首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the role of central noradrenaline (NA) in gastric functions, changes in mucosal blood flow (MBF) and acid secretion following electrical stimulation of the lateral hypothalamic area (LHA) and the effects of NA on these parameters were examined in rats anesthetized with urethane. NA 10 μg/animal injected into the lateral ventricle decreased the basal value of both the gastric MBF and acid output, while the same dose of acetycholine or dopamine was without effect. Repetitive electrical stimulation of LHA at 10 cycles/sec, 0.5 mA, 2 msec for 10 min elicited a significant, reproducible increase in both gastric MBF and acid output. NA 10 μg/animal injected into the lateral ventricle completely blocked these increases induced by the electrical stimulation. These data suggest that a central noradrenergic inhibitory mechanism is involved in regulation of the gastric MBF and acid secretion.  相似文献   

2.
M Warrick  T M Lin 《Life sciences》1975,17(3):333-338
Clearance of plasma aminopyrine (an index of mucosal blood flow, MBF) into acid (0.1 N HCl) instilled into Heidenhain pouches was about 200 ml per 30 min under basal conditions. Glucagon 50 μg/kg s.c. significantly decreased the MBF from 200 to 132 ml per 30 min at one hr; the decrease lasted about 60 min. Infusion of glucagon 50 μg/kg i.v. for 1 hr produced a delayed reduction of MBF lasting for more than 90 min. Under the same experimental conditions, atropine 50 μg/kg reduced MBF from 200 to 166 ml per 30 min upon subcutaneous administration and showed no significant effect by i.v. infusion. The increase in residual volume of the pouch caused by glucagon could not account for all the decrease in clearance of aminopyrine. We conclude that glucagon reduces gastric mucosal blood flow under basal conditions.  相似文献   

3.
It has been suggested that mammalian gastrin-releasing peptide (GRP) and bombesin (BBS) might inhibit gastric secretion by a central nervous system action. The present investigations were intended to define the gastric effect and to look for an effect on the exocrine pancreas. Wistar male rats were provided with a chronic cannula allowing cerebroventricular injections in the 3rd ventricle, and with chronic gastric and/or pancreatic fistulas allowing the collection of gastric and/or pancreatic secretions in conscious animals. Both basal secretions were studied. Gastric secretion was stimulated with a 75 mg/kg s.c. injection of 2-deoxyglucose (2-dGlc). The dose range of bombesin was 0.01–1 μg (6–600 pmol) and GRP was 0.01–10 μg/rat (3.5 pmol to 3.5 nmol). A significant dose related decrease of basal gastric secretion was observed with the two peptides. The gastric acid response to 2-dGlc was inhibited by both peptides in a dose-related fashion and the reduction of gastric acid output mainly resulted from a decrease in the volume of gastric juice. The exocrine pancreatic secretion was also decreased by 30–55% after GRP but the BBS inhibitory effect was poorly dose-related. No significant difference was found after removal of gastric secretion, indicating that most of the pancreatic inhibition was independent of gastric secretion.  相似文献   

4.
Y Taché  P Simard  R Collu 《Life sciences》1979,24(18):1719-1725
Several neuropeptides, injected intraventricularly (ivt), were assessed for their effects on cold-restraint-induced hypothermia and hemorrhagic gastric lesions in 24 hr fasted rats. Bombesin (5-1 μg) further enhanced the drop in body temperature following stress and markedly prevented the gastric erosions in a dose-dependent fashion (5-0.1 μg). β-endorphin exerted a similar effect, but only at the 5 μg dose level. Other peptides (neurotensin, substance P, somatostatin and TRH: 5 μg) did not influence susceptibility to the gastric mucosal damage. Somatostatin and TRH reduced the hypothermic effect of stress. Bombesin is 250 times less potent when injected systemically than ivt and its actions are not reversed by nalaxone. The prevention of gastric erosions by bombesin could initially involve a central mechanism of action, independent of opiate receptors and possibly related to the sustained and marked hyperglycemia observed in bombesin treated rats exposed to stress.  相似文献   

