBE-degrading organisms such as Mycobacterium austroafricanum are not universally relevant mechanisms for MTBE-degrading organisms. The results of this study are discussed in terms of their impact on our understanding of the diversity of aerobic MTBE-degrading organisms and pathways and enzymes involved in these processes.  相似文献   

5.
Raynal M  Pruden A 《Biodegradation》2008,19(2):269-282
This study explores the effect of microbial consortium composition and reactor configuration on methyl tert-butyl ether (MTBE) biodegradation in the presence of benzene, toluene, ethylbenzene and p-xylenes(BTEX). MTBE biodegradation was monitored in the presence and absence of BTEX in duplicate batch reactors inoculated with distinct enrichment cultures: MTBE only (MO—originally enriched on MTBE) and/or MTBE BTEX (MB—originally enriched on MTBE and BTEX). The MO culture was also applied in a semi-batch reactor which received both MTBE and BTEX periodically in fresh medium after allowing cells to settle. The composition of the microbial consortia was explored using a combination of 16S rRNA gene cloning and quantitative polymerase chain reaction targeting the known MTBE-degrading strain PM1T. MTBE biodegradation was completely inhibited by BTEX in the batch reactors inoculated with the MB culture, and severely retarded in those inoculated with the MO culture (0.18 ± 0.04 mg/L-day). In the semi-batch reactor, however, the MTBE biodegradation rate in the presence of BTEX was almost three times as high as in the batch reactors (0.48 ± 0.2 mg/L-day), but still slower than MTBE biodegradation in the absence of BTEX in the MO-inoculated batch reactors (1.47 ± 0.47 mg/L-day). A long lag phase in MTBE biodegradation was observed in batch reactors inoculated with the MB culture (20 days), but the ultimate rate was comparable to the MO culture (0.95 ± 0.44 mg/L-day). Analysis of the cultures revealed that strain PM1T concentrations were lower in cultures that successfully biodegraded MTBE in the presence of BTEX. Also, other MTBE degraders, such as Leptothrix sp. and Hydrogenophaga sp. were found in these cultures. These results demonstrate that MTBE bioremediation in the presence of BTEX is feasible, and that culture composition and reactor configuration are key factors.  相似文献   

6.
Tertiary-Butyl alcohol (TBA), tertiary-butyl acetate™ (TBAc™) and methyl tertiary-butyl ether (MTBE) are chemicals to which the general public may be exposed either directly or as a result of their metabolism. There is little evidence that they are genotoxic; however, an earlier publication reported that significant results were obtained in Salmonella typhimurium TA102 mutagenicity tests with both TBA and MTBE. We now present results of testing these chemicals and TBAc™ against S. typhimurium strains in two laboratories. The emphasis was placed on testing with S. typhimurium TA102 and the use of both dimethyl sulphoxide and water as vehicles. Dose levels up to 5000 μg/plate were used and incubations were conducted in both the presence and absence of liver S9 prepared from male rats treated with either Arochlor 1254 or phenobarbital-β-naphthoflavone. The experiments were replicated, but in none of them was a significant mutagenic response observed, thus the current evidence indicates the TBA, TBAc™ and MTBE are not mutagenic in bacteria.  相似文献   

7.
Tert-butyl alcohol (TBA) is a metabolite of methyl tert-butyl ether and is itself possibly a fuel oxygenate. The goals of this study were to enrich and characterize TBA-degrading micro-organism(s) from a granular activated carbon (GAC) unit currently treating TBA. The results reported herein describe the first aerobic, TBA-degrading cultures derived from GAC. Strains KR1 and YZ1 were enriched from a GAC sample in a bicarbonate-buffered freshwater medium. TBA was degraded to 10% of the initial concentration (2–5 mM) within 5 days after initial inoculation and was continuously degraded within 1 day of each re-amendment. Resting cell suspensions mineralized 70 and 60% of the TBA within 24 h for KR1 and YZ1, respectively. Performance optimization with resting cells was conducted to investigate kinetics and the extent of TBA degradation as influenced by oxygen, pH and temperature. The most favorable temperature was 37°C; however, TBA was degraded from 4 to 60°C, indicating that the culture will sufficiently treat groundwater without heating. This is also the first report of psychrotolerant or thermotolerant TBA biodegradation. The pH range for TBA degradation ran from 5.0 to 9.0. Phylogenetic data using a partial 16S rRNA gene sequence (570 bases) suggest that the primary members of KR1 and YZ1 include uncharacterized organisms within the genera Hydrogenophaga, Caulobacter, and Pannonibacter.  相似文献   

8.
The fuel oxygenate, methyl tert-butyl ether (MTBE), although now widely banned or substituted, remains a persistent groundwater contaminant. Multidimensional compound-specific isotope analysis (CSIA) of carbon and hydrogen is being developed for determining the extent of MTBE loss due to biodegradation and can also potentially distinguish between different biodegradation pathways. Carbon and hydrogen isotopic fractionation factors were determined for MTBE degradation in aerobic and anaerobic laboratory cultures. The carbon isotopic enrichment factor (εC) for aerobic MTBE degradation by a bacterial consortium containing the aerobic MTBE-degrading bacterium, Variovorax paradoxus, was −1.1 ± 0.2‰ and the hydrogen isotope enrichment factor (εH) was −15 ± 2‰. This corresponds to an approximated lambda value (Λ = εH/εC) of 14. Carbon isotope enrichment factors for anaerobic MTBE-degrading enrichment cultures were −7.0 ± 0.2‰ and did not vary based on the original inoculum source, redox condition of the enrichment, or supplementation with syringic acid as a co-substrate. The hydrogen enrichment factors of cultures without syringic acid were insignificant, however a strong hydrogen enrichment factor of −41 ± 3‰ was observed for cultures which were fed syringic acid during MTBE degradation. The Λ = 6 obtained for NYsyr cultures might be diagnostic for the stimulation of anaerobic MTBE degradation by methoxylated compounds by an as yet unknown pathway and mechanism. The stable-isotope enrichment factors determined in this study will enhance the use of CSIA for monitoring anaerobic and aerobic MTBE biodegradation in situ.  相似文献   

9.
Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism.  相似文献   

10.
An aerobic mixed bacterial culture (CL-EMC-1) capable of utilizing methyl tert-butyl ether (MTBE) as the sole source of carbon and energy with a growth temperature range of 3 to 30°C and optimum of 18 to 22°C was enriched from activated sludge. Transient accumulation of tert-butanol (TBA) occurred during utilization of MTBE at temperatures from 3°C to 14°C, but TBA did not accumulate above 18°C. The culture utilized MTBE at a concentration of up to 1.5 g l−1 and TBA of up to 7 g l−1. The culture grew on MTBE at a pH range of 5 to 9, with an optimum pH of 6.5 to 7.1. The specific growth rate of the CL-EMC-1 culture on 0.1 g l−1 of MTBE at 22°C and pH 7.1 was 0.012 h−1, and the growth yield was 0.64 g (dry weight) g−1. A new MTBE-utilizing bacterium, Variovorax paradoxus strain CL-8, isolated from the mixed culture utilized MTBE, TBA, 2-hydroxy isobutyrate, lactate, methacrylate, and acetate as sole sources of carbon and energy but not 2-propanol, acetone, methanol, formaldehyde, or formate. Two other isolates, Hyphomicrobium facilis strain CL-2 and Methylobacterium extorquens strain CL-4, isolated from the mixed culture were able to grow on C1 compounds. The combined consortium could thus utilize all of the carbon of MTBE.  相似文献   

11.
A new Mycobacterium austroafricanum strain, IFP 2015, growing on methyl tert-butyl ether (MTBE) as a sole carbon source was isolated from an MTBE-degrading microcosm inoculated with drain water of an MTBE-supplemented gasoline storage tank. M. austroafricanum IFP 2015 was able to grow on tert-butyl formate, tert-butyl alcohol (TBA) and α-hydroxyisobutyrate. 2-Methyl-1,2-propanediol was identified as the TBA oxidation product in M. austroafricanum IFP 2015 and in the previously isolated M. austroafricanum IFP 2012. M. austroafricanum IFP 2015 also degraded ethyl tert-butyl ether more rapidly than M. austroafricanum IFP 2012. Specific primers designed to monitor the presence of M. austroafricanum strains could be used as molecular tools to detect similar strains in MTBE-contaminated environment.  相似文献   

12.
The toxic and growth inhibiting effects of methyl tert-butyl ether (MTBE) on the hydrocarbon-degrading Pseudomonas veronii T1/1 strain (isolated from gasoline contaminated soil) were studied. In our experiments, the MIC of MTBE was found to be 60 mM and the EC50 was 51.7 mM. In the concentration range 0–30 mM, MTBE did not significantly influence the growth parameters of this bacterium, but at concentrations over 30 mM MTBE exerted a significant growth inhibiting effect. In the presence of 70 mM MTBE, the specific growth rate dropped from 0.4731 to 0.1201 h−1, while the length of the lag period increased from 5.41 to 17.01 h and the yield coefficient declined from 0.2652 to 0.0718 g g−1. MTBE at 100 mM inhibited the growth of this strain completely. These findings may have important environmental implications, as high concentrations of MTBE could influence the efficiency of soil and groundwater bioremediation processes significantly.  相似文献   

13.
Methyl tert-butyl ether (MTBE) is a widespread groundwater contaminant that does not respond well to conventional treatment technologies. Growing evidence indicates that microbial communities indigenous to groundwater can degrade MTBE under aerobic and anaerobic conditions. Although pure cultures of microorganisms able to degrade or cometabolize MTBE have been reported, to date the specific organisms responsible for MTBE degradation in various field studies have not be identified. We report that DNA sequences almost identical (99% homology) to those of strain PM1, originally isolated from a biofilter in southern California, are naturally occurring in an MTBE-polluted aquifer in Vandenberg Air Force Base (VAFB), Lompoc, California. Cell densities of native PM1 (measured by TaqMan quantitative PCR) in VAFB groundwater samples ranged from below the detection limit (in anaerobic sites) to 103 to 104 cells/ml (in oxygen-amended sites). In groundwater from anaerobic or aerobic sites incubated in microcosms spiked with 10 μg of MTBE/liter, densities of native PM1 increased to approximately 105 cells/ml. Native PM1 densities also increased during incubation of VAFB sediments during MTBE degradation. In controlled field plots amended with oxygen, artificially increasing the MTBE concentration was followed by an increase in the in situ native PM1 cell density. This is the first reported relationship between in situ MTBE biodegradation and densities of MTBE-degrading bacteria by quantitative molecular methods.  相似文献   

14.
Conclusive evidence of methyl tert-butyl ether (MTBE) biotransformation and complete mineralization under aerobic conditions in environmental samples and enrichment cultures is reviewed, in addition to increasing evidence of MTBE biotransformation under anaerobic conditions. The metabolic pathway of MTBE appears to have two key intermediates, tert-butyl alcohol (TBA) and 2-hydroxy isobutyric acid (HIBA). The first enzyme in MTBE biodegradation has been identified as either a cytochrome P450 or a nonhemic monooxygenase in different isolates. Mixed and pure cultures of microorganisms have utilized MTBE as a sole carbon and energy source. Cometabolism of MTBE with n-alkanes at rates of 3.9 to 52 nmol/min/mg protein has been documented. The presence of co-contaminants such as BTEX has either not affected or seemed to limit MTBE biodegradation. Some studies of MTBE natural attenuation have attributed mass loss to biodegradation, while others have attributed mass loss to dilution and dispersion. Recent advances in the assessment of MTBE biodegradation have indicated the potential for natural anaerobic transformation of MTBE. In situ bioremediation of MTBE has been enhanced by adding air or oxygen, or by adding microorganisms and air or oxygen. Bioreactors have attained significant removal of MTBE from MTBE-contaminated influent. Despite historical concerns about the biodegradability of MTBE, several biological methods can now be used for MTBE remediation.  相似文献   

15.
In this study we have examined the effects of individual gasoline hydrocarbons (C5–10,12,14 n-alkanes, C5–8 isoalkanes, alicyclics [cyclopentane and methylcyclopentane] and BTEX compounds [benzene, toluene, ethylbenzene, m-, o-, and p-xylene]) on cometabolism of methyl tertiary butyl ether (MTBE) and tertiary butyl alcohol (TBA) by Mycobacterium austroafricanum JOB5. All of the alkanes tested supported growth and both MTBE and TBA oxidation. Growth on C5–8 n-alkanes and isoalkanes was inhibited by acetylene whereas growth on longer chain n-alkanes was largely unaffected by this gas. However, oxidation of both MTBE and TBA by resting cells was consistently inhibited by acetylene, irrespective of the alkane used as growth-supporting substrate. A model involving two separate but co-expressed alkane-oxidizing enzyme systems is proposed to account for these observations. Cyclopentane, methylcyclopentane, benzene and ethylbenzene did not support growth but these compounds all inhibited MTBE and TBA oxidation by alkane-grown cells. In the case of benzene, the inhibition was shown to be due to competitive interactions with both MTBE and TBA. Several aromatic compounds (p-xylene > toluene > m-xylene) did support growth and cells previously grown on these substrates also oxidized MTBE and TBA. Low concentrations of toluene (<10 μM) stimulated MTBE and TBA oxidation by alkane-grown cells whereas higher concentrations were inhibitory. The effects of acetylene suggest strain JOB5 also has two distinct toluene-oxidizing activities. These results have been discussed in terms of their impact on our understanding of MTBE and TBA cometabolism and the enzymes involved in these processes in mycobacteria and other bacteria.  相似文献   

16.
An efficient system to regenerate shoots on excised leaves of greenhouse-grown wild lowbush blueberry (Vaccinium angustifolium Ait.) was developed in vitro. The effect of thidiazuron (TDZ) on adventitious bud and shoot formation from apical, medial, and basal segments of the leaves was tested. Leaf cultures produced multiple buds and shoots with or without an intermediary callus phase on 2.3–4.5 μM TDZ within 6 wk of culture initiation. The greatest shoot regeneration came from young expanding basal leaf segments positioned with the adaxial side touching the culture medium and maintained for 2 wk in darkness. Callus development and shoot regeneration depended not only on the polarity of the explants but also on the genotype of the clone that supplied the explant material. TDZ-initiated cultures were transferred to medium containing 2.3–4.6 μM zeatin and produced usable shoots after one additional subculture. Elongated shoots were dipped in 39.4 mM indole-3-butyric acid powder and planted on a peat:perlite soilless medium at a ratio of 3:2 (v/v), which yielded an 80–90% rooting efficiency. The plantlets were acclimatized and eventually established in the greenhouse with 75–85% survival.  相似文献   

17.
Methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) are major soil contaminants, and they have been actively investigated for their toxic effects on living organisms in soil ecosystems. Although previous studies have been used as tools to evaluate the health of soil, they have been limited in scope and ability to analyze the overall microbial activity. In the present study, the effects of MTBE and TBA on the activity of soil exoenzymes including urease, acid phosphatase, arylsulfatase, β-glucosidase, dehydrogenase, and fluorescein diacetate hydrolase, which are involved in nutrient cycles and overall microbial activities, were investigated. Soil samples were treated with 0–2% of MTBE and TBA solutions, and the comparative effects and combined effects on quantity of active soil exoenzymes were determined. The activity of six exoenzymes exposed solely to MTBE and TBA did not significantly change with dose concentration or exposure time, but did show significant changes when exposed to high concentrations of MTBE and TBA combined, with dehydrogenase being the most affected. Therefore, we proposed dehydrogenase as a potential biomarker to assess the risk of co-contamination of MTBE and TBA.  相似文献   

18.
Methyl tertiary butyl ether (MTBE), an important gasoline additive, is a recalcitrant compound posing serious environmental health problems. In this study, MTBE-degrading bacteria were enriched from five environmental samples. Enrichments from Stewart Lake sediments and an MTBE contaminated soil displayed the highest rate of MTBE removal; 29.6 and 27.8% respectively, in 28 days. A total of 12 bacterial monocultures isolated from enrichment cultures were screened for MTBE degradation in liquid cultures. In a nutrient-limited medium containing MTBE as the sole source of carbon and energy, the highest rate of MTBE elimination was achieved with IsoSL1, which degraded 30.6 and 50.2% in 14 and 28 days, respectively. In a nutrient-rich medium containing ethanol and yeast extract, the bacterium (Iso2A) substantially removed MTBE (20.3 and 28.1% removal in 14 and 28 days, respectively). Based upon analysis of the 16s rRNA gene sequence and data base comparison, IsoSL1 and Iso2A were identified as a Streptomyces sp. and Sphingomonas sp., respectively. The Streptomyces sp. is a new genera of bacteria degrading MTBE and could be useful for MTBE bioremediation.  相似文献   

19.
Malaysia is the world’s leading producer of palm oil products that contribute US$ 7.5 billion in export revenues. Like any other agro-based industries, it generates waste that could be utilized as a source of organic nutrients for microalgae culture. Present investigation delves upon Isochrysis sp. culture in POME modified medium and its utilization as a supplement to Nanochloropsis sp. in rotifer cultures. The culture conditions were optimized using a 1 L photobioreactor (Temp: 23°C, illumination: 180 ∼ 200 μmol photons m−2s−1, n = 6) and scaled up to 10 L outdoor system (Temp: 26–29°C, illumination: 50 ∼ 180 μmol photons m−2s−1, n = 3). Algal growth rate in photobioreactor (μ = 0.0363 h−1) was 55% higher compared to outdoor culture (μ = 0.0163 h−1), but biomass production was 1.3 times higher in outdoor culture (Outdoor = 91.7 mg m−2d−1; Photobioreactor = 69 mg m−2d−1). Outdoor culture produced 18% higher lipid; while total fatty acids (FA) was not significantly affected by the change in culture systems as both cultures yield almost similar concentrations of fatty acids per gram of sample (photobioreactor = 119.17 mg g−1; outdoor culture = 104.50 mg g−1); however, outdoor cultured Isochrysis sp. had 26% more polyunsaturated fatty acids (PUFAs). Rotifers cultured in Isochrysis sp./ Nanochloropsis sp. (1:1, v/v) mixture gave similar growth rate as 100% Nanochoropsis sp. culture (μ = 0.40 d−1), but had 45% higher counts of rotifers with eggs (t = 7, maximum). The Isochrysis sp. culture successfully lowered the nitrate (46%) and orthophosphate (83%) during outdoor culture.  相似文献   

20.
Methyl tert-butyl ether (MTBE) contamination is widespread in aquifers near urban areas around the world. Since this synthetic fuel oxygenate is resistant to most physical methods of treating fuel-contaminated water, biodegradation may be a useful means of remediation. Currently, information on anaerobic MTBE degradation is scarce. Depletion has been observed in soil and sediment microcosms from a variety of locations and under several redox conditions, but the responsible organisms are unknown. We are studying anaerobic consortia, enriched from contaminated sediments for MTBE-utilizing microorganisms for over a decade. MTBE degradation occurred in the presence of other fuel components and was not affected by toluene, benzene, ethanol, methanol, or gasoline. Many aryl O-methyl ethers, such as syringic acid, that are O-demethylated by acetogenic bacteria, were also O-demethylated by the MTBE-utilizing enrichment cultures. The addition of these compounds as co-substrates increased the rate of MTBE degradation, offering a potentially useful method of stimulating the MTBE degradation rate in situ. Propyl iodide caused light-reversible inhibition of MTBE degradation, suggesting that the MTBE degradation process is corrinoid dependent. The anaerobic MTBE degradation process was not directly coupled to methanogenesis or sulfidogenesis and was inhibited by the bactericidal antibiotic, rifampicin. These results suggest that MTBE degradation is mediated by acetogenic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号