首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conscious ovariectomized (OVX) rats bearing a cannula implanted in the 3rd ventricle were injected with 2 μl of 0.9% NaCl containing varying doses of synthetic gastrin and plasma gonadotropin, GH and TSH levels were measured by RIA in jugular blood samples drawn through an indwelling silastic catheter. Control injections of saline iv or into the 3rd ventricle did not modify plasma hormone levels. Intraventricular injection of 1 or 5 μg gastrin produced significant suppression of plasma LH and prolactin (Prl) levels within 5 min of injection. Injection of 1 μg gastrin had no effect on plasma GH, but increasing the dose to 5 μg induced a progressive elevation, which reached peak levels at 60 min. By contrast, TSH levels were lowered by both doses of gastrin within 5 min of injection and the lowering persisted for 60 min. Intravenous injection of gastrin had no effect on plasma gonadotropin, GH and TSH, but induced an elevation in Prl levels. Invitro incubation of hemipituitaries with gastrin failed to modify gonadotropin, GH or Prl but slightly inhibited TSH release at the highest dose of 5 μg gastrin. The results indicate that synthetic gastrin can alter pituitary hormone release in unrestrained OVX rats and implicate a hypothalamic site of action for the peptide to alter release of a gonadotropin, Prl and GH. Its effect on TSH release may be mediated both via hypothalamic neurons and by a direct action on pituitary thyrotrophs.  相似文献   

2.
The effects of third ventricular (IVT) injection of 25 μg of bradykinin (BK) upon plasma levels of LH, FSH, TSH, GH and prolactin were investigated in conscious ovariectomized female rats bearing indwelling jugular cannulae. Some animals were pretreated with bradykinin potentiating factor (BPF). Intravenous administration of BK had no effect upon hormone levels. IVT injection of BK significantly depressed plasma prolactin levels at 15 and 30 min post-drug, with levels returning to control values by 60 min. Pretreatment of animals with BPF (75 μg/3 μl) prolonged the prolactin suppression induced by BK for up to two hours. Plasma LH, FSH, TSH and GH levels in BK-rats were not significantly different from those of saline-injected animals at any time point measured. Neither BPF alone nor in conjunction with BK had any effects upon plasma levels of TSH; however, BK plus BPF suppressed FSH concentrations at 75 min post-BPF, while BPF alone appeared to increase GH levels at 45 min. In vitro incubation of hemipituitaries with 0.083, 0.83 or 8.33 μg/ml BK had no effect upon the release of LH, TSH or prolactin compared to control values. However, the secretion of GH and FSH was suppressed by the lowest dose of BK tested. These results suggest that BK may play a physiological inhibitory role in the regulation of prolactin, which can be augmented by preventing its degradation, i.e. via BPF. The effect of the peptide seems to be mediated by the CNS since neither intravenous injection of BK nor in vitro incubation of pituitaries with the peptide modified prolactin release.  相似文献   

3.
Conscious ovariectomized (OVX) rats bearing a cannula implanted in the third ventricle were injected with 2 μl of 0.9% NaCl containing varying doses of substance P (SP) or neurotensin (NT) and plasma GH and TSH levels were measured by RIA in jugular blood samples drawn through an indwelling silastic catheter. Control injections of physiologic saline iv or into the third ventricle did not modify plasma hormone levels. Intraventricular injection of SP or NT at doses of either 0.5 or 2 μg elevated plasma GH concentrations within 5 min and they remained elevated for 60 min. Third ventricular injection of similar doses of SP or NT had no effect on plasma TSH. An intermediate dose of 1 μg of SP or NT given iv had no effect on plasma GH but NT elevated plasma TSH. Incubation of hemipituitaries from OVX rats with varying doses of SP or NT did not alter GH release into the medium but TSH release was enhanced with NT at doses of 100 or more ng/ml of medium. It is suggested that SP acts centrally to stimulate growth hormone-releasing factor (GRF) or to inhibit somatostatin release and thereby enhance GH release and that NT acts directly on the pituitary to stimulate TSH release.  相似文献   

4.
The effects of intravenous or intraventricular injection of synthetic ovine corticotrophin-releasing factor (oCRF) on plasma levels of anterior pituitary hormones were studied in conscious, ovariectomized (OVX) female rats and compared with the actions of the peptide on dispersed anterior pituitary cells from OVX female rats incubated in the presence of CRF. Third ventricular injection of oCRF in freely moving rats caused a significant increase in plasma levels of ACTH in a dose-related manner with a minimal effective dose of less than 0.5 micrograms (0.1 nmol). The effect was observable at 5 min after injection and persisted for the 60 min duration of the experiment. In contrast, growth hormone levels were significantly depressed within 15 min with a minimal effective intraventricular dose of 0.5 micrograms. The suppression persisted for the duration of the experiment but there was no additional effect of the higher dose of 5 micrograms. Plasma LH levels were also lowered by the highest dose of 5 micrograms (1.0 nmol) of oCRF, with the first significant lowering at 30 min. Lower doses had no effect on plasma LH. Plasma TSH levels were not significantly altered. Control injections of the 0.9% NaCl diluent were without effect on the levels of any of the hormones. Intravenous injection of similar doses of oCRF had no effect on plasma levels of GH or LH. The ACTH-releasing action of the oCRF preparation was confirmed by in vitro incubation of the peptide with dispersed anterior pituitary cells for 2 h. A dose-related release of ACTH occurred in doses ranging from 0.1-10 nM, but there were no effects on the release of the other anterior pituitary hormones. The results suggest that oCRF may act within the hypothalamus to suppress the release of GH and to a lesser extent LH. The stimulation of ACTH release following intraventricular CRF is presumably related to its uptake by portal blood vessels with delivery to the pituitary and stimulation of the corticotrophs.  相似文献   

5.
We have examined the effects of third cerebroventricular (3V) injections of avian and bovine pancreatic polypeptide (APP and BPP) and the C-terminal hexapeptide amide of human PP (CHPP) on the secretion of anterior pituitary hormones in conscious ovariectomized rats. Injection of APP (2.0 micrograms; 472 pmoles) or BPP (5.0 micrograms; 1191 pmoles) decreased plasma levels of luteinizing hormone (LH) when compared to pre-injection levels in these animals or to saline-injected controls. The lower dose of BPP (0.5 micrograms; 119 pmoles) decreased plasma LH versus pre-injection levels and control animals, however, these effects diminished at later times. Plasma growth hormone (GH) also decreased following 3V injections of APP (2.0 micrograms) or BPP (5.0 micrograms). The lower dose of BPP (0.5 microgram) initially inhibited GH release, however, this effect was rapidly reversed and GH levels were significantly greater than those in controls at 60 and 120 min. Injections of BPP or APP did not alter prolactin (PRL) or thyroid stimulating hormone (TSH) secretion. Administration of 2.0 micrograms and 0.2 microgram of CHPP (2488 and 249 pmoles) produced no significant effects on plasma LH, GH, PRL or TSH. APP and BPP had no consistent effects on hormone secretion from dispersed anterior pituitary cells. The results indicate that APP and BPP exert potent central effects which inhibit LH and GH release from the pituitary gland.  相似文献   

6.
The effects of third ventricular (3V) injection of the beta-adrenergic antagonist, propranolol (PROPR), a selective beta 1-antagonist, metoprolol (MET), a selective beta 2-antagonist, IPS 339, and a beta-adrenergic agonist (-) isoproterenol (ISOPR), on plasma concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH), and growth hormone (GH) were studied in conscious, ovariectomized (OVX) rats. Samples were removed from unrestrained rats which had been previously implanted with atrial and 3V cannulae, and plasma hormone levels were determined by radioimmunoassay (RIA). Intraventricular injection of PROPR (30 micrograms), MET (40 micrograms), or IPS 339 (20 micrograms) induced a gradual elevation in plasma GH concentrations, whereas ISOPR (30 micrograms) reduced plasma GH. ISOPR (30 micrograms) brought about a decrease in plasma LH concentrations, but PROPR, MET and IPS 339 had no effect on LH levels. PROPR (30 micrograms) increased plasma FSH concentrations, but there was no significant effect of MET, IPS 339 or ISOPR on FSH secretion. The results indicate that the beta-adrenergic system can inhibit the release of GH, LH, and FSH. This system appears to have a tonic inhibitory effect on GH and FSH but not LH release in the OVX rat.  相似文献   

