首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results described in the accompanying article support the model in which glucosylphosphoryldolichol (Glc-P-Dol) is synthesized on the cytoplasmic face of the ER, and functions as a glucosyl donor for three Glc-P-Dol:Glc0-2Man9-GlcNAc2-P-P-Dol glucosyltransferases (GlcTases) in the lumenal compartment. In this study, the enzymatic synthesis and structural characterization by NMR and electrospray-ionization tandem mass spectrometry of a series of water-soluble beta-Glc-P-Dol analogs containing 2-4 isoprene units with either the cis - or trans - stereoconfiguration in the beta-position are described. The water- soluble analogs were (1) used to examine the stereospecificity of the Glc-P-Dol:Glc0-2Man9GlcNAc2-P-P-Dol glucosyltransferases (GlcTases) and (2) tested as potential substrates for a membrane protein(s) mediating the transbilayer movement of Glc-P-Dol in sealed ER vesicles from rat liver and pig brain. The Glc-P-Dol-mediated GlcTases in pig brain microsomes utilized [3H]Glc-labeled Glc-P-Dol10, Glc-P-(omega, c )Dol15, Glc-P(omega, t,t )Dol20, and Glc-P-(omega, t,c )Dol20as glucosyl donors with [3H]Glc3Man9GlcNAc2-P-P-Dol the major product labeled in vitro. A preference was exhibited for C15-20 substrates containing an internal cis -isoprene unit in the beta-position. In addition, the water-soluble analog, Glc-P-Dol10, was shown to enter the lumenal compartment of sealed microsomal vesicles from rat liver and pig brain via a protein-mediated transport system enriched in the ER. The properties of the ER transport system have been characterized. Glc- P-Dol10was not transported into or adsorbed by synthetic PC-liposomes or bovine erythrocytes. The results of these studies indicate that (1) the internal cis -isoprene units are important for the utilization of Glc-P-Dol as a glucosyl donor and (2) the transport of the water- soluble analog may provide an experimental approach to assay the hypothetical "flippase" proposed to mediate the transbilayer movement of Glc-P-Dol from the cytoplasmic face of the ER to the lumenal monolayer.   相似文献   

2.
The precursor oligosaccharide donor for protein N-glycosylation in eukaryotes, Glc3Man9GlcNAc(2)-P-P-dolichol, is synthesized in two stages on both leaflets of the rough endoplasmic reticulum (ER). There is good evidence that the level of dolichyl monophosphate (Dol-P) is one rate-controlling factor in the first stage of the assembly process. In the current topological model it is proposed that ER proteins (flippases) then mediate the transbilayer movement of Man-P-Dol, Glc-P-Dol, and Man5GlcNAc(2)-P-P-Dol from the cytoplasmic leaflet to the lumenal leaflet. The rate of flipping of the three intermediates could plausibly influence the conversion of Man5GlcNAc(2)-P-P-Dol to Glc3Man(9)GlcNAc(2)-P-P-Dol in the second stage on the lumenal side of the rough ER. This article reviews the current understanding of the enzymes involved in the de novo biosynthesis of Dol-P and other polyisoprenoid glycosyl carrier lipids and speculates about the role of membrane proteins and enzymes that could be involved in the transbilayer movement of the lipid intermediates and the recycling of Dol-P and Dol-P-P discharged during glycosylphosphatidylinositol anchor biosynthesis, N-glycosylation, and O- and C-mannosylation reactions on the lumenal surface of the rough ER.  相似文献   

3.
During protein N-glycosylation, dolichyl pyrophosphate (Dol-P-P) is discharged in the lumenal monolayer of the endoplasmic reticulum (ER). Dol-P-P is then cleaved to Dol-P by Dol-P-P phosphatase (DPPase). Studies with the yeast mutant cwh8Delta, lacking DPPase activity, indicate that recycling of Dol-P produced by DPPase contributes significantly to the pool of Dol-P utilized for lipid intermediate biosynthesis on the cytoplasmic leaflet. Whether Dol-P formed in the lumen diffuses directly back to the cytoplasmic leaflet or is first dephosphorylated to dolichol has not been determined. Incubation of sealed ER vesicles from calf brain with acetyl-Asn-Tyr-Thr-NH(2), an N-glycosylatable peptide, to generate Dol-P-P in the lumenal monolayer produced corresponding increases in the rates of Man-P-Dol, Glc-P-Dol, and GlcNAc-P-P-Dol synthesis in the absence of CTP. No changes in dolichol kinase activity were observed. When streptolysin-O permeabilized CHO cells were incubated with an acceptor peptide, N-glycopeptide synthesis, requiring multiple cycles of the dolichol pathway, occurred in the absence of CTP. The results obtained with sealed microsomes and CHO cells indicate that Dol-P, formed from Dol-P-P, returns to the cytoplasmic leaflet where it can be reutilized for lipid intermediate biosynthesis, and dolichol kinase is not required for recycling. It is possible that the flip-flopping of the carrier lipid is mediated by a flippase, which would provide a mechanism for the recycling of Dol-P derived from Man-P-Dol-mediated reactions in N-, O-, and C-mannosylation of proteins, GPI anchor assembly, and the three Glc-P-Dol-mediated reactions in Glc(3)Man(9)GlcNAc(2)-P-P-Dol (DLO) biosynthesis.  相似文献   

4.
Asparagine-linked oligosaccharides of glycoproteins undergo extensive modification or "processing" following their attachment to protein. A key step in post-glycosylation processing is the sequential removal of glucose residues from the protein-linked oligosaccharide. We have studied rat liver preparations which catalyze removal of glucose from Glc3Man9GlcNAc, Glc2Man9GlcNAc, and Glc1Man9GlcNAc. Detergent solubilization studies, inhibitor studies, and temperature-activity profiles indicate that at least two distinct glucosidases are present in the membranes. One of these glucosidases removes the distal glucose from Glc3Man9GlcNAc, and the other glucosidase sequentially removes glucose from Glc2Man9GlcNAc and Glc1Man9GlcNAc. The latter glucosidase has been solubilized from the microsomal memrbranes and purified 12-fold. The glucosidases, which are integral membrane proteins, are localized in the rough and smooth microsomes and appear to be located on the cisternal surface of the microsomal vesicles. These glucosidases are suggested to be of biological importance in catalyzing the initial events in the post-glycosylation processing of cellular glycoprotein.  相似文献   

5.
A simple procedure is presented for the enzymatic preparation of [2-3H]mannose 6-phosphate (Man 6-P) with purified yeast hexokinase and unlabeled ATP. The enzymatically synthesized [2-3H]Man 6-P is utilized as the radiolabeled substrate in a new rapid assay for glucose 6-phosphate (Glc 6-P) phosphatase. The principle of the assay procedure is that the unreacted substrate, [2-3H]Man 6-P, is retained by the anion-exchange resin, AG 1-X8 (acetate), while the enzymatic product, [2-3H]-mannose, is eluted directly into a scintillation counting vial. When Glc 6-P phosphatase activity associated with mouse liver endoplasmic reticulum (ER) vesicles is assayed by the new chromatographic assay, the same characteristic latency and properties are observed, as determined by the commonly used colorimetric assay of inorganic phosphate produced. The anion-exchange radioassay described should be useful for a variety of topological studies on enzymes associated with membrane vesicles derived from liver and kidney ER.  相似文献   

6.
Transmembrane movement of oligosaccharide-lipids during glycoprotein synthesis   总被引:11,自引:0,他引:11  
M D Snider  O C Rogers 《Cell》1984,36(3):753-761
The transport of sugar residues into the endoplasmic reticulum (ER) during glycoprotein synthesis was studied by examining the transmembrane orientations of the oligosaccharide-lipid precursors of asparagine-linked oligosaccharides. Using the lectin concanavalin A, the lipid-linked oligosaccharides Man3-5GlcNAc2 were found on the cytoplasmic side of ER-derived vesicles in vitro while lipid-linked Man6-9GlcNAc2 and Glc1-3Man9GlcNAc2 were found facing the lumen. These results suggest that Man5GlcNAc2-lipid is synthesized on the cytoplasmic side of the ER membrane and then translocated to the luminal side. Glc3Man9GlcNAc2-lipid is then completed on the luminal side where it serves as the donor in peptide glycosylation. Translocation of Man5GlcNAc2-lipid offers a mechanism for the export of sugar residues from the cytoplasm during glycoprotein synthesis. This translocation may be the reason for the participation of lipid-linked mono- and oligosaccharides in glycoprotein synthesis.  相似文献   

7.
Rush JS  Waechter CJ 《Biochemistry》2004,43(23):7643-7652
Mannosylphosphoryldolichol (Man-P-Dol) is synthesized on the cytosolic leaflet of the rough endoplasmic reticulum (ER), and functions as a mannosyl donor in the biosynthesis of Glc(3)Man(9)GlcNAc(2)-P-P-Dol after being translocated to the lumenal leaflet. An assay, based on the transport of Man-P-citronellol (Man-P-Dol(10)), a water-soluble analogue of Man-P-Dol(95), into sealed microsomal vesicles, has been devised to identify protein(s) (flippases) that could mediate the thermodynamically unfavorable movement of Man-P-Dol between the two leaflets of the ER. To develop a defined system for the systematic investigation of the properties of the Man-P-Dol(10) transporter, and as an initial step toward purification of the protein(s) involved in the transport of Man-P-Dol(10), the activity has been solubilized from rat liver microsomes with n-octyl-beta-D-glucoside and reconstituted into proteoliposomes (approximately 0.1 microm in diameter). The properties of the reconstituted Man-P-Dol(10) transport system are similar to the Man-P-Dol(10) uptake activity in microsomal vesicles from rat liver. Man-P-Dol(10) transport into reconstituted proteoliposomes is time-dependent, reversible, saturable, and stereoselective. The direct role of ER proteins in the functionally reconstituted transport system is supported by the inhibitory effects of trypsin treatment, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), or diethylpyrocarbonate (DEPC). Solubilization and functional reconstitution are shown to provide an experimental approach to the partial purification of the protein(s) mediating the transport process.  相似文献   

8.
Gao N  Shang J  Lehrman MA 《Glycobiology》2008,18(1):125-134
GlcNAc-1-P transferase (GPT) transfers GlcNAc-1-P from UDP-GlcNAc to dolichol-P (Dol-P), forming GlcNAc-P-PDol to initiate synthesis of the lipid-linked oligosaccharide Glc3Man9GlcNAc2-P-P-dolichol (G3M9Gn2-P-P-Dol). Elevated expression of GPT in CHO-K1 cells is known to cause accumulation of the intermediate M5Gn2-P-P-Dol, presumably by excessively consuming Dol-P and thereby hindering Dol-P-dependent synthesis of Man-P-Dol (MPD) and Glc-P-Dol (GPD), which provide the residues for extending M5Gn2-P-P-Dol to G3M9Gn2-P-P-Dol. If so, elevated GPT expression should increase oligosaccharide-P-P-Dol quantities and reduce monosaccharide-P-Dol quantities, while requiring GPT enzymatic activity. Here we report that elevated GPT expression failed to appreciably alter the quantities of the two classes of dolichol-linked saccharide, and that neither a GPT inhibitor nor introduction of an inactivating mutation into GPT prevented M5Gn2-P-P-Dol accumulation,arguing against excessive Dol-P consumption. Unexpectedly,we noticed similarities between the phenotypes of GPT overexpressers and of CHO-K1 cells lacking Lec35p (encoded by MPDU1, the congenital disorder of glycosylation(CDG)-If locus), which is required for utilization of MPD and GPD. By compensatory overexpression of Lec35p, G3M9Gn2-P-P-Dol synthesis in GPT overexpressers could be restored. However, GPT overexpression did not affect the levels of Lec35 mRNA or protein. These results suggest that GPT may impair Lec35p function, and imply that upper as well as lower limits on GPT expression exist in normal cells. Since the mammalian GPT gene can undergo spontaneous amplification, the data also indicate a potential basis for forms of pseudo-CDG-If.  相似文献   

9.
Purification and properties of glucosidase I from mung bean seedlings   总被引:3,自引:0,他引:3  
The microsomal enzyme fraction from mung bean seedlings was found to contain glucosidase activity capable of releasing [3H]glucose from the glucose-labeled Glc3Man9GlcNAc. The enzymatic activity could be released in a soluble form by treating the microsomal particles with 1.5% Triton X-100. When the solubilized enzyme fraction was chromatographed on DE-52, it was possible to resolve glucosidase I activity (measured by the release of [3H]glucose from Glc3Man9GlcNAc) from glucosidase II (measured by release of [3H]glucose from Glc2Man9GlcNAc). The glucosidase I was purified about 200-fold by chromatography on hydroxylapatite, Sephadex G-200, dextran-Sepharose, and concanavalin A-Sepharose. The purified enzyme was free of glucosidase II and aryl-glucosidase activities. Only a single glucose residue could be released from the Glc3Man9GlcNAc by this purified enzyme and the other product was the Glc2Man9GlcNAc. Furthermore, this enzyme was inhibited in a dose-dependent manner by kojibiose, an alpha-1,2-linked glucose disaccharide, but not by other alpha-linked glucose disaccharides. These data indicate that this glucosidase is a specific alpha-1,2-glucosidase. The pH optimum for the glucosidase I was about 6.3 to 6.5, and no requirements for divalent cations were observed. The enzyme was inhibited strongly by the glucosidase processing inhibitors, castanospermine and deoxynojirimycin, and less strongly by the plant pyrrolidine alkaloid, 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine. However, the enzyme was not inhibited by the mannosidase processing inhibitors, swainsonine, deoxymannojirimycin or 1,4-dideoxy-1,4-imino-D-mannitol. The stability of the enzyme under various conditions and other properties of the enzyme were determined.  相似文献   

10.
Bosis E  Nachliel E  Cohen T  Takeda Y  Ito Y  Bar-Nun S  Gutman M 《Biochemistry》2008,47(41):10970-10980
The calnexin/calreticulin cycle is a quality control system responsible for promoting the folding of newly synthesized glycoproteins entering the endoplasmic reticulum (ER). The association of calnexin and calreticulin with the glycoproteins is regulated by ER glucosidase II, which hydrolyzes Glc 2Man X GlcNAc 2 glycans to Glc 1Man X GlcNAc 2 and further to Glc 0Man X GlcNAc 2 ( X represents any number between 5 and 9). To gain new insights into the reaction mechanism of glucosidase II, we developed a kinetic model that describes the interactions between glucosidase II, calnexin/calreticulin, and the glycans. Our model accurately reconstructed the hydrolysis of glycans with nine mannose residues and glycans with seven mannose residues, as measured by Totani et al. [Totani, K., Ihara, Y., Matsuo, I., and Ito, Y. (2006) J. Biol. Chem. 281, 31502-31508]. Intriguingly, our model predicted that glucosidase II was inhibited by its nonglucosylated end products, where the inhibitory effect of Glc 0Man 7GlcNAc 2 was much stronger than that of Glc 0Man 9GlcNAc 2. These predictions were confirmed experimentally. Moreover, our model suggested that glycans with a different number of mannose residues can be equivalent substrates of glucosidase II, in contrast to what had been previously thought. We discuss the possibility that nonglucosylated glycans, existing in the ER, might regulate the entry of newly synthesized glycoproteins into the calnexin/calreticulin cycle. Our model also shows that glucosidase II does not interact with monoglucosylated glycans while they are bound to calnexin or calreticulin.  相似文献   

11.
Sanyal S  Frank CG  Menon AK 《Biochemistry》2008,47(30):7937-7946
Transbilayer movement, or flip-flop, of lipids across the endoplasmic reticulum (ER) is required for membrane biogenesis, protein glycosylation, and GPI anchoring. Specific ER membrane proteins, flippases, are proposed to facilitate lipid flip-flop, but no ER flippase has been biochemically identified. The glycolipid Glc 3Man 9GlcNAc 2-PP-dolichol is the oligosaccharide donor for protein N-glycosylation reactions in the ER lumen. Synthesis of Glc 3Man 9GlcNAc 2-PP-dolichol is initiated on the cytoplasmic side of the ER and completed on the lumenal side, requiring flipping of the intermediate Man 5GlcNAc 2-PP-dolichol (M5-DLO) across the ER. Here we report the reconstitution of M5-DLO flipping in proteoliposomes generated from Triton X-100-extracted Saccharomyces cerevisiae microsomal proteins. Flipping was assayed by using the lectin Concanavalin A to capture M5-DLOs that had been translocated from the inner to the outer leaflet of the vesicles. M5-DLO flipping in the reconstituted system was ATP-independent and trypsin-sensitive and required a membrane protein(s) that sedimented at approximately 4 S. Man 7GlcNAc 2-PP-dolichol, a higher-order lipid intermediate, was flipped >10-fold more slowly than M5-DLO at 25 degrees C. Chromatography on Cibacron Blue dye resin enriched M5-DLO flippase activity approximately 5-fold and resolved it from both the ER glycerophospholipid flippase activity and the genetically identified flippase candidate Rft1 [Helenius, J., et al. (2002) Nature 415, 447-450]. The latter result indicates that Rft1 is not the M5-DLO flippase. Our data (i) demonstrate that the ER has at least two distinct flippase proteins, each specifically capable of translocating a class of phospholipid, and (ii) provide, for the first time, a biochemical means of identifying the M5-DLO flippase.  相似文献   

12.
Glucosidase I, the first enzyme involved in the post-translational processing of N-linked glycoproteins, was purified to homogeneity from the lactating bovine mammary tissue. The enzyme was extracted by differential treatment of the microsomal fraction with Triton X-100 and Lubrol PX. The solubilized enzyme was subjected to affinity chromatography on Affi-Gel 102 with N-5-carboxypentyldeoxynojirimycin as ligand and DEAE-Sepharose CL-6B chromatography. Purified glucosidase I shows a molecular mass of 320-330 kDa by gel filtration on Sephacryl S-300. SDS/polyacrylamide-gel electrophoresis under reducing conditions indicates a single band of approx. 85 kDa, indicating that the native enzyme is probably a tetrameric protein. Several criteria, including pH optimum of 6.6-7.0, specific hydrolytic action towards Glc3Man9GlcNAc2, to release the terminally alpha-1,2-linked glucosyl residue, and total lack of activity towards Glc1Man9GlcNAc2 and Glc2Man9GlcNAc2 saccharides, which are the biological substrates for processing glucosidase II, and 4-methylumbelliferyl alpha-D-glucopyranoside show the non-lysosomal origin and the processing-specific role of the purified enzyme. The enzyme does not require any metal ions for its activity. Hg2+, Ag+ and Cu2+ are potent inhibitors of the enzyme; this inhibition can be reversed by adding an excess of dithiothreitol. Among the saccharides tested, kojibiose (Glc alpha 1----2Glc) was inhibitory to the enzyme. Polyclonal antibodies raised against the enzyme in rabbit were found to be specific for glucosidase I, as revealed by Western-blot analysis and by immunoadsorption with Protein A-Sepharose. Anti-(glucosidase I) antibodies were cross-reactive towards a similar antigen in solubilized microsomal preparations from liver, mammary gland and heart from the bovine, guinea pig, rat and mouse.  相似文献   

13.
We have previously reported that the oligosaccharides transferred in vivo from dolichol-P-P derivatives in protein N-glycosylation in trypanosomatids are devoid of glucose residues and contain 2 N-acetylglucosamine and 6, 7, or 9 mannose units depending on the species. In this respect trypanosomatids differ from wild type mammalian, plant, insect, and fungal cells in which Glc3Man9GlcNAc2 is transferred. We are now reporting that incubation of Glc1-3Man9GlcNAc2-P-P-dolichol and Man7-9GlcNAc2-P-P-dolichol with membranes of Trypanosoma cruzi, Leptomonas samueli, Crithidia fasciculata, and Blastocrithidia culicis and an acceptor hexapeptide leads to the transfer of the six above mentioned lipid-linked oligosaccharides at the same rate. Control experiments performed under similar conditions but with rat liver and Saccharomyces cerevisiae membranes showed that, as already known, Glc3Man9GlcNAc2 is preferentially transferred in the latter systems. We have also previously reported that, once transferred to protein, the oligosaccharides become transiently glucosylated in trypanosomatids. Depending on the species, protein-linked Glc1Man5-9GlcNAc2 have been transiently detected in cells incubated with [14C] glucose. We are now reporting that glucosidase activities degrading both Glc1Man9GlcNAc2 and Glc2Man9GlcNAc2 were detected in T. cruzi, L. samueli, and C. fasciculata. The enzymatic activities were associated with a membrane fraction; they had a neutral optimum pH value, and similarly to mammalian glucosidase II, the enzyme acting on the monoglucosylated substrate showed a decreased affinity when the latter contained fewer mannose residues. No glucosidase I-like enzyme acting on Glc3Man9GlcNAc2 was detected in any of the three above-mentioned protozoan species. This result is consistent with the fact that no oligosaccharides containing 3 glucose units occur in trypanosomatids.  相似文献   

14.
The effect of castanospermine on the processing of N-linked oligosaccharides was examined in the parent mouse lymphoma cell line and in a mutant cell line that lacks glucosidase II. When the parent cell line was grown in the presence of castanospermine at 100 micrograms/ml, glucose-containing high-mannose oligosaccharides were obtained that were not found in the absence of inhibitor. These oligosaccharides bound tightly to concanavalin A-Sepharose and were eluted in the same position as oligosaccharides from the mutant cells grown in the absence or presence of the alkaloid. The castanospermine-induced oligosaccharides were characterized by gel filtration on Bio-Gel P-4, by h.p.l.c. analysis, by enzymic digestions and by methylation analysis of [3H]mannose-labelled and [3H]galactose-labelled oligosaccharides. The major oligosaccharide released by endoglucosaminidase H in either parent or mutant cells grown in castanospermine was a Glc3Man7GlcNAc, with smaller amounts of Glc3Man8GlcNAc and Glc3Man9GlcNAc. On the other hand, in the absence of castanospermine the mutant produces mostly Glc2Man7GlcNAc. In addition to the above oligosaccharides, castanospermine stimulated the formation of an endoglucosaminidase H-resistant oligosaccharide in both cell lines. This oligosaccharide was characterized as a Glc2Man5GlcNAc2 (i.e., Glc(1,2)Glc(1,3)Man(1,2)Man(1,2)Man(1,3)[Man(1,6)]Man-GlcNAc-GlcNAc). Castanospermine was tested directly on glucosidase I and glucosidase II in lymphoma cell extracts by using [Glc-3H]Glc3Man9GlcNAc and [Glc-3H]Glc2Man9GlcNAc as substrates. Castanospermine was a potent inhibitor of both activities, but glucosidase I appeared to be more sensitive to inhibition.  相似文献   

15.
Glucosidase II (Glc'ase II) is a glycan-processing enzyme that trims two alpha1,3-linked Glc residues in succession from the glycoprotein oligosaccharide Glc2Man9GlcNAc2 to give Glc1Man9GlcNAc2 and Man9GlcNAc2 in the endoplasmic reticulum (ER). Monoglucosylated glycans, such as Glc1-Man9GlcNAc2, generated by this process play a key role in glycoprotein quality control in the ER, because they are primary ligands for the lectin chaperones calnexin (CNX) and calreticulin (CRT). A precise analysis of the substrate specificity of Glc'ase II is expected to further our understanding of the molecular basis to glycoprotein quality control, because Glc'ase II potentially competes with CNX/CRT for the same glycans, Glc1Man7-9GlcNAc2. In this study, a quantitative analysis of the specificity of Glc'ase II using a series of structurally defined synthetic glycans was carried out. In the presence of CRT, Glc'ase II-mediated trimming from Glc2Man9GlcNAc2 stopped at Glc1Man9GlcNAc2, supporting the notion that the glycan structure delivered to the CNX/CRT cycle is Glc1Man9GlcNAc2. Unexpectedly, our experiments showed that Glc1Man8(B)GlcNAc2 had nearly the same reactivity as Glc1Man9GlcNAc2, which was markedly greater than that of its positional isomer Glc1Man8(C)GlcNAc2. An analysis with glycoprotein-like probes revealed the stepwise formation of Glc1Man9GlcNAc2 and Man9GlcNAc2 from Glc2Man9GlcNAc2, even in the presence of CRT. It was also shown that Glc1Man8(B)GlcNAc2 had even greater reactivity than Glc1Man9GlcNAc2 at the glycoprotein level. Moreover, inhibitory activities by nonglucosylated glycans suggested that Glc'ase II recognized the C arm (Manalpha1, 2Manalpha1, 6Man-) of high mannose-type glycans.  相似文献   

16.
Studies on N-linked oligosaccharide processing in the mouse lymphoma glucosidase II-deficient mutant cell line (PHAR2.7) as well as the parent BW5147 cells indicated that the former maintain their capacity to synthesize complex carbohydrate units through the use of the deglucosylation mechanism provided by endomannosidase. The in vivo activity of this enzyme was evident in the mutant cells from their production of substantial amounts of glucosylated mannose saccharides, predominantly Glc2Man; moreover, in the presence of 1-deoxymannojirimycin or kifunensine to prevent processing by mannosidase I, N-linked Man8GlcNAc2 was observed entirely in the form of the characteristic isomer in which the terminal mannose of the alpha 1,3-linked branch is missing (isomer A). In contrast, parent lymphoma cells, as well as HepG2 cells in the presence of 1-deoxymannojirimycin accumulated Man9GlcNAc2 as the primary deglucosylated N-linked oligosaccharide and contained only about 16% of their Man8GlcNAc2 as isomer A. In the presence of the glucosidase inhibitor castanospermine the mutant released Glc3Man instead of Glc2Man, and the parent cells converted their deglucosylation machinery to the endomannosidase route. Despite the mutant's capacity to accommodate a large traffic through this pathway no increase in the in vitro determined endomannosidase activity was evident. The exclusive utilization of endomannosidase by the mutant for the deglucosylation of its predominant N-linked Glc2Man9GlcNAc2 permitted an exploration of the in vivo site of this enzyme's action. Pulse-chase studies utilizing sucrose-D2O density gradient centrifugation indicated that the Glc2Man9GlcNAc2 to Man8GlcNAc2 conversion is a relatively late event that is temporally separated from the endoplasmic reticulum-situated processing of Glc3Man9GlcNAc2 to Glc2Man9GlcNAc2 and in contrast to the latter takes place in the Golgi compartment.  相似文献   

17.
The potential role of degradative mechanisms in controlling the level of the dolichyl pyrophosphate-linked Glc3Man9GlcNAc2 required for protein N-glycosylation has been explored in thyroid slices and endoplasmic reticulum (ER) vesicles, focusing on cleavage of the oligosaccharide from its lipid attachment and on the enzymatic removal of peripheral monosaccharide residues. Vesicle incubations demonstrated a substantial release of free Glc3Man9GlcNAc2 (at 30 min approximately 35% of that transferred to protein) which was inhibited in the presence of exogenous peptide acceptor and was sensitive to disruption of membrane integrity by detergent. In thyroid slices glucosylated oligosaccharides terminating in the di-N-acetylchitobiose sequence were also noted and these continued to be formed even during inhibition by puromycin of both protein synthesis and the attendant N-glycosylation. These observations indicated that the oligosaccharide originated from the lipid donor and suggested, together with previously reported similarities in substrate specificity and cofactor requirements, that the oligosaccharyltransferase can carry out in vivo both the hydrolytic and transfer functions. In addition to the release of the intact Glc3Man9GlcNAc2, we also obtained evidence that the lipid-linked oligosaccharide can be modified by the in vivo action of ER glycosidases. Since radiolabeling of the oligosaccharide-lipid in thyroid slices indicated a preferential turnover of the glucose residues, the possible existence of a glucosyltransferase-glucosidase shuttle was explored with the use of castanospermine. In the presence of this glucosidase inhibitor, the formation of under-glucosylated and nonglucosylated oligosaccharides was not observed, even under conditions of energy deprivation in which they accumulate. Glucosidase inhibition in ER vesicle incubations likewise prevented the appearance of incompletely glucosylated oligosaccharide-lipids. Studies employing the mannosidase inhibitor 1-deoxymannojirimycin in thyroid slices furthermore indicated that in vivo removal of at least one mannose residue from the dolichyl pyrophosphate-linked oligosaccharide can occur.  相似文献   

18.
The trypanosomatids are generally aberrant in their protein N-glycosylation pathways. However, protein N-glycosylation in the African trypanosome Trypanosoma brucei, etiological agent of human African sleeping sickness, is not well understood. Here, we describe the creation of a bloodstream-form T. brucei mutant that is deficient in the endoplasmic reticulum enzyme glucosidase II. Characterization of the variant surface glycoprotein, the main glycoprotein synthesized by the parasite with two N-glycosylation sites, revealed unexpected changes in the N-glycosylation of this molecule. Structural characterization by mass spectrometry, nuclear magnetic resonance spectroscopy, and chemical and enzymatic treatments revealed that one of the two glycosylation sites was occupied by conventional oligomannose structures, whereas the other accumulated unusual structures in the form of Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc, Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(GlcNAcbeta1-2Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc, and Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(Galbeta1-4GlcNAcbeta1-2Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc. The possibility that these structures might arise from Glc1Man9GlcNAc2 by unusually rapid alpha-mannosidase processing was ruled out using a mixture of alpha-mannosidase inhibitors. The results suggest that bloodstream-form T. brucei can transfer both Man9GlcNAc2 and Man5GlcNAc2 to the variant surface glycoprotein in a site-specific manner and that, unlike organisms that transfer exclusively Glc3Man9GlcNAc2, the T. brucei UDP-Glc: glycoprotein glucosyltransferase and glucosidase II enzymes can use Man5GlcNAc2 and Glc1Man5GlcNAc2, respectively, as their substrates. The ability to transfer Man5GlcNAc2 structures to N-glycosylation sites destined to become Man(4-3)GlcNAc2 or complex structures may have evolved as a mechanism to conserve dolichol-phosphate-mannose donors for glycosylphosphatidylinositol anchor biosynthesis and points to fundamental differences in the specificities of host and parasite glycosyltransferases that initiate the synthesis of complex N-glycans.  相似文献   

19.
We have isolated and characterized a new yeast mutation in the glucosylation steps of lipid-linked oligosaccharide biosynthesis, alg8-1. Cells carrying the alg8-1 mutation accumulate Glc1Man9GlcNAc2-lipid both in vivo and in vitro. We present evidence showing that the alg8-1 mutation blocks addition of the second alpha 1,3-linked glucose. alg8-1 cells transfer Glc1Man9GlcNAc2 to protein instead of the wild type oligosaccharide, Glc3Man9GlcNAc2. Pulse-chase studies indicate that the Glc1Man9GlcNAc2 transferred is processed more slowly than the wild type oligosaccharide. The yeast mutation gls1-1 lacks glucosidase I activity (Esmon, B., Esmon, P.C., and Schekman, R. (1984) J. Biol. Chem. 259, 10322-10327), the enzyme responsible for removing the alpha 1,2-linked glucose residues from protein-linked oligosaccharides. We demonstrate that gls1-1 cells contain glucosidase II activity (which removes alpha 1,3-linked glucose residues) and have constructed the alg8-1 gls1-1 haploid double mutant. The Glc1Man9GlcNAc2 oligosaccharide was trimmed normally in these cells, demonstrating that the alg8-1 oligosaccharide contained an alpha 1,3-linked glucose residue. A novel Glc2 compound was probably produced by the action of the biosynthetic enzyme that normally adds the alpha 1,2-linked glucose to lipid-linked Glc2Man9GlcNAc2. This enzyme may be able to slowly add alpha 1,2-linked glucose residue to protein-bound Glc1Man9GlcNAc2. The relevance of these findings to similar observations in other systems where glucose residues are added to asparagine-linked oligosaccharides and the possible significance of the reduced rate of oligosaccharide trimming in the alg mutants are discussed.  相似文献   

20.
We have previously shown that the glucosidase inhibitor, N-methyl-1-deoxynojirimycin (MedJN), only partially inhibited N-linked complex oligosaccharide biosynthesis in F9 teratocarcinoma cells whereas the alpha-mannosidase I inhibitor, manno-1-deoxynojirimycin, completely prevented this synthesis (Romero, P. A. and Herscovics, A. (1986) Carbohydr. Res. 151, 21-28). In order to determine whether a pathway independent of processing glucosidases can occur, F9 cells were pulse-labeled for 2 min with D-[2-3H]mannose in the presence or absence of 2 mM MedJN. In control cells, Man7GlcNAc was identified in the protein-bound oligosaccharides released with endo-beta-N-acetylglucosaminidase H, in addition to the expected Glc1-3Man9GlcNAc and Man9GlcNAc arising from processing of Glc3Man9GlcNAc. MedJN completely prevented the removal of glucose residues from Glc3Man9GlcNAc, but did not greatly affect the appearance of Man7GlcNAc associated with protein. Labeled Man7GlcNAc was also found in the lipid-linked oligosaccharides of both control and treated cells. The 2-min pulse-labeled Man7GlcNAc obtained from both the lipid and protein fractions were shown to have identical structures by concanavalin A-Sepharose chromatography and by acetolysis and were clearly different from the Man7GlcNAc obtained from the usual processing pathway. These results demonstrate that transfer of a nonglucosylated oligosaccharide (Man7GlcNAc2) from dolichyl pyrophosphate to protein occurs in F9 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号