首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
During neuronal differentiation, axonal elongation is regulated by both external and intrinsic stimuli, including neurotropic factors, cytoskeleton dynamics, second messengers such as cyclic adenosine monophosphate (cAMP), and neuronal excitability. Chloride intracellular channel 1 (CLIC1) is a cytoplasmic hydrophilic protein that, upon stimulation, dimerizes and translocates to the plasma membrane, where it contributes to increase the membrane chloride conductance. Here, we investigated the expression of CLIC1 in primary hippocampal neurons and retinal ganglion cells (RGCs) and examined how the functional expression of CLIC1 specifically modulates neurite outgrowth of neonatal murine RGCs. Using a combination of electrophysiology and immunohistochemistry, we found that CLIC1 is expressed in hippocampal neurons and RGCs and that the chloride current mediated by CLIC1 is required for maintaining growth cone morphology and sustaining cAMP‐stimulated neurite elongation in dissociated immunopurified RGCs. In cultured RGCs, inhibition of CLIC1 ionic current through the pharmacological blocker IAA94 or a specific anti‐CLIC1 antibody directed against its extracellular domain prevents the neurite outgrowth induced by cAMP. CLIC1‐mediated chloride current, which results from an increased open probability of the channel, is detected only when cAMP is elevated. Inhibition of protein kinase A prevents such current. These results indicate that CLIC1 functional expression is regulated by cAMP via protein kinase A and is required for neurite outgrowth modulation during neuronal differentiation.

  相似文献   


2.
In this study we use dissociated cell cultures of the rat carotid body to investigate the adaptive capabilities of endogenous oxygen chemoreceptors, following chronic stimulation by various environmental factors. These oxygen chemoreceptors are catecholamine-containing glomus cells, which derive from the neural crest and resemble adrenal medullary chromaffin cells. Using double-label immunofluorescence, we found that chronic exposure of carotid body cultures to hypoxia (2% to 10% oxygen) caused a significant fraction of tyrosine hydroxylase-positive (TH+) glomus cells to acquire detectable immunoreactivity for growth-associated protein gap-43. The effect was dose-dependent and peaked around an oxygen tension of 6%, where approximately 30% of glomus cells were GAP-43 positive. Treatment with agents that elevate intracellular cyclic adenosine monophosphate (cAMP) (i.e., dibutyryl cAMP or forskolin) also markedly stimulated GAP-43 expression. Since hypoxia is known to increase cAMP levels in glomus cells, it is possible that the effect of hypoxia on GAP-43 expression was mediated, at least in part, by a cAMP-dependent pathway. Unlike hypoxia, however, cAMP analogs also stimulated neurofilament (NF 68 or NF 160 kD) expression and neurite outgrowth in glomus cells, and these properties were enhanced by retinoic acid. Nerve growth factor, which promotes neuronal differentiation in related crest-derived endocrine cells, and dibutyryl cGMP were ineffective. Thus, it appears that postnatal glomus cells are plastic and can express neuronal traits in vitro. However, since hypoxia stimulated GAP-43 expression, without promoting neurite outgrowth, it appears that the two processes can be uncoupled. We suggest that stimulation of GAP-43 by hypoxia may be important for other physiological processes, e.g., enhancing neurotransmitter release or sensitization of G-protein–coupled receptor transduction. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
The effect of cyclic AMP (cAMP) analogs and phosphodiesterase (PDE) inhibitors on neurite outgrowth was studied in explant cultures of olfactory neurons. Nasal pits from 5- or 6-day-old chick embryos were minced, explanted into culture dishes, and grown in a serum-free medium. One of the cyclic AMP analogs, dibutyryl cyclic AMP (dbcAMP) or 8-bromo-cyclic AMP (8-Br-cAMP), or one of the PDE inhibitors, theophylline or isobutylmethylxanthine (IBMX), was added to the culture medium. The explants were examined for neurite outgrowth after 2 days in vitro. Db-cAMP increased the number of explants expressing neurites by 25-35% over control cultures, whereas 8-Br-cAMP had essentially no effect at the same concentrations. Addition of dibutyryl cyclic GMP (dbcGMP) gave no increase in neurite outgrowth, thus indicating that the effect of enhancing neuritic growth is specific to cAMP and not cyclic nucleotides in general. The resulting increase in neurite outgrowth is due to the cyclic nucleotide component of dbcAMP, since both IBMX and theophylline, which elevate intracellular cAMP, also increased neurite outgrowth significantly. When forskolin was added to the culture medium, there was a trend to increased neurite outgrowth; this was significantly enhanced when a subthreshold concentration of theophylline was added in addition to the forskolin.  相似文献   

4.
The second messenger cAMP plays a pivotal role in neurite/axon growth and guidance, but its downstream pathways leading to the regulation of Rho GTPases, centrally implicated in neuronal morphogenesis, remain elusive. We examined spatiotemporal changes in Rac1 and Cdc42 activity and phosphatidylinositol 3,4,5-triphosphate (PIP3) concentration in dibutyryl cAMP (dbcAMP)-treated PC12D cells using Förster resonance energy transfer–based biosensors. During a 30-min incubation with dbcAMP, Rac1 activity gradually increased throughout the cells and remained at its maximal level. There was no change in PIP3 concentration. After a 5-h incubation with dbcAMP, Rac1 and Cdc42 were activated at the protruding tips of neurites without PIP3 accumulation. dbcAMP-induced Rac1 activation was principally mediated by protein kinase A (PKA) and Sif- and Tiam1-like exchange factor (STEF)/Tiam2. STEF depletion drastically reduced dbcAMP-induced neurite outgrowth. PKA phosphorylates STEF at three residues (Thr-749, Ser-782, Ser-1562); Thr-749 phosphorylation was critical for dbcAMP-induced Rac1 activation and neurite extension. During dbcAMP-induced neurite outgrowth, PKA activation at the plasma membrane became localized to neurite tips; this localization may contribute to local Rac1 activation at the same neurite tips. Considering the critical role of Rac1 in neuronal morphogenesis, the PKA—STEF–Rac1 pathway may play a crucial role in cytoskeletal regulation during neurite/axon outgrowth and guidance, which depend on cAMP signals.  相似文献   

5.
The possible functions of ornithine decarboxylase (ODC) and polyamines in the differetiation of mouse NB-15 neuroblastoma cells were investigated by examining the changes of these parameters in the differentiaton and nondifferentiating NB-15 cells over a 5-day culture period. Differentiation of NB-15 cells was induced by the addition of dibutyryl cyclic AMP and 3-isobutyl-1-methylxanthin (IBMX) to the growth medium and was monitored by neurite outgrowth, increase of acetylcholinesterase (AChE), and RI cAMP-binding protein. Plating of NB-15 cells in fresh serum-containing growth medium was accompanied by rapid growth and a marked increase of ODC activity, this early increase of ODC activity was attenuated, both in duration and in magnitude, in the differentiating cells. The spermidine content of the differentiating neuroblastoma cell was significantly lower than that of the nondifferentiating cells. In the fully differentiated neuroblastoma cells, the ODC activity and spermidine content were lower than that of the undifferentiated cells by approximately 15-fold and five-fold, respectively. Based on these results it is proposed that changes of polyamine metabolism may be of significance in the differentiation of mouse neuroblastoma cells.  相似文献   

6.
Nerve growth factor (NGF)-mediated neurite outgrowth in rat pheochromocytoma PC12 cells has been described to be synergistically potentiated by the simultaneous addition of dibutyryl cAMP. To elucidate further the role of cAMP in NGF-induced neurite outgrowth we have used the adenylate cyclase activator forskolin, cAMP, and a set of chemically modified cAMP analogues, including the adenosine cyclic 3',5'-phosphorothioates (cAMPS) (Rp)-cAMPS and (Sp)-cAMPS. These diastereomers have differential effects on the activation of cAMP-dependent protein kinases, i.e., (Sp)-cAMPS behaves as a cAMP agonist and (Rp)-cAMPS behaves as a cAMP antagonist. Our data show that the establishment of a neuritic network, as observed from PC12 cells treated with NGF alone, could not be induced by either forskolin, cAMP, or cAMP analogues alone. The presence of NGF in combination with forskolin or cAMP or its agonistic analogues potentiated the initiation of neurite outgrowth from PC12 cells. The (Sp)-cAMPS-induced stimulation of NGF-mediated process formation was successfully blocked by the (Rp)-cAMPS diastereomer. On the other hand, NGF-stimulated neurite outgrowth was not inhibited by the presence of the cAMP antagonist (Rp)-cAMPS. We conclude that the morphological differentiation of PC12 cells stimulated by NGF does not require cAMP as a second messenger. The constant increase of intracellular cAMP, caused by either forskolin or cAMP and the analogues, in combination with NGF, not only rapidly stimulated early neurite outgrowth but also exerted a maintaining effect on the neuronal network established by NGF.  相似文献   

7.
A single-step synthesis of 3-O-ethyl-l-ascorbic acid was performed without the induction of protecting groups. Sodium l-ascorbate reacted with ethyl bromide in DMSO to give 3-O-ethylascorbic acid in a yield of 51.0%. 3-O-Ethylascorbic acid enhanced dibutyryl cyclic AMP-induced neurite outgrowth in PC12 cells.  相似文献   

8.
Undifferentiated rat pheochromocytoma (PC12) cells extend neurites when cultured in the presence of nerve growth factor (NGF). Extracellular guanosine synergistically enhances NGF-dependent neurite outgrowth. We investigated the mechanism by which guanosine enhances NGF-dependent neurite outgrowth. Guanosine administration to PC12 cells significantly increased guanosine 3,5-cyclic monophosphate (cGMP) within the first 24 h whereas addition of soluble guanylate cyclase (sGC) inhibitors abolished guanosine-induced enhancement of NGF-dependent neurite outgrowth. sGC may be activated either by nitric oxide (NO) or by carbon monoxide (CO). -Nitro-l-arginine methyl ester (l-NAME), a non-isozyme selective inhibitor of nitric oxide synthase (NOS), had no effect on neurite outgrowth induced by guanosine. Neither nNOS (the constitutive isoform), nor iNOS (the inducible isoform) were expressed in undifferentiated PC12 cells, or under these treatment conditions. These data imply that NO does not mediate the neuritogenic effect of guanosine. Zinc protoporphyrin-IX, an inhibitor of heme oxygenase (HO), reduced guanosine-dependent neurite outgrowth but did not attenuate the effect of NGF. The addition of guanosine plus NGF significantly increased the expression of HO-1, the inducible isozyme of HO, after 12 h. These data demonstrate that guanosine enhances NGF-dependent neurite outgrowth by first activating the constitutive isozyme HO-2, and then by inducing the expression of HO-1, the enzymes responsible for CO synthesis, thus stimulating sGC and increasing intracellular cGMP.  相似文献   

9.
Morphological and biochemical parameters of neuroblastoma differentiation were assessed in 12 clonal derivatives of the N-18 mouse neuroblastoma cell line selected for their ouabain-resistant (ouar) property. When cultured in a normal growth medium, nine of the 12 ouar cell lines exhibited a more complex pattern of neurite outgrowth than the parental N-18 cells. The morphological pattern most frequently observed with the ouar cells was the extension of several branched processes per cell. This pattern of spontaneous neurite outgrowth in the ouar cell lines can be correlated with an increase in expression of the 47,000-dalton RI cyclic AMP (cAMP)-binding protein. The growth rate, intracellular level of cAMP, and acetylcholinesterase activity of the ouar cell lines were not significantly different from those of the parental N-18 neuroblastoma cells. Treatment of the parental and ouar neuroblastoma cell lines with 1 mM N6, O2-dibutyryl cAMP promoted an elaborate pattern of neurite outgrowth and marked increases in acetylcholinesterase and RI cAMP-binding activities. The distinctive pattern of differentiation phenotype exhibited by the ouar cells and the dibutyryl cAMP-induced differentiated neuroblastoma cell suggests that these two protocols yielded different degrees of differentiation. Furthermore, our results suggest a linkage of the biochemical events underlying ouabain resistance and expression of differentiation phenotypes in the mouse neuroblastoma cells.  相似文献   

10.
The outgrowth of neurites from rat PC12 cells stimulated by combined treatment of nerve growth factor (NGF) with cAMP is significantly more rapid and extensive than the outgrowth induced by either factor alone. We have compared the responses of PC12 cells under three different growth conditions, NGF alone, cAMP alone, and combined treatment, with respect to surface morphology, rapidity of neurite outgrowth, and stability of neurite microtubules, to understand the synergistic action of NGF and cAMP on PC12. Surface events at early times in these growth conditions varied, suggesting divergent pathways of action of NGF and cAMP. This suggestion is strongly supported by the finding that cells exposed to saturating levels of dibutyryl cAMP without substantial neurite outgrowth initiated neurites within 5 min of NGF. This response has been adopted as a convenient assay for NGF. Neurites that regenerated in the three growth conditions showed marked differences in stability to treatments that depolymerize microtubules. The results indicate that microtubules in cells treated with both NGF and cAMP are significantly more stable than in either growth factor alone. We suggest that a shift of the assembly equilibrium favoring tubulin assembly is a necessary prerequisite for the initiation of neurites by PC12.  相似文献   

11.
We have previously shown that amitriptyline, a tricyclic antidepressant, inhibited neurite outgrowth from chick embryonic cerebral explants, and that dibutyryl cyclic AMP, 3-isobutyl-1-methylxanthine, or theophylline can enhance neurite outgrowth from embryonic olfactory explants. In the present study, we examined the mechanism(s) underlying amitriptyline-mediated inhibition of neurite outgrowth by studying the effects of amitriptyline on adenylate cyclase activity and cyclic AMP levels. In cultured chick embryonic cerebral explants, dibutyryl cyclic AMP or theophylline, but not dibutyryl cyclic GMP, enhanced neurite outgrowth and partially reduced the inhibitory effects of amitriptyline on neurite outgrowth. Explants treated with amitriptyline for 2 days showed decreased cyclic AMP levels that significantly correlated with the degree of neurite outgrowth. Amitriptyline inhibited both basal and forskolin-stimulated adenylate cyclase activity in vitro, but only in the presence of GTP. Taken together, these data suggest that amitriptyline inhibits the activity of adenylate cyclase via a GTP-dependent mechanism, and that the subsequent decrease in cyclic AMP level may be involved in amitriptyline-mediated inhibition of neurite outgrowth.  相似文献   

12.
The sensing of the nutritional level of the body fluid is pivotal for maintaining homeostasis in animals. However, it is not yet understood how the cells detect nutritional levels. In the present study, we examined the function of umami taste receptor, which has a dimeric protein structure composed of Tas1r1 and Tas1r3, as amino acid sensor in the cells. We found that deprivation of amino acids induced neurite outgrowth in N1E-115 cells. The neurite outgrowth was inhibited by almost all of the amino acids tested. To investigate the involvement of the umami taste receptor, siRNA against each of Tas1r1 or Tas1r3 was administered, resulting in suppression of the inhibitory effects of amino acids on neurite outgrowth. In addition, inosine 5'-monophosphate, which potentiates the response to amino acids in the taste cells, enhanced the inhibitory effect of glutamine on neurite outgrowth. These results suggest that Tas1r1 + 3 functions as an amino acid sensor in N1E-115 cells. Because glutamine increased intracellular cAMP concentration, we investigated the involvement of the Gαs subunit of the heterotrimeric G protein in signal transduction. The treatments to inhibit the Gαs subunit significantly suppressed the increase of intracellular cAMP concentration induced by glutamine and the inhibitory effect of amino acids on neurite outgrowth. In addition, the reagents for increasing intracellular cAMP concentration inhibited neurite outgrowth induced by deprivation of amino acids. We concluded that Tas1r1 + 3 functions as an amino acid sensor and activates the intracellular signaling pathway through the Gαs subunit in N1E-115 cells.  相似文献   

13.

Background

Neurotrophins are important regulators for neural development and regeneration. Nerve growth factor (NGF) therapy has been tested in various models of neural injury and degeneration. However, whether NGF can reach target tissues and maintain effective concentration for a certain period of time remains uncertain. To facilitate neural regeneration, we investigate the possibility of combining NGF and electrical stimulation (ES) in promoting neurite outgrowth, an essential process during neural regeneration.

Methods

PC12 cells were seeded on collagen and indium tin oxide (ITO)-coated area on the transparent conductive devices. Cells were then subjected to the combination of ES and NGF treatment. Neurite outgrowth was compared.