7.
To determine the role of arginine vasopressin (AVP) in stress-induced release of anterior pituitary hormones, AVP antiserum or normal rabbit serum (NRS) was micro-injected into the 3rd ventricle of freely-moving, ovariectomized (OVX) female rats. A single 3 microliter injection was given, and 24 hours later, the injection was repeated 30 min prior to application of ether stress for 1 min. Although AVP antiserum had no effect on basal plasma ACTH concentrations, the elevation of plasma ACTH induced by ether stress was lowered significantly. Plasma LH tended to increase following ether stress but not significantly so; however, plasma LH following stress was significantly lower in the AVP antiserum-treated group than in the group pre-treated with NRS. Ether stress lowered plasma growth hormone (GH) levels and this lowering was slightly but significantly antagonized by AVP antiserum. Ether stress also elevated plasma prolactin (Prl) levels but these changes were not significantly modified by the antiserum. To evaluate any direct action of AVP on pituitary hormone secretion, the peptide was incubated with dispersed anterior pituitary cells for 2 hours. A dose-related release of ACTH occurred in doses ranging from 10 ng (10 p mole)-10 micrograms/tube, but there was no effect of AVP on release of LH. The release of other anterior pituitary hormones was also not affected except for a significant stimulation of TSH release at a high dose of AVP. The results indicate that AVP is involved in induction of ACTH and LH release during stress. The inhibitory action of the AVP antiserum on ACTH release may be mediated intrahypothalamically by blocking the stimulatory action of AVP on corticotropin-releasing factor (CRF) neurons and/or also in part by direct blockade of the stimulatory action of vasopressin on the pituitary. The effects of vasopressin on LH release are presumably brought about by blockade of a stimulatory action of AVP on the LHRH neuronal terminals.  相似文献   

8.
The aims of the present study were to clarify the effect of kisspeptin-10 (Kp10) on the secretion of luteinizing hormone (LH), follicle stimulating hormone (FSH), growth hormone (GH) and prolactin (PRL) in goats, and compare the characteristics of any response with those of the response to gonadotropin-releasing hormone (GnRH). The experiments were performed using four female goats (4–5 years old) in the luteal phase of estrous cycle. A single intravenous (i.v.) injection of 1, 5 and 10 μg/kg b.w. (0.77, 3.85 and 7.69 nmol/kg b.w.) of Kp10 stimulated the release of LH. Maximum values were observed 20–30 min after the injection. On the other hand, Kp10 did not alter plasma GH and PRL concentrations significantly. Three consecutive i.v. injections of Kp10 (5 μg/kg b.w.) or GnRH (5 μg/kg b.w.: 4.23 nmol/kg b.w.) at 2-h intervals increased both plasma LH and FSH levels after each injection (P < 0.05); however, the responses to Kp10 were different from a similar level of GnRH. The rate of decrease in LH and FSH levels following the peak was attenuated in Kp10-treated compared to GnRH-treated animals. These results show that Kp10 can stimulate the release of LH and FSH but not GH and PRL in female goats and suggest that the LH- and FSH-releasing effect of the i.v. injection of Kp10 is less potent than that of GnRH.  相似文献   

9.
Intravenously administered synthetic hpGRF 1–40 at doses of 0.1, 0.33 and 1.0 μg/kg increased plasma GH in a dose-dependent fashion in 4 normal prepubertal children. hpGRF 1–40 at the dose of 1.0 μg/kg stimulated GH release, though to a lesser extent than in normals, in 7 children with isolated GH-deficiency (IGHD) but failed to do so in a patient with craniopharyngioma. In all normal children and 6/7 patients with IGHD, hpGRF 1–40 at all doses used induced a clear and sustained lowering of plasma prolactin levels; this effect was lacking in the patient with craniopharyngioma. hpGRF 1–40 had no effect on plasma FSH, LH, TSH or glucose levels nor did it influence pulse rate, blood pressure, or body temperature. These results indicate that hpGRF 1–40 is a potent stimulus to GH release in normal prepubertal children and holds promise for treatment of GH-deficient children. In addition, in both normal children and children with IGHD, hpGRF 1–40 is a potent suppressor of prolactin levels.  相似文献   