5.
The effects of intravenous infusion of neurotensin on small bowel motility was studied in conscious rats. During 1 h a standardized test meal of glucose, polyethyleneglycol (PEG) 3000, phenol red and 125I-labelled polyvinylpyrrolidone was administered via a permanent gastric catheter and simultaneously the bile-excreted radiopharmaceutic 99Tcm-Solco-HIDA was infused intravenously. Immediately after the infusions the gastrointestinal specimen was excised and examined for distribution of radioactivity. Both doses of neurotensin (0.1 and 0.3 μg · kg?1 · h?1) resulted in an increase in the neurotensin-like immunoreactivity (NTLI) of plasma to levels similar to that found after a fatty meal. Concurrently the small bowel transport pattern was changed from an interdigestive state to one similar to that found after a meal. In animals not receiving the gastric test meal, neurotensin (0.1–0.5 μg · kg?1 · h?) had no effect on motility. Infusion of the gastric test meal alone did not change the interdigestive motility or the NTLI value. This indicates that the presence of gastric infusates potentiates the effect of neurotensin on small bowel motility. The motility response to neurotensin did not differ between intact and vagotomized animals. This contrasts to earlier findings that the small bowel motility response to a fatty meal is dependent on intact vagal function. Thus, a difference in the mechanism responsible for the motility responses between a fatty meal and neurotensin exists. In view of this finding it seems reasonable to assume that neurotensin cannot be the only factor responsible for the shift in motility found after a fatty meal.  相似文献   

6.
Neurotensin stimulates pancreatic secretion directly and by potentiating the effect of secretin. Neurotensin also inhibits gastric secretion. Secretin inhibits gastric secretion as well, but whether it also interacts with neurotensin is not known. Secretin is known to inhibit gastric mucosal blood flow (GMBF). The effect of neurotensin on GMBF is not known. Acid secretion (triple lumen perfused orogastric tube) and GMBF ([14C]aminopyrine clearance) were therefore measured in 6 subjects during neurotensin, secretin and neurotensin plus secretin infusions. Neurotensin plus secretin reduced acid secretion by a median 130 (range 34-394) mumol/min which was significantly greater than either neurotensin at 36 (7-67) mumol/min or secretin 54 (20-347) mumol/min alone (P less than 0.05). This effect appeared independent of GMBF. Neurotensin plus secretin reduced GMBF by 14 (12-27) ml/min but not significantly more than neurotensin at 11 (3-20) ml/min or secretin 18 (2-27) ml/min alone. Further, there was no correlation between changes in acid output and GMBF during infusion of the peptides. We conclude that the inhibitory effects of neurotensin and secretin on gastric secretion are at least additive and together they may function as an 'enterogastrone'.  相似文献   

7.
Since the gastrointestinal peptide neurotensin has a stimulatory effect on the secretion of the exocrine pancreas and an inhibitory effect on secretion and motility of the stomach, we investigated whether chronic parenteral administration of neurotensin would affect pancreatic and gastric growth. We therefore infused synthetic neurotensin subcutaneously (dose, 43 and 282 pmol X kg-1 X min-1) in 20 Wistar rats for 2 weeks using Alzet osmotic minipumps and compared pancreatic weight, DNA, RNA, protein, lipase, amylase, pancreatic polypeptide and insulin with these parameters in 10 control rats from the same litter with subcutaneously implanted plastic cylinders approximately the size of the minipumps. In another experiment, synthetic neurotensin (836 pmol X kg-1) was injected intraperitoneally three times a day for 3 days in 12 rats. Thereafter, we measured pancreatic DNA and in vitro incorporation of [3H]thymidine into pancreatic DNA. These effects were compared with the actions of caerulein and normal saline. Long term infusion of the high neurotensin dose induced an increase of pancreatic weight (control: 0.87 g, neurotensin: 1.02 g) and of DNA (control: 2.5 micrograms; neurotensin: 3.5 micrograms) and pancreatic polypeptide (control: 2.4 ng; neurotensin: 7.4 ng) contents, whereas pancreatic protein, RNA, amylase and lipase contents were not stimulated. In relation to DNA, these parameters even were significantly depressed. Insulin remained unchanged. Intraperitoneal injection of neurotensin induced an increase of pancreatic DNA content and stimulated [3H]thymidine incorporation into DNA (control: 11 000 dpm/g; neurotensin: 15 800 dpm/g pancreas). Moreover, long-term neurotensin infusion with the high dose led to a rise in protein concentration and an increase in the thickness of the gastric antrum; antral DNA concentration was insignificantly stimulated. Parenteral neurotensin in the doses and at the times administered, led therefore, to hyperplasia of the pancreas and induced growth of the gastric antrum. It is concluded that neurotensin can act as a trophic factor on pancreas and gastric antrum of the rat. It remains to be determined whether this represents a physiological effect of neurotensin.  相似文献   