Results

Our findings suggest that ES of 100 mV/mm together with NGF provides optimal effect on neurite outgrowth of PC12 cells. ES increases NGF-induced neurite length but reduces neurite branching, indicative of its primary effect on neurite elongation instead of initiation. One mechanism that ES enhances neurite outgrowth is through increasing NGF-induced phosphorylation of ERK1/2 (pERK1/2) and expression of Egr1 gene. ES has previously been demonstrated to increase the activity of protein kinase C (PKC). Our result indicates that activating PKC further increases NGF-induced pERK1/2 and thus neurite outgrowth.

Conclusion

It is likely that ES promotes NGF-induced neurite outgrowth through modulating the activity of ERK1/2.

General significance

Findings from this study suggest that combining ES and NGF provides a promising strategy for promoting neurite outgrowth.  相似文献   

14.
Calmodulin regulated spectrin‐associated protein 1 (CAMSAP1) is a vertebrate microtubule‐binding protein, and a representative of a family of cytoskeletal proteins that arose with animals. We reported previously that the central region of the protein, which contains no recognized functional domain, inhibited neurite outgrowth when over‐expressed in PC12 cells [Baines et al., Mol. Biol. Evol. 26 (2009), p. 2005]. The CKK domain (DUF1781) binds microtubules and defines the CAMSAP/ssp4 family of animal proteins (Baines et al. 2009). In the central region, three short well‐conserved regions are characteristic of CAMSAP‐family members. One of these, CAMSAP‐conserved region 1 (CC1), bound to both βIIΣ1‐spectrin and Ca2+/calmodulin in vitro. The binding of Ca2+/calmodulin inhibited spectrin binding. Transient expression of CC1 in PC12 cells inhibited neurite outgrowth. siRNA knockdown of CAMSAP1 inhibited neurite outgrowth in PC12 cells or primary cerebellar granule cells: this could be rescued in PC12 cells by wild‐type CAMSAP1‐enhanced green fluorescent protein, but not by a CC1 mutant. We conclude that CC1 represents a functional region of CAMSAP1, which links spectrin‐binding to neurite outgrowth.

  相似文献   


15.
cAMP induces neurite outgrowth in the rat pheochromocytoma cell line 12 (PC12). In particular, di-butyric cAMP (db-cAMP) induces a greater number of primary processes with shorter length than the number induced by nerve growth factor (NGF). db-cAMP up- and down-regulates GTP-RhoA levels in PC12 cells in a time-dependent manner. Tat-C3 toxin stimulates neurite outgrowth, whereas lysophosphatidic acid (LPA) and constitutively active (CA)-RhoA reduce neurite outgrowth, suggesting that RhoA inactivation is essential for the neurite outgrowth from PC12 cells stimulated by cAMP. In this study, the mechanism by which RhoA is inactivated in response to cAMP was examined. db-cAMP induces phosphorylation of RhoA and augments the binding of RhoA with Rho guanine nucleotide dissociation inhibitor (GDI). Moreover, RhoA (S188D) mimicking phosphorylated RhoA induces greater neurite outgrowth than RhoA (S188A) mimicking dephosphorylated form does. Additionally, db-cAMP increases GTP-Rap1 levels, and dominant negative (DN)-Rap1 and DN-Rap-dependent RhoGAP (ARAP3) block neurite outgrowth induced by db-cAMP. DN-p190RhoGAP and the Src inhibitor PP2 suppress neurite outgrowth, whereas transfection of c-Src and p190RhoGAP cDNAs synergistically stimulate neurite outgrowth. Taken together, RhoA is inactivated by phosphorylation of itself, by p190RhoGAP which is activated by Src, and by ARAP3 which is activated by Rap1 during neurite outgrowth from PC12 cells in response to db-cAMP.  相似文献   

16.
17.
LF Lin  SP Chiu  MJ Wu  PY Chen  JH Yen 《PloS one》2012,7(8):e43304
Luteolin (3',4',5,7-tetrahydroxyflavone), a food-derived flavonoid, has been reported to exert neurotrophic properties that are associated with its capacity to promote neuronal survival and neurite outgrowth. In this study, we report for the first time that luteolin induces the persistent expression of microRNA-132 (miR-132) in PC12 cells. The correlation between miR-132 knockdown and a decrease in luteolin-mediated neurite outgrowth may indicate a mechanistic link by which miR-132 functions as a mediator for neuritogenesis. Furthermore, we find that luteolin led to the phosphorylation and activation of cAMP response element binding protein (CREB), which is associated with the up-regulation of miR-132 and neurite outgrowth. Moreover, luteolin-induced CREB activation, miR-132 expression and neurite outgrowth were inhibited by adenylate cyclase, protein kinase A (PKA) and MAPK/ERK kinase 1/2 (MEK1/2) inhibitors but not by protein kinase C (PKC) or calcium/calmodulin-dependent protein kinase II (CaMK II) inhibitors. Consistently, we find that luteolin treatment increases ERK phosphorylation and PKA activity in PC12 cells. These results show that luteolin induces the up-regulation of miR-132, which serves as an important regulator for neurotrophic actions, mainly acting through the activation of cAMP/PKA- and ERK-dependent CREB signaling pathways in PC12 cells.  相似文献   

18.
Sialidase Neu4 is reported to be dominantly expressed in the mouse brain, but its functional significance is not fully understood. We previously demonstrated that sialidase Neu3, also rich in mouse brain, is up-regulated during neuronal differentiation with involvement in acceleration of neurite formation. To elucidate physiological functions of Neu4, as well as Neu3, we determined expression during mouse brain development by quantitative RT-PCR. Expression was relatively low in the embryonic stage and then rapidly increased at 3–14 days after birth, whereas Neu3 demonstrated high levels in the embryonic stage and down-regulation after birth. Murine Neu4 was found to possess two isoforms differing in expression levels, developmental pattern, and enzymatic character. Distinct from the human isoforms, the murine forms, to a different extent, both catalyzed the removal of sialic acid from gangliosides as well as glycoproteins, and one isoform seemed to act on polysialylated NCAM efficiently, despite the low activity toward ordinary substrates. In situ hybridization demonstrated Neu4 mRNA to be present mainly in the hippocampus in which NCAM is rich and decreases after birth. During retinoic acid-induced differentiation, Neu4 expression was down-regulated in Neuro2a cells. Overexpression of Neu4 resulted in suppression of neurite formation, and its knockdown showed the acceleration. Thin layer chromatography of the glycolipids from Neu4-transfected cells showed ganglioside compositions to be only slightly affected, although lectin blot analysis revealed increased binding to Ricinus communis agglutinin (RCA) lectin of a ∼95-kDa glycoprotein, which decreased with cell differentiation. These results suggest that mouse Neu4 plays an important regulatory role in neurite formation, possibly through desialylation of glycoproteins.Sialidases catalyze the removal of sialic acid from non-reducing ends of glycoproteins and glycolipids. In mammals, four types of sialidases have so far been cloned, classified according to their subcellular localization and enzymatic properties (abbreviated to Neu1, Neu2, Neu3, and Neu4) (13). Studies have provided strong evidence that these sialidases play crucial roles in various physiological functions such as cell differentiation, cell growth, and malignant transformation. Among these sialidases, Neu4 is unique in its tissue expression pattern and enzymatic properties. In the mouse, it is dominantly expressed in brain, but its sialidase activity is very weak compared with other mouse sialidases (4). In contrast, human NEU4 is expressed not only in brain, but also in liver, kidney, and colon (57). We have demonstrated that NEU4 has two isoforms, differing in the N-terminal 12-amino acid residues that act as a mitochondrial-targeting sequence (7). Except for the subcellular localization, enzymatic properties are very similar. The short form of NEU4 (NEU4S) suppresses malignancy in colon cancer cells, mainly through desialylation of some glycoproteins, whereas the long form of NEU4 (NEU4L) may be involved in apoptosis with hydrolysis of ganglioside GD3 in mitochondria (8). Recently, Neu4 knockout mice (Neu4−/−) were generated for pathological analysis (9). Neu4−/− grew normally with a normal lifespan and proved fertile, but vacuolization of the lung and spleen was observed with a lysosomal storage phenotype, and the GM1/GD1a ratio was decreased in the brain. The observations on Neu4−/− are very interesting, but there is some ambiguity in the available previous reports, because, as mentioned above, mouse Neu4 has been reported to have weak sialidase activity in vitro, and its expression is restricted in brain. To clarify this ambiguity and further understand the physiological functions of Neu4, we examined expression in the mouse brain and observed a possible involvement in neural differentiation in connection with another sialidase, Neu3, which greatly increases during differentiation of neuroblastoma cells (10, 11) and causes acceleration of neurite formation (1013).In the GenBankTM data base, nucleotide sequences of mouse Neu4 have been submitted as AY258421 and AK034236. The former contains a complete coding sequence of 1506 bp, with two ATGs at positions 1 and 70, and AK034236 encodes only the second ATG (4). The gene from AY258421 has been reported to encode Neu4, showing weak sialidase activity, but there is no information on whether the gene based on AK034236 encodes Neu4 with sialidase activity toward natural substrates. We have now extended our studies to the existence of different mouse Neu4 isoforms, focusing on their significance in neuronal cells by measuring expression levels during cell differentiation. We present, here, evidence that two murine Neu4 isoforms contribute to neurite formation.  相似文献   

19.
Wu  G.  Fang  Y.  Lu  Z.-H.  Ledeen  R.W. 《Brain Cell Biology》1998,27(1):1-14
Neuroblastoma cells are widely utilized models for the study of the neuritic outgrowth phase of neuronal differentiation, but relatively few such studies have attempted to identify the nature of the process outgrowths. This identification will be necessary in developing strategies for utilizing these models to distinguish the underlying mechanisms involved in axonogenesis vs dendritogenesis. In an effort to identify procedures for inducing specific types of neurite outgrowth, and for distinguishing axon- from dendrite-like processes, we have subjected two neuroblastoma cell lines to a variety of stimuli previously shown to induce neurite outgrowth in these cells. These include neuraminidase, ionomycin, KCl+dibutyryl cAMP, cholera toxin B subunit, retinoic acid, dibutyryl cAMP (alone), GM1 ganglioside, and low serum. The first four of these (group 1) gave rise to neurites with axon-like characteristics, including immunostaining that was positive for phosphorylated high molecular weight neurofilament protein (NF-H) and synaptic vesicle protein-2 (SV2), but negative for microtubule-associated protein-2 (MAP2). The next three treatments (group 2) resulted in dendrite-like processes, as evidenced in immunostaining that was positive for MAP2 and negative for NF-H and SV2. Neurites produced by low serum had mixed properties. These cytoskeletal differences were supported by immunoblot analysis with antisera to the above cytoskeletal proteins. Striking morphological differences were also noted, group 2-induced neurites being significantly shorter with more branch points than those generated by group 1 stimulants. Time of exposure to stimulatory agent was crucial in determining expression of the neuritic phenotype. Correlation with previous studies suggests that axon-like neurites result from stimulants which elevate intracellular Ca2+, a dependence not previously reported to our knowledge. Dendrite-like process outgrowth, on the other hand, does not appear to depend on altered intracellular Ca2+.  相似文献   

20.
The lipid raft location of μ-opioid receptor (MOR) determines the receptor activities. However, the manner in which MOR is anchored within the lipid rafts is undetermined. Using the targeted proteomic approach and mass spectrometry analyses, we have identified GRIN1 (G protein-regulated inducer of neurite outgrowth 1) can tether MOR with the G protein α-subunit and subsequently regulate the receptor distribution within the lipid rafts. Glutathione S-transferase fusion pulldown and receptor mutational analyses indicate that GRIN1-MOR interaction involves a receptor sequence 267GSKEK271 within the MOR third intracellular loop that is not involved in Gα interaction. The GRIN1 domains involved in MOR interaction are also distinct from those involved in Gα interaction. Pertussis toxin pretreatment reduced the amount of GRIN1 co-immunoprecipitated with MOR but not the amount with Gα. Furthermore, overexpression of GRIN1 significantly enhanced the amount of MOR in lipid raft and the receptor signaling magnitude as measured by Src kinase activation. Such increase in MOR signaling was demonstrated further by determining the GRIN1-dependent pertussis toxin-sensitive neurite outgrowth. In contrast to minimal neurite outgrowth induced by etorphine in control neuroblastoma N2A cells, overexpression of GRIN1 resulted in the increase in etorphine- and non-morphine-induced neurite outgrowth in these cells. Knocking down endogenous GRIN1 by small interfering RNA attenuated the agonist-induced neurite outgrowth. Disrupting lipid raft by methyl-β-cyclodextrin also blocked neurite outgrowth. Hence, by tethering Gα with MOR, GRIN1 stabilizes the receptor within the lipid rafts and potentiates the receptor signaling in the neurite outgrowth processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号