首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
For lignocellulosic bioenergy to be economically viable, genetic improvements must be made in feedstock quality including both biomass total yield and conversion efficiency. Toward this goal, multiple studies have considered candidate genes and discovered quantitative trait loci (QTL) associated with total biomass accumulation and/or grain production in bioenergy grass species including maize and sorghum. However, very little research has been focused on genes associated with increased biomass conversion efficiency. In this study, Trichoderma viride fungal cellulase hydrolysis activity was measured for lignocellulosic biomass (leaf and stem tissue) obtained from individuals in a F5 recombinant inbred Sorghum bicolor × Sorghum propinquum mapping population. A total of 49 QTLs (20 leaf, 29 stem) were associated with enzymatic conversion efficiency. Interestingly, six high-density QTL regions were identified in which four or more QTLs overlapped. In addition to enzymatic conversion efficiency QTLs, two QTLs were identified for biomass crystallinity index, a trait which has been shown to be inversely correlated with conversion efficiency in bioenergy grasses. The identification of these QTLs provides an important step toward identifying specific genes relevant to increasing conversion efficiency of bioenergy feedstocks. DNA markers linked to these QTLs could be useful in marker-assisted breeding programs aimed at increasing overall bioenergy yields concomitant with selection of high total biomass genotypes.  相似文献   

2.
Bioenergy crops currently provide the only source of alternative energy with the potential to reduce the use of fossil transportation fuels in a way that is compatible with existing engine technology, including in developing countries. Even though bioenergy research is currently receiving considerable attention, many of the concepts are not new, but rather build on intense research efforts from 30 years ago. A major difference with that era is the availability of genomics tools that have the potential to accelerate crop improvement significantly. This review is focused on maize, sorghum and sugarcane as representatives of bioenergy grasses that produce sugar and/or lignocellulosic biomass. Examples of how genetic mapping, forward and reverse genetics, high-throughput expression profiling and comparative genomics can be used to unravel and improve bioenergy traits will be presented.  相似文献   

3.
Sorghum [Sorghum bicolor (L.) Moench] is one of four herbaceous dedicated bioenergy crops the U.S. Department of Energy identified as critical to annually produce one billion tons of dry biomass. Of these four crops, sorghum is unique as it is a drought-tolerant, annual crop established from seed that is readily tractable to genetic improvement. The purpose of this study was to assess the yield potential and stability of sorghums grown across diverse production environments in the USA. For this study, six sorghum genotypes (one cultivar, five hybrids) were grown in yield trials in seven locations in six states for 5 years (2008–2012). Variation in dry and fresh yield was attributable to not only genotypes, but also to the effects of year, location, and year × location. Even with the highest yielding genotype, environmental conditions were a major factor in determining the yield in a given year. This variability affects the consistency of the biomass supply for ethanol production. In general, the southeastern USA had the highest mean yields for fresh weight and dry weight, indicating that this area may be the most reliable for biomass production. A significant variation was detected among genotypes for fresh weight, dry weight, moisture content, and brix, revealing that sufficient variation within sorghum exists for continued improvement and that certain hybrids are more tractable for biomass/bioenergy production. With dedicated bioenergy sorghum germplasm and proper production environments, sorghum will be a valuable tool in the goal of the sustainable production of one billion tons of dry biomass each year in the USA.  相似文献   

4.
Biomass utilization is increasingly considered as a practical way for sustainable energy supply and long‐term environment care around the world. In concerns with food security in China, starch or sugar‐based bioethanol and edible‐oil‐derived biodiesel are harshly restricted for large scale production. However, conversion of lignocellulosic residues from food crops is a potential alternative. Because of its recalcitrance, current biomass process is unacceptably expensive, but genetic breeding of energy crops is a promising solution. To meet the need, energy crops are defined with a high yield for both food and biofuel purposes. In this review, main grasses (rice, wheat, maize, sorghum and miscanthus) are evaluated for high biomass production, the principles are discussed on modification of plant cell walls that lead to efficient biomass degradation and conversion, and the related biotechnologies are proposed in terms of energy crop selection.  相似文献   

5.
Developing sustainable management practices including appropriate residue removal and nitrogen (N) fertilization for bioenergy sorghum is critical. However, the effects of residue removal and N fertilization associated with bioenergy sorghum production on soil organic carbon (SOC) are less studied compared to other crops. The objective of our research was to assess the impacts of residue removal and N fertilization on biomass yield and SOC under biomass sorghum production. Field measurements were used to calibrate the DNDC model, then verified the model by comparing simulated results with measured results using the field management practices as agronomic inputs. Both residue removal and N fertilization affected bioenergy sorghum yields in some years. The average measured SOC at 0–50 cm across the treatments and the time-frame ranged from 47.5 to 78.7 Mg C ha−1, while the simulated SOC was from 56.3 to 67.3 Mg C ha−1. The high correlation coefficients (0.65 to 0.99) and low root mean square error (3 to 18) between measured and simulated values indicate the DNDC model accurately simulated the effects of residue removal with N fertilization on bioenergy sorghum production and SOC. The model predictions revealed that there is, in the long term, a trend for higher SOC under bioenergy sorghum production regardless of residue management.  相似文献   

6.
In the last decade, cellulosic ethanol has caught the growing interest of governments and private investors worldwide as it brings the promise of responsible renewable-energy and an opportunity to depart from an oil-reliant economy. Alongside advances in bioprocessing technologies, the development of specialized bioenergy crops is seen as a pressing industrial necessity, and while C4 perennials (e.g., Miscanthus, switchgrass, and sugarcane) have been coined the most promising candidates for the production of lignocellulosic biomass, maize should not be overlooked. In this review, we have addressed the benefits of advancing maize as a second-generation bioenergy feedstock. We have also analyzed current knowledge on the maize cell wall and promising genetic strategies for its modification, given that lignocellulose recalcitrance represents the most crucial breeding target in bioenergy crop research programs. In addition to lignin, a focus on the underlying genetic basis of cellulose, hemicellulose, and ferulate cross-linking patterns, as well as their regulation, has been warranted. A comprehensive overview of the state-of-art of genomic and phenotyping strategies available for bioenergy crop research is also provided. Overall, maize represents an outstanding model organism for understanding complex cell wall characteristics and defining the path for breeders looking to improve this and other promising bioenergy grasses. With an extensive array of dedicated agronomic and genomic resources at hand, we believe that breeding maize with improved processing amenability is a likely prospect but would like to remind readers that advances in high-biomass yielding properties, improved agronomic hardiness, and enhanced processing efficiency will also be necessary.  相似文献   

7.
Prairies used for bioenergy production have potential to generate marketable products while enhancing environmental quality, but little is known about how prairie species composition and nutrient management affect the suitability of prairie biomass for bioenergy production. We determined how functional‐group identity and nitrogen fertilization affected feedstock characteristics and estimated bioenergy yields of prairie plants, and compared those prairie characteristics to that of corn stover. We tested our objectives with a field experiment that was set up as a 5 × 2 incomplete factorial design with C3 grasses, C4 grasses, legumes, and multi‐functional‐group mixtures grown with and without nitrogen fertilizer; a fertilized corn treatment was also included. We determined cell wall, hemicellulose, cellulose, and ash concentrations; ethanol conversion ratios; gross caloric ratios; aboveground biomass production; ethanol yields; and energy yields for all treatments. Prairie functional‐group identity affected the biomass feedstock characteristics, whereas nitrogen fertilization did not. Functional group and fertilization had a strong effect on aboveground biomass production, which was the major predictor of ethanol and energy yields. C4 grasses, especially when fertilized, had among the most favorable bioenergy characteristics with high estimated ethanol conversion ratios and nongrain biomass production, relatively high gross caloric ratios, and low ash concentrations. The bioenergy characteristics of corn stover, from an annual C4 grass, were similar to those of the biomass of perennial C4 grasses. Both functional‐group composition and nitrogen fertility management were found to be important in optimizing bioenergy production from prairies.  相似文献   