8.
The existence of possible local mediators of the inhibitory effect of neurotensin on gastric acid secretion has not been determined. We perfused rats intragastrically with warmed saline and stimulated acid secretion with intravenous pentagastrin, 32 micrograms/kg/hr, and found that anesthesia with pentobarbital resulted in marked inhibition of acid secretion by intravenous neurotensin; however, anesthesia with urethane prevented this inhibitory effect of neurotensin from occurring. In addition, we found a significant increase in somatostatin-like immunoreactivity in portal venous blood during neurotensin infusion in pentobarbital-anesthetized rats. Neither neurotensin nor pentagastrin infusion modified gastric luminal somatostatin-like immunoreactivity after either pentobarbital or urethane, and rats anesthetized with urethane did not show an increase of somatostatin-like immunoreactivity in portal venous blood during neurotensin infusion. These results suggested that somatostatin-like immunoreactivity, released into the portal circulation, was necessary for exogenous neurotensin to inhibit pentagastrin-stimulated gastric acid secretion under these conditions in anesthetized rats.  相似文献   

9.
Previous work from this laboratory showed the ability of neurotensin to inhibit synaptosomal membrane Na(+), K(+)-ATPase activity, the effect being blocked by SR 48692, a non-peptidic antagonist for high affinity neurotensin receptor (NTS1) [López Ordieres and Rodríguez de Lores Arnaiz 2000; 2001]. To further study neurotensin interaction with Na(+), K(+)-ATPase, peptide effect on high affinity [(3)H]-ouabain binding was studied in cerebral cortex membranes. It was observed that neurotensin modified binding in a dose-dependent manner, leading to 80% decrease with 1 × 10(-4)M concentration. On the other hand, the single addition of 1 × 10(-6)M, 1 × 10(-5)M and 1 × 10(-4)M SR 48692 (Sanofi-Aventis, U.S., Inc.) decreased [(3)H]-ouabain binding (in %) to 87 ± 16; 74 ± 16 and 34 ± 17, respectively. Simultaneous addition of neurotensin and SR 48692 led to additive or synergic effects. Partial NTS2 agonist levocabastine inhibited [(3)H]-ouabain binding likewise. Saturation assays followed by Scatchard analyses showed that neurotensin increased K(d) value whereas failed to modify B(max) value, indicating a competitive type interaction of the peptide at Na(+), K(+)-ATPase ouabain site. At variance, SR 48692 decreased B(max) value whereas it did not modify K(d) value. [(3)H]-ouabain binding was also studied in cerebral cortex membranes obtained from rats injected i. p. 30 min earlier with 100 μg and 250 μg/kg SR 48692. It was observed that the 250 μg/kg SR 48692 dose led to 19% decrease in basal [(3)H]-ouabain binding. After SR 48692 treatments, addition of 1 × 10(-6)M led to additive or synergic effect. Results suggested that [(3)H]-ouabain binding inhibition by neurotensin hardly involves NTS1 receptor.  相似文献   

10.
Thyrotropin-releasing hormone (TRH) administered intraventricularly (ICV) to rats causes a dose-dependent increase in gastric acid secretion over a range of 0.01 μg to 10 μg in the pyloris ligated rat. The maximum increase in gastric acid secretion occurs in the first hour. This effect of TRH is not mediated by its metabolites, histidyl-proline diketopiperazine or pyroglutamyl-histidyl-proline (acid TRH). β-endorphin, D-alanine-methionine-enkephalin and the leucine-enkephalin precursor, dynorphin, all inhibit TRH-induced gastric acid secretion. Bombesin, which reduces basal gastric acid secretion had no effect on TRH-induced secretion.  相似文献   

11.
Neurotensin is a tridacapeptide which has been isolated from bovine hypothalamus. The action of synthetic neurotensin was studied on gastric acid secretion in dogs provided with gastric pouches. Intravenously infused neurotensin, 50 ng × kg?1 × min?1, was found to produce a considerable inhibition of pentagastrin stimulated gastric acid secretion. On the other hand, there was no sign of inhibition of histamine induced gastric acid secretion. The experiments show that neurotensin, isolated from the central nervous system is a potent gastric secretory inhibitor and that it has a selective action in inhibiting gastric acid responses to pentagastrin but not to histamine.  相似文献   

12.
A variety of stimuli can act through the central nervous system to alter gastric acid secretion. Lesioning and stimulation experiments have established roles for the lateral and ventromedial hypothalamus and the limbic system in the central regulation of gastric acid secretion. Recently a number of neuropeptides have been demonstrated to alter gastric acid secretion after central administration. Thyrotropin-releasing hormone (TRH) and gastrin both increase gastric acid secretion, whereas bombesin, calcitonin, the endogenous opioid peptides and neurotensin decrease gastric acid secretion. With the exception of bombesin, all the other neuropeptides appear to produce their effects through a vagally mediated mechanism. In addition, a number of these neuropeptides, when centrally administered, have been demonstrated to exert a potent cytoprotective effect against stress ulcer development. This review develops a peptidergic hypothesis of gastric acid secretion, suggesting that the final integration of the cephalic phase of gastric acid secretion is brought about by maintaining a delicate balance in the concentration of a number of interacting peptides and monoamines.  相似文献   

13.
目的: 探究不同浓度桦木酸对人胃癌MGC-803细胞增殖的影响。方法: 将人胃癌 MGC-803 细胞分成 4 组,每组设置 3 个复孔,对照组细胞为加入浓度为0 μg /ml的桦木酸实验组细胞分别加入终浓度为10、20、30 μg /ml 的桦木酸,各组细胞在含5%的 CO2 培养箱中孵育 48 h 后,使用吉姆萨染色法和台盼蓝拒染法检测桦木酸对细胞克隆形成率和生长抑制率的影响;EdU法和流式细胞术分别检测细胞增殖和细胞周期变化;qRT-PCR和Western blot检测细胞周期调控因子CCNB1CCND1的表达。结果: 与对照组相比,人胃癌MGC-803的克隆形成率显著降低(P<0.01),生长抑制率明显升高,细胞增殖能力显著下降(P<0.01);各实验组细胞随着桦木酸浓度的增加G1 期细胞所占比例逐渐降低, 而S 期细胞数量显著增多(P<0.01);细胞周期调控因子CCNB1CCND1 的mRNA和蛋白表达水平均显著降低(P<0.01),30 μg /ml 的桦木酸处理组的表现最佳。结论: 在终浓度为 10~30 μg /ml 的范围内,桦木酸能够降低人胃癌MGC-803细胞增殖,抑制细胞生长,下调CCNB1CCND1的表达将人胃癌 MGC-803细胞阻滞于G0/G1 期。  相似文献   

14.
We found that the tritium-labeled synthetic ACTH-like octapeptide leucocorticotropin corresponding to the 81–88 sequence of the precursor of human interleukin-1α ([3H]GK VLKKRR) is bound by the ACTH receptor of rat adrenal cortex with a high affinity and specificity (K d 2.2 ± 0.1 nM). This peptide was shown to exert no effect on the adenylate cyclase activity of the membranes of rat adrenal cortex in the concentration range from 1 to 1000 nM. Leucocorticotropin administration three times at doses of 10–20 μg/animal did not change the level of hydroxycorticosteroids (11-HOCS) in the rat adrenal glands in the absence of temperature action. At the same time, the peptide abolishes (at a dose of 20 μg/animal, three times) or significantly decreases (at a dose of 10 μg/animal, three times) the dramatic increase in the 11-HOCS content in the adrenal glands occurring in the case of cold or heat shock. Thus, leucocorticotropin normalizes the 11-HOCS level in the rat adrenal cortex during stress. The stress-protective effect of the peptide is mediated through the ACTH receptor.  相似文献   

15.
Dopamine (DA) and DA agonists have been shown to exert a protective role against the formation of duodenal ulcers. The effect of stimulation of DA receptors on the development of stress-induced gastric ulcers is currently unknown. Accordingly, we evaluated the effect of several DA agonists on the development of gastric ulcers induced by 3 h of cold + restraint stress (CRS) in rats. Apomorphine, d-amphetamine, methylphenidate, and threo-dl-p-hydroxymethylphenidate (an hydroxylated analog of methylphenidate), significantly reduced both the incidence and severity of CRS-induced gastric ulcers. The gastric cytoprotection afforded by these agents was dose-related, and completely antagonized by pretreatment with the peripheally acting DA antagonist domperidone. Because domperidone blocks peripheral, but not central, DA receptors, and since the entry of threo-dl-p-hydroxymethylphenidate across the blood-brain barrier into the brain is restricted to a great extent, we conclude that stimulation of peripheral DA receptors is primarily involved in the gastric cytoprotection induced by dopamimetics.The pathogenesis of stress-induced gastric ulcers remains largely unknown, and significant efforts have been made over the last decade to functionally characterize some of the factors involved in the etiology of this disease. Considerable attention has been focused on gastric acid secretion, but its primary role in stress-induced gastric ulcer disease remains uncertain. In fact, agents which effectively inhibit or neutralize gastric acid secretion such as cimetidine or antacids do not necessarily exert protection against stress-induced gastric ulcers (1,2). Moreover, in our original studies with neurotensin, a brain and gastrointestinal peptide, we have found that central administration of this neuropeptide, which completely prevents the development of cold + restraint stress (CRS)-induced gastric ulcers, does not appreciably alter gastric acid secretion (2). These findings support the contention that gastric acid secretion may not be an important factor in the development of this type of gastric ulcer.There is, however, considerable evidence that the automatic nervous system plays an intermediary role in the development of these ulcers (3,4). In this regard, surgical or pharmacological blockade of the vagal (cholinergic) division of the autonomic nervous system prevents the appearance of stress-associated gastric ulcers (5,6). Direct stimulation of catecholamine receptors, or indirect activation via increased sympathetic outflow to the periphery (7,4,8–11) appears to produce a salutary effect of stress-induced gastric ulcers.Szabo and his associates (12, 13, 14) have extensively studied the anti ulcer effects of dopamine (DA) in duodenal ulcer formation. Whether DA also modifies the development of stress-induced gastric ulcers is currently unknown.We have therefore evaluated the effect of selected DA receptor agonists and antagonists on CRS-induced gastric ulcer formation in rats.  相似文献   