10.
Arginine vasotocin was injected into the third ventricle or intravenously in conscious, ovariectomized rats and its effect on gonadotropin and prolactin release evaluated. The peptide lowered plasma levels of both LH and prolactin in doses of 40 or 100 ng given intraventricularly. The higher dose was slightly more effective than the lower dose. Intravenous injection of a 1-microgram dose of vasotocin failed to alter plasma LH in the ovariectomized animals; however, a 5-micrograms dose induced a slight depression apparent at only 60 min following injection. Intravenous injection of 1 microgram produced a significant lowering of plasma prolactin, whereas a dramatic lowering followed the injection of the higher dose. Plasma FSH was unaffected in these experiments. Incubation of dispersed anterior pituitary cells from ovariectomized rats with various doses of vasotocin revealed no effect of the peptide on the release of FSH, LH, or prolactin. It also did not alter the response to LHRH, but it partially blocked the action of dopamine to inhibit prolactin release. The data indicate that quite low doses of arginine vasotocin act within the brain to inhibit LH and prolactin secretion in ovariectomized, conscious animals.  相似文献   

11.
German Landrace piglets, 6-7 days of age, received either saline (9 males, 8 females), 0.5 mg naloxone/kg body weight (7 males, 7 females), 2.0 mg naloxone/kg (7 males, 8 females) or 0.5 mg DADLE (potent leu-enkephalin analog)/kg (7 males, 7 females) through a catheter inserted into the jugular vein 2-4 days previously. Male or female piglets were allocated randomly, within litter, to the different experimental groups. Blood samples were withdrawn for a period of 240 min at 10-min intervals for the first 60 min following injection and at 20-min intervals for the rest of the test period. Piglets were separated from their mother via a detachable wall and were allowed to suckle every 50 min. DADLE failed to alter plasma levels of LH in both males and females. Naloxone induced a significant (P less than 0.01) decrease in LH concentrations in females 10 to 60 min after injection (saline: 2.3 +/- 0.2 ng/ml plasma (SEM); 0.5 mg naloxone/kg: 1.0 +/- 0.2 ng/ml plasma and 2 mg naloxone/kg 1.2 +/- 0.4 ng/ml plasma). In males low doses of naloxone reduced plasma LH levels 10 to 40 min after injection (saline: 2.0 +/- 0.3 ng/ml plasma and 0.5 ng naloxone/kg: 1.1 +/- 0.3 ng/ml), whereas a decrease in plasma LH levels occurred 80 to 140 min after injection of high doses of naloxone (saline: 2.1 +/- 0.2 ng/ml and 2 mg naloxone/kg: 1.0 +/- 0.2 ng/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A single iv injection of 0.31, 0.62, 1.25, 2.5, 5, 10, or 20 mg/kg body wt of a phenothiazine derivative, propiomazine (PP), into male rats significantly (P less than 0.05) increased plasma prolactin concentrations. The higher doses (5, 10, and 20 mg/kg body wt) produced increases that were greater in both magnitude and duration than those produced by the lower doses. The higher doses of PP, along with the elevations in plasma prolactin, also produced concomitant decreases in plasma luteinizing hormone (LH) levels. Pretreatment with L-dopa (100 mg/kg body wt) completely blocked the PP-induced stimulation of prolactin release, indicating that antidopaminergic action of PP either at the hypothalamic or anterior pituitary level was responsible for its effects on the release of prolactin.  相似文献   

13.
This study examined the noradrenergic mechanism in regulation of luteinizing hormone (LH) release in short- and long-term ovariectomized (OVX) steroids-primed rats. All rats were OVX on the diestrous day 1(D1) morning about 1000 h. After OVX, rats in the short-term OVX group were immediately primed with estradiol (E2, 0.1 mg/kg BW s.c.), fitted with atrial Silastic tubing, and a guide cannula in the right lateral cerebroventricle stereotaxically. Rats in the long-term OVX group received the same treatment (E2, atrial tubing and guide cannula implantation) three weeks later. Rats in both groups received progesterone (2 mg/rat s.c.) at 0930 h on the next day after E2. At 1000 h, intraventricular administration of norepinephrine HCl (NE, 0.01, 0.1, or 1.0 microgram in 2 microliters saline) was given. In short-term OVX-steroids-primed rats, NE did not alter LH levels in the peripheral plasma within 60 or 100 min. By contrast, in long-term OVX-steroids-primed rats, 1.0 microgram of NE gradually decreased plasma LH concentrations, which became significantly different from the initial value at the 60 min time point after treatment. On the other hand, intraventricular injection of 5 ng of the LH-releasing hormone (LHRH) elevated plasma LH concentrations within 10 min in both groups of rats, but at different efficacy: a brief release of LH in short-term OVX-steroids-primed rats and a prolonged release of LH in long-term OVX-steroids-primed rats. These results indicated that the interval after OVX plays a critical role in modulating the responsiveness to NE and LHRH in the steroids-primed OVX rats.  相似文献   

14.
The effect of Freund's adjuvant administration on 24-hour changes of plasma prolactin, growth hormone (GH), thyrotropin (TSH), insulin, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and testosterone were studied in young (2 months) and aged (18 months) male Wistar rats. Rats were injected s.c. with Freund's adjuvant or adjuvant's vehicle and, 18 days later, they were killed at 6 different time intervals throughout a 24-hour cycle to measure circulating hormone levels by specific RIAs. Young rats receiving adjuvant's vehicle exhibited significant time-of-day-dependent variations in plasma TSH, LH and testosterone, with maximal levels at 1300 h, 0100 h and 1700 h, respectively. Prolactin and insulin levels, analyzed globally in a factorial ANOVA, showed significant time-of-day changes with maximal levels at 1300 - 1700 h and 2100 h, respectively. The daily rhythms in plasma LH and testosterone found in young rats were not longer observed in Freund's adjuvant-injected rats, while as far as TSH, a second peak was observed at 0100 h after Freund's adjuvant administration. Twenty-four hour rhythms in circulating TSH, LH and testosterone were blunted in old rats receiving either Freund's adjuvant or its vehicle. Aged rats exhibited significantly higher circulating levels of prolactin, and lower levels of GH, TSH, FSH and testosterone. The results indicate that secretion of prolactin, GH, TSH, FSH and testosterone are age-dependent, as are the responses of TSH, LH and testosterone to Freund's adjuvant administration.  相似文献   

15.
M Arisawa  G D Snyder  S M McCann 《Peptides》1989,10(4):763-766
The role of substance P (SP) on thyrotropin (TSH) secretion was investigated in ovariectomized (OVX) female, estrogen-primed OVX, and normal male rats. Third ventricular administration of SP induced a significant increase in plasma TSH levels when compared to control animals in E-primed OVX rats (p less than 0.001). The plasma TSH levels increased in a dose-related manner and reached maximum levels at 10 min after injection. In contrast, intraventricularly injected SP failed to alter plasma TSH levels in both OVX rats and normal male rats. Intravenous administration of SP dramatically stimulated TSH release in E-primed OVX rats (p less than 0.001), whereas SP had no effect on the release of TSH when injected in OVX rats and normal male rats. To investigate any direct action of SP on TSH release from the anterior pituitary gland, synthetic SP was incubated with dispersed anterior pituitary cells harvested from E-primed OVX rats and normal male rats. SP, in the dose range between 10(-8) M and 10(-6) M, failed to alter the release of TSH into the culture medium in vitro. These findings indicate that SP has a stimulatory role in the control of TSH release by an action on the hypothalamus but only in estrogen-primed rats.  相似文献   

16.
The effect of bombesin (5 ng/kg/min X 2.5 h) on basal pituitary secretion as well as on the response to thyrotropin releasing hormone (TRH; 200 micrograms) plus luteinizing hormone releasing hormone (LHRH; 100 micrograms) was studied in healthy male volunteers. The peptide did not change the basal level of growth hormone (GH), prolactin, thyroid-stimulating hormone (TSH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH). On the contrary, the pituitary response to releasing hormones was modified by bombesin administration. When compared with control (saline) values, prolactin and TSH levels after TRH were lower during bombesin infusion, whereas LH and FSH levels after LHRH were higher. Thus bombesin affects in man, as in experimental animals, the secretion of some pituitary hormones.  相似文献   

17.
We studied the in vitro and in vivo effects of octanoylated goldfish ghrelin peptides (gGRL-19 and gGRL-12) on luteinizing hormone (LH) and growth hormone (GH) release in goldfish. gGRL-19 and gGRL-12 at picomolar doses stimulated LH and GH release from dispersed goldfish pituitary cells in perifusion and static incubation. Incubation of pituitary cells for 2 h with 10 nM gGRL-12 and 1 or 10 nM gGRL-19 increased LH-beta mRNA expression, whereas only 10 nM gGRL-19 increased GH mRNA expression. Somatostatin-14 abolished the stimulatory effects of ghrelin on GH release from dispersed pituitary cells in perifusion and static culture. The GH secretagogue receptor antagonist d-Lys(3)-GHRP-6 inhibited the ghrelin-induced LH release, whereas no effects were found on stimulation of GH release by ghrelin. Intracerebroventricular injection of 1 ng/g body wt of gGRL-19 or intraperitoneal injection of 100 ng/g body wt of gGRL-19 increased serum LH levels at 60 min after injection, whereas significant increases in GH levels were found at 15 and 30 min after these treatments. Our results indicate that, in addition to its potent stimulatory actions on GH release, goldfish ghrelin peptides have the novel function of stimulating LH release in goldfish.  相似文献   

18.
To evaluate whether the median eminence (ME) is the site of action of CRF (corticotropin releasing factor) in inhibiting LH levels in female rats, we have injected CRF (1 nmol) directly into the ME and then measured plasma LH and FSH concentrations in conscious ovariectomized (OVX) rats in the absence or presence of a single dose of estradiol benzoate (EB). CRF caused a significant decrease in plasma LH levels in both OVX and OVX + EB rats at 30 min postinjection, in comparison to the values obtained in animals injected with water only. Injection into the ME of water had no effect on plasma LH levels in either OVX or OVX + EB animals. The results suggest that CRF probably inhibits LH secretion, at least in part by a central action on GnRH release in ME.  相似文献   

19.
Cold-induced increase of thyrotropin (TSH) release was found to be inhibited after 10 or 20 mg/kg morphine sulfate (MO) injected intraperitoneally 30 min before the transfer of adult male rats from 30 to 4 degrees C for 60 min (i.e. 90 min before sacrifice). In contrast, lower doses of MO such as 2.5 and 5 mg/kg were found to stimulate the cold-induced TSH release under the same conditions. Such a cold-induced TSH release stimulated by lower doses of MO was found to be inhibited by intraperitoneal injection of 2 or 4 mg/kg naloxone (NX) 30 min before MO injection (i.e. 120 min before sacrifice) in a dose-dependent manner, while the same doses of NX were without effect on the levels of TSH after higher doses of MO. It is suggested that these effects may depend on different sensitivities of various hypothalamic loci involved in mediating either a stimulation or inhibition of TSH release.  相似文献   

20.
Intravenous injection of 600 microgram PGE2 or PGI2 significantly increased serum LH and prolactin levels in estradiol treated ovariectomized rats. There was no effect on serum FSH concentration. PGE2 and PGI2 stimulated LH release in a non-dose dependent manner, while prolactin levels were positively correlated with the dose administered following PGI2 treatment. 6-keto-PGF1 alpha at a comparable dose had no effect on pituitary hormone levels. Subcutaneous administration of 1 mg/kg or 60 mg/kg PGI2 for seven days significantly depressed serum LH level both in male and female rats. These doses had no effect on serum FSH or prolactin levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号