8.
9.
10.
Sweet sorghum (Sorghum bicolor L. Moench) is a promising bioenergy crop for the production of ethanol and bio-based products. Sugarcane billet harvesters can be used to harvest sweet sorghum. Multiple extractor fan speed settings of these harvesters allow for separating the extraneous matter in the feedstock, which has been associated with increased milling throughput and better juice quality at the processing facility. This removal is not completely selective, and some stalk material is also lost. These losses can be higher for sweet sorghum than sugarcane due its lower weight. This paper presents an assessment of how the speed of the primary extractor fan of a sugarcane billet combine used for harvesting sweet sorghum affects the biomass yield, biomass losses, and quality at delivery for the production of ethanol from extracted juice and fiber. Three primary extractor fan speeds (0, 800, and 1100 rpm) were evaluated. Higher fan speeds decreased fresh biomass yields by up to 28.3 Mg ha?1. Juice quality was not significantly different among treatments. Ethanol yield calculated from sweet sorghum harvested at 0 rpm was 6075 L ha?1. This value decreased by about half for material harvested at 1100 rpm due to the differences in biomass yield.  相似文献   

11.
Several crops have recently been identified as potential dedicated bioenergy feedstocks for the production of power, fuels, and bioproducts. Despite being identified as early as the 1980s, no systematic work has been undertaken to characterize the spatial distribution of their long‐term production potentials in the United states. Such information is a starting point for planners and economic modelers, and there is a need for this spatial information to be developed in a consistent manner for a variety of crops, so that their production potentials can be intercompared to support crop selection decisions. As part of the Sun Grant Regional Feedstock Partnership (RFP), an approach to mapping these potential biomass resources was developed to take advantage of the informational synergy realized when bringing together coordinated field trials, close interaction with expert agronomists, and spatial modeling into a single, collaborative effort. A modeling and mapping system called PRISM‐ELM was designed to answer a basic question: How do climate and soil characteristics affect the spatial distribution and long‐term production patterns of a given crop? This empirical/mechanistic/biogeographical hybrid model employs a limiting factor approach, where productivity is determined by the most limiting of the factors addressed in submodels that simulate water balance, winter low‐temperature response, summer high‐temperature response, and soil pH, salinity, and drainage. Yield maps are developed through linear regressions relating soil and climate attributes to reported yield data. The model was parameterized and validated using grain yield data for winter wheat and maize, which served as benchmarks for parameterizing the model for upland and lowland switchgrass, CRP grasses, Miscanthus, biomass sorghum, energycane, willow, and poplar. The resulting maps served as potential production inputs to analyses comparing the viability of biomass crops under various economic scenarios. The modeling and parameterization framework can be expanded to include other biomass crops.  相似文献   

12.
For lignocellulosic bioenergy to become a viable alternative to traditional energy production methods, rapid increases in conversion efficiency and biomass yield must be achieved. Increased productivity in bioenergy production can be achieved through concomitant gains in processing efficiency as well as genetic improvement of feedstock that have the potential for bioenergy production at an industrial scale. The purpose of this review is to explore the genetic and genomic resource landscape for the improvement of a specific bioenergy feedstock group, the C4 bioenergy grasses. First, bioenergy grass feedstock traits relevant to biochemical conversion are examined. Then we outline genetic resources available bioenergy grasses for mapping bioenergy traits to DNA markers and genes. This is followed by a discussion of genomic tools and how they can be applied to understanding bioenergy grass feedstock trait genetic mechanisms leading to further improvement opportunities.  相似文献   

13.
Biomass harvested from grasslands formerly used for forage production or set aside for conservation has been identified as a potential source of bioenergy feedstocks. Our objective was to characterize yield and chemical composition of biomass harvested from existing grasslands in the oak savanna region of Minnesota and to determine whether aggregated soil properties and grassland type influence biomass yield and feedstock properties. The influence of soil type and dominant functional plant groups on biomass yield, theoretical ethanol yield, and mineral, ash, and lignocellulosic concentration was measured on biomass harvested from 32 grassland sites. Soils with high productivity ratings, as measured by the Minnesota Crop Productivity Index, produced 36 % more biomass than lower quality soils. Grasslands dominated by warm-season species produced 18 % more biomass than those dominated by cool-season species, when measured after senescence during the late-fall harvest time. Biomass harvested from sites dominated by cool-season grasses had higher N, Mg and Cl concentrations than those dominated by warm-season grasses, suggesting that such grasslands could have lower efficiency in thermochemical conversion processes and that repeated harvesting from such grasslands could remove nutrients from the systems. In addition, glucose and xylose concentrations were slightly higher in biomass from sites dominated by warm-season grasses, which resulted in an estimated additional 12 L?Mg?1 of ethanol over those dominated by cool-season grasses. Combined with the greater yields, warm-season grasslands could produce an additional 376 L?ha?1 year?1.  相似文献   

14.
Compared to maize and temperate grasses, sorghum has received less attention in terms of improving cell wall components. The objectives of this study were to identify quantitative trait loci (QTL) with main effects, epistatic and pleiotropic effects along with QTL × environment (QE) interactions controlling fibre-related traits in sorghum. Neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, fresh leaf mass, stripped stalk mass, dry stalk mass, fresh biomass and dry biomass were analysed from a population of 188 grain × sweet sorghum recombinant inbred lines. A genetic map consisting of 157 DNA markers was constructed, and QTL were detected using composite interval mapping (CIM). CIM detected more than 5 additive QTL per trait explaining 7.1–24.7% of the phenotypic variation. Abundant co-localization of these QTL was observed across all chromosomes, and the highest cluster was identified on chromosome 6. Searching for candidate genes using the confidence interval of our QTL clusters reveals that these clusters might comprise a set of genes that are tightly linked. Some QTL showed multiple effects; however, the allele for each trait was favouring the parent with the increasing effect. QE interactions were observed for QTL showing multiple effects. Additive × additive interaction was observed for 7 out of 10 traits, indicating the importance of epistatic analysis. However, the phenotypic variation explained by digenic interactions was lower compared to the individual QTL. Our results indicate that various genetic components contribute to fibre-related traits and should be considered during the enhancement of sorghum for lignocellulosic biomass.  相似文献   

15.
Setaria italica and its wild ancestor Setaria viridis are diploid C(4) grasses with small genomes of ~515 Mb. Both species have attributes that make them attractive as model systems. Setaria italica is a grain crop widely grown in Northern China and India that is closely related to the major food and feed crops maize and sorghum. A large collection of S. italica accessions are available and thus opportunities exist for association mapping and allele mining for novel variants that will have direct application in agriculture. Setaria viridis is the weedy relative of S. italica with many attributes suitable for genetic analyses including a small stature, rapid life cycle, and prolific seed production. Setaria sp. are morphologically similar to most of the Panicoideae grasses, including major biofuel feedstocks, switchgrass (Panicum virgatum) and Miscanthus (Miscanthus giganteus). They are broadly distributed geographically and occupy diverse ecological niches. The cross-compatibility of S. italica and S. viridis also suggests that gene flow is likely between wild and domesticated accessions. In addition to serving as excellent models for C(4) photosynthesis, these grasses provide novel opportunities to study abiotic stress tolerance and as models for bioenergy feedstocks.  相似文献   

16.
The efficiency with which a plant intercepts solar radiation is determined primarily by its architecture. Understanding the genetic regulation of plant architecture and how changes in architecture affect performance can be used to improve plant productivity. Leaf inclination angle, the angle at which a leaf emerges with respect to the stem, is a feature of plant architecture that influences how a plant canopy intercepts solar radiation. Here we identify extensive genetic variation for leaf inclination angle in the crop plant Sorghum bicolor, a C4 grass species used for the production of grain, forage, and bioenergy. Multiple genetic loci that regulate leaf inclination angle were identified in recombinant inbred line populations of grain and bioenergy sorghum. Alleles of sorghum dwarf-3, a gene encoding a P-glycoprotein involved in polar auxin transport, are shown to change leaf inclination angle by up to 34° (0.59 rad). The impact of heritable variation in leaf inclination angle on light interception in sorghum canopies was assessed using functional-structural plant models and field experiments. Smaller leaf inclination angles caused solar radiation to penetrate deeper into the canopy, and the resulting redistribution of light is predicted to increase the biomass yield potential of bioenergy sorghum by at least 3%. These results show that sorghum leaf angle is a heritable trait regulated by multiple loci and that genetic variation in leaf angle can be used to modify plant architecture to improve sorghum crop performance.  相似文献   

17.
The Southern High Plains (SHP) region of Texas in the United States, where cotton is grown in a vast acreage, has the potential to grow cellulosic bioenergy crops such as perennial grasses and biomass sorghum (Sorghum bicolor). Evaluation of hydrological responses and biofuel production potential of hypothetical land use change from cotton (Gossypium hirsutum L.) to cellulosic bioenergy crops enables better understanding of the associated key agroecosystem processes and provides for the feasibility assessment of the targeted land use change in the SHP. The Soil and Water Assessment Tool (SWAT) was used to assess the impacts of replacing cotton with perennial Alamo switchgrass (Panicum virgatum L.), Miscanthus × giganteus (Miscanthus sinensis Anderss. [Poaceae]), big bluestem (Andropogon gerardii) and annual biomass sorghum on water balances, water use efficiency and biofuel production potential in the Double Mountain Fork Brazos watershed. Under perennial grass scenarios, the average (1994–2009) annual surface runoff from the entire watershed decreased by 6–8% relative to the baseline cotton scenario. In contrast, surface runoff increased by about 5% under the biomass sorghum scenario. Perennial grass land use change scenarios suggested an increase in average annual percolation within a range of 3–22% and maintenance of a higher soil water content during August to April compared to the baseline cotton scenario. About 19.1, 11.1, 3.2 and 8.8 Mg ha?1 of biomass could potentially be produced if cotton area in the watershed would hypothetically be replaced by Miscanthus, switchgrass, big bluestem and biomass sorghum, respectively. Finally, Miscanthus and switchgrass were found to be ideal bioenergy crops for the dryland and irrigated systems, respectively, in the study watershed due to their higher water use efficiency, better water conservation effects, greater biomass and biofuel production potential, and minimum crop management requirements.  相似文献   

18.
With high productivity and stress tolerance, numerous grass genera of the Andropogoneae have emerged as candidates for bioenergy production. To optimize these candidates, research examining the genetic architecture of yield, carbon partitioning, and composition is required to advance breeding objectives. Significant progress has been made developing genetic and genomic resources for Andropogoneae, and advances in comparative and computational genomics have enabled research examining the genetic basis of photosynthesis, carbon partitioning, composition, and sink strength. To provide a pivotal resource aimed at developing a comparative understanding of key bioenergy traits in the Andropogoneae, we have established and characterized an association panel of 390 racially, geographically, and phenotypically diverse Sorghum bicolor accessions with 232,303 genetic markers. Sorghum bicolor was selected because of its genomic simplicity, phenotypic diversity, significant genomic tools, and its agricultural productivity and resilience. We have demonstrated the value of sorghum as a functional model for candidate gene discovery for bioenergy Andropogoneae by performing genome-wide association analysis for two contrasting phenotypes representing key components of structural and non-structural carbohydrates. We identified potential genes, including a cellulase enzyme and a vacuolar transporter, associated with increased non-structural carbohydrates that could lead to bioenergy sorghum improvement. Although our analysis identified genes with potentially clear functions, other candidates did not have assigned functions, suggesting novel molecular mechanisms for carbon partitioning traits. These results, combined with our characterization of phenotypic and genetic diversity and the public accessibility of each accession and genomic data, demonstrate the value of this resource and provide a foundation for future improvement of sorghum and related grasses for bioenergy production.  相似文献   

19.
Perennial biomass from grasslands managed for conservation of soil and biodiversity can be harvested for bioenergy. Until now, the quantity and quality of harvestable biomass from conservation grasslands in Minnesota, USA, was not known, and the factors that affect bioenergy potential from these systems have not been identified. We measured biomass yield, theoretical ethanol conversion efficiency, and plant tissue nitrogen (N) as metrics of bioenergy potential from mixed-species conservation grasslands harvested with commercial-scale equipment. With three years of data, we used mixed-effects models to determine factors that influence bioenergy potential. Sixty conservation grassland plots, each about 8 ha in size, were distributed among three locations in Minnesota. Harvest treatments were applied annually in autumn as a completely randomized block design. Biomass yield ranged from 0.5 to 5.7 Mg ha−1. May precipitation increased biomass yield while precipitation in all other growing season months showed no affect. Averaged across all locations and years, theoretical ethanol conversion efficiency was 450 l Mg−1 and the concentration of plant N was 7.1 g kg−1, both similar to dedicated herbaceous bioenergy crops such as switchgrass. Biomass yield did not decline in the second or third year of harvest. Across years, biomass yields fluctuated 23% around the average. Surprisingly, forb cover was a better predictor of biomass yield than warm-season grass with a positive correlation with biomass yield in the south and a negative correlation at other locations. Variation in land ethanol yield was almost exclusively due to variation in biomass yield rather than biomass quality; therefore, efforts to increase biomass yield might be more economical than altering biomass composition when managing conservation grasslands for ethanol production. Our measurements of bioenergy potential, and the factors that control it, can serve as parameters for assessing the economic viability of harvesting conservation grasslands for bioenergy.  相似文献   

20.
To develop a more sustainable bio‐based economy, an increasing amount of carbon for industrial applications and biofuel will be obtained from bioenergy crops. This may result in intensified land use and potential conflicts with other ecosystem services provided by soil, such as control of greenhouse gas emissions, carbon sequestration, and nutrient dynamics. A growing number of studies examine how bioenergy crops influence carbon and nitrogen cycling. Few studies, however, have combined such assessments with analysing both the immediate effects on the provisioning of soil ecosystem services as well as the legacy effects for subsequent crops in the rotation. Here, we present results from field and laboratory experiments on effects of a standard first‐generation bioenergy crop (maize) and three different second‐generation bioenergy crops (willow short rotation coppice (SRC), Miscanthus × giganteus, switchgrass) on key soil quality parameters: soil structure, organic matter, biodiversity and growth and disease susceptibility of a major follow‐up crop, wheat (Triticum aestivum). We analysed a 6‐year field experiment and show that willow SRC, Miscanthus, and maize maintained a high yield over this period. Soil quality parameters and legacy effects of Miscanthus and switchgrass were similar or performed worse than maize. In contrast, willow SRC enhanced soil organic carbon concentration (0–5 cm), soil fertility, and soil biodiversity in the upper soil layer when compared to maize. In a greenhouse experiment, wheat grown in willow soil had higher biomass production than when grown in maize or Miscanthus soil and exhibited no growth reduction in response to introduction of a soil‐borne (Rhizoctonia solani) or a leaf pathogen (Mycosphaerella graminicola). We conclude that the choice of bioenergy crops can greatly influence provisioning of soil ecosystem services and legacy effects in soil. Our results imply that bioenergy crops with specific traits might even enhance ecosystem properties through positive legacy effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号