16.
Some of the biological activities of prostacyclin (PGI2) are known to be mediated through cyclic AMP (cAMP). The purpose of this study was to assess the involvement of histamine and serotonin receptors as well as cAMP in the PGI2-induced hypothermia in conscious guinea pig. Intracerebroventricular administration of 50–500 μg/kg PGI2 produced a dose-related hypothermia, whereas its stable metabolite 6-keto prostaglandin F1α had an insignificant effect. Low central doses (10–50 μg/kg) of dibutyryl cAMP (DBC) were hyperthermic, but high doses (100–500 μg/kg) caused hypothermia. Theophylline and low doses of DBC given centrally attenuated the PGI2-induced hypothermia. Mepyramine and methysergide did not antagonize the effects of PGI2 or DBC. However, central administration of metiamide (10–100 μg/kg) attenuated the hypothermic responses to both PGI2 and DBC. These results suggest that histamine H2-receptors are involved in the hypothermia induced by PGI2.  相似文献   

17.
Summary Neurotensin is a 13-amino acid peptide (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu) originally isolated from hypothalami (Carraway and Leeman, 1973) and later from intestines (Kitabgiet al., 1976) of bovine. The peptide is present throughout the animal kingdom, suggesting its participation to important processes basic to animal life (Carrawayet al., 1982). Neurotensin and its analogue neuromedin-N (Lys-Ile-Pro-Tyr-Ile-Leu) (Minaminoet al., 1984) are synthesized by a common precursor in mammalian brain (Kislauskiset al., 1988) and intestine (Dobneret al., 1987). The central and peripheral distribution and effects of neurotensin have been extensively studied. In the brain, neurotensin is exclusively found in nerve cells, fibers, and terminals (Uhlet al., 1979), whereas the majority of peripheral neurotensin is found in the endocrine N-cells located in the intestinal mucosa (Orciet al., 1976; Helmstaedteret al., 1977). Central or peripheral injections of neurotensin produce completely different pharmacological effects (Table I) indicating that the peptide does not cross the blood-brain barrier. Many of the effects of centrally administered neurotensin are similar to those of neuroleptics or can be antagonized by simultaneous administration of TRH (Table I). The recently discovered nonpeptide antagonist SR 48692 (Gullyet al., 1993) can inhibit several of the central and peripheral effects of neurotensin (Table I).Like many other neuropeptides, neurotensin is a messenger of intracellular communication working as a neurotransmitter or neuromodulator in the brain (Nemeroffet al., 1982) and as a local hormone in the periphery (Hirsch Fernstromet al., 1980). Thus, several pharmacological, morphological, and neurochemical data suggest that one of the functions of neurotensin in the brain is to regulate dopamine neurotransmission along the nigrostriatal and mesolimbic pathways (Quirion, 1983; Kitabgi, 1989). On the other hand, the likely role of neurotensin as a parahormone in the gastrointestinal tract has been well documented (Rosell and Rökaeus, 1981; Kitabgi, 1982).Both central and peripheral modes of action of neurotensin imply as a first step the recognition of the peptide by a specific receptor located on the plasma membrane of the target cell. Formation of the neurotensin-receptor complex is then translated inside the cell by a change in the activity of an intracellular enzyme. This paper describes the binding and structural properties of neurotensin receptors as well as the signal transduction pathways that are activated by the peptide in various target tissues and cells.  相似文献   

18.
The effects of hypophysectomy and pharmacologic manipulation of brain biogenic amines on gastric secretion (volume and titratable acidity) and on CNS-mediated inhibition of gastric secretion by bombesin were studied in pylorus-ligated rats. Bombesin (100 ng), given intracisternally (i.c.), reduced the gastric secretory volume by 61%, raised pH values to 5 and virtually suppressed the titratable acidity of gastric secretion. Hypophysectomy did not modify the volume of secretion, lowered the gastric acid concentration by 37% and did not alter the magnitude of bombesin's suppressive effect, suggesting that pituitary-derived substances do not participate in the expression of bombesin's action. Depletion of brain catecholamines by combined administration of the neurotoxic agent 6-hydroxydopamine (400 μg twice, i.c.) and the catecholamine synthesis inhibitor α-methyl-p-tyrosine (250 mg/kg) or blockade of dopamine receptors by haloperidol (25 μg, i.c.), which induced a rise in plasma prolactin levels (indirect evidence of suppression of dopaminergic inhibitory tonus) neither modified gastric secretion nor the antisecretory effect of bombesin. Depletion of brain serotonin by the indolamine neurotoxin 5,6-dihydroxytryptamine (50 μg, i.c.) combined with p-chlorophenylalanine (315 mg/kg), an inhibitor of tryptophane-hydroxylase, did not affect gastric secretion or bombesin's action. Administration of dopamine, serotonin or noradrenaline at 10-μg dose levels i.c. had no effect on gastric secretion. The demonstration that pharmacologic measures designed to interfere with the normal functioning of brain catecholaminergic and serotoninergic systems did not modify gastric secretion is not in favor of their involvement in the brain control of gastric secretion. Moreover, the fact that the potent antisecretory action of bombesin is not mimicked by, nor dependent upon, intact biogenic amine pathways further supports the concept that a direct neuropeptidergic pathway may participate in the CNS regulation of gastric secretion.  相似文献   

19.
The gastric exocrine inhibitory activities of neurotensin were characterized in conscious cats prepared with gastric fistulae. Neurotensin was a potent inhibitor of pentagastrin-stimulated pepsin secretion (ID50, approx. 0.3 mumol . kg-1 . h-1) but was approximately 60 times less potent against acid secretion. Neurotensin did not significantly reduce submaximal histamine-stimulated acid or pepsin secretions. the total 2 h acid and pepsin outputs in response to insulin-hypoglycaemia were not reduced by neurotensin, although the peak 15-min outputs were reduced. The reduction in peak secretion was possibly related to neurotensin antagonism of the ability of insulin to lower blood glucose concentrations. Neurotensin alone was not hyperglycaemic when given as an intravenous infusion. Two C-terminal fragments of neurotensin, the dodecapeptide and nonapeptide, inhibited pentagastrin-stimulated pepsin secretion, but were less potent than neurotensin. The observations with the C-terminal fragments indicate that the major determinants of gastric exocrine inhibitory activity of neurotensin reside in its C-terminal; this agrees with observations on other biological activities of neurotensin. The reduced potency of the dodecapeptide indicates the importance of the N-terminal pyroglutamyl residue for full gastric exocrine inhibitory activity.  相似文献   

20.
The gastric antisecretory actions of (15S)-15-methyl prostaglandin E2 methyl ester (Me-PGE2) and Prostaglandin E2 (PGE2) were evaluated in the unanesthetized gastric fistula rhesus monkey. Secretion was submaximally stimulated by multiple subcutaneous injections of histamine acid phosphate given every hour for four consecutive hours. When a steady-state plateau of gastric secretion was reached, the PG's were administered as a single bolus dose either intravenously (i.v.) or intragastrically (i.g.). Both PG's inhibited histamine-stimulated gastric secretion. The PG's showed greater sensitivity in inhibiting acid concentration while not affecting volume output. Active i.v. and i.g. antisecretory doses of Me-PGE2 ranged from 3 to 10 μg/kg, while PGE2 showed significant antisecretory activity at i.v. bolus doses of 30–100 μg/kg and i.g. bolus dose of 1.0 mg/kg. Thus, Me-PGE2 is estimated to be at least 10 and 300 times more potent than PGE2 by the i.v. and i.g. administration routes, respectively. These findings indicate that the rhesus monkey shows some similarities to man in responsiveness to gastric secretory inhibition by E-prostaglandins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号