首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mice deficient in the neural cell adhesion molecule (NCAM) show behavioral abnormalities as adults, including altered exploratory behavior, deficits in spatial learning, and increased intermale aggression. Here, we report increased anxiety-like behavior of homozygous (NCAM-/-) and heterozygous (NCAM/-) mutant mice in a light/dark avoidance test, independent of genetic background and gender. Anxiety-like behavior was reduced in both NCAM+/+ and NCAM-/- mice by systemic administration of the benzodiazepine agonist diazepam and the 5-HT1A receptor agonists buspirone and 8-OH-DPAT. However, NCAM-/- mice showed anxiolytic-like effects at lower doses of buspirone and 8-OH-DPAT than NCAM+/+ mice. Such increased response to 5-HT1A receptor stimulation suggests a functional change in the serotonergic system of NCAM-/- mice, likely involved in the control of anxiety and aggression. However, 5-HT1A receptor binding and tissue content of serotonin and its metabolite 5-hydroxyindolacetic acid were found unaltered in every brain area of NCAM-/- mice investigated, indicating that expression of 5-HT1A receptors as well as synthesis and release of serotonin are largely unchanged in NCAM-/- mice. We hypothesize a critical involvement of endogenous NCAM in serotonergic transmission via 5-HT1A receptors and inwardly rectifying K+ channels as the respective effector systems.  相似文献   

2.
Mori H  Mishina M 《Life sciences》2003,74(2-3):329-336
Glutamate receptor (GluR) channels play a major role in fast excitatory synaptic transmission in vertebrate central nervous system. We revealed the molecular diversity of the GluR channel by molecular cloning and investigated their physiological roles by subunit-specific gene targeting. NMDA receptor GluRepsilon1 KO mice showed increase in thresholds for hippocampal long-term potentiation and hippocampus-dependent contextual learning. The mutant mice performed delay eyeblink conditioning, but failed to learn trace eyeblink conditioning. GluRepsilon1 mutant suffered less brain injury after focal cerebral ischemia. NMDA receptor GluRepsilon2 KO mice showed impairment of the whisker-related neural pattern formation and suckling response, and died shortly after birth. Heterozygous (+/-) GluRepsilon2 mutant mice were viable and showed enhanced startle response to acoustic stimuli. GluRdelta2, a member of novel GluR channel subfamily we found by molecular cloning, is selectively expressed in the Purkinje cells of the cerebellum. GluRdelta2 KO mice showed impairments of cerebellar synaptic plasticity and synapse stability. GluRdelta2 KO mice exhibited impairment in delay eyeblink conditioning, but learned normally trace eyeblink conditioning. The phenotypes of NMDA receptor subunits and GluRdelta2 mutant mice suggest that diverse GluR subunits play differential roles in the brain functions.  相似文献   

3.
The acoustic startle response is a protective response, elicited by a sudden and intense acoustic stimulus. Facial and skeletal muscles are activated within a few milliseconds, leading to a whole body flinch in rodents(1). Although startle responses are reflexive responses that can be reliably elicited, they are not stereotypic. They can be modulated by emotions such as fear (fear potentiated startle) and joy (joy attenuated startle), by non-associative learning processes such as habituation and sensitization, and by other sensory stimuli through sensory gating processes (prepulse inhibition), turning startle responses into an excellent tool for assessing emotions, learning, and sensory gating, for review see( 2, 3). The primary pathway mediating startle responses is very short and well described, qualifying startle also as an excellent model for studying the underlying mechanisms for behavioural plasticity on a cellular/molecular level(3). We here describe a method for assessing short-term habituation, long-term habituation and prepulse inhibition of acoustic startle responses in rodents. Habituation describes the decrease of the startle response magnitude upon repeated presentation of the same stimulus. Habituation within a testing session is called short-term habituation (STH) and is reversible upon a period of several minutes without stimulation. Habituation between testing sessions is called long-term habituation (LTH)(4). Habituation is stimulus specific(5). Prepulse inhibition is the attenuation of a startle response by a preceding non-startling sensory stimulus(6). The interval between prepulse and startle stimulus can vary from 6 to up to 2000 ms. The prepulse can be any modality, however, acoustic prepulses are the most commonly used. Habituation is a form of non-associative learning. It can also be viewed as a form of sensory filtering, since it reduces the organisms' response to a non-threatening stimulus. Prepulse inhibition (PPI) was originally developed in human neuropsychiatric research as an operational measure for sensory gating(7). PPI deficits may represent the interface of "psychosis and cognition" as they seem to predict cognitive impairment(8-10). Both habituation and PPI are disrupted in patients suffering from schizophrenia(11), and PPI disruptions have shown to be, at least in some cases, amenable to treatment with mostly atypical antipsychotics(12, 13). However, other mental and neurodegenerative diseases are also accompanied by disruption in habituation and/or PPI, such as autism spectrum disorders (slower habituation), obsessive compulsive disorder, Tourette's syndrome, Huntington's disease, Parkinson's disease, and Alzheimer's Disease (PPI)(11, 14, 15) Dopamine induced PPI deficits are a commonly used animal model for the screening of antipsychotic drugs(16), but PPI deficits can also be induced by many other psychomimetic drugs, environmental modifications and surgical procedures.  相似文献   

4.
The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies on axon guidance in Drosophila suggest that NCAM also regulates the epidermal growth factor receptor (EGFR) (Molecular and Cellular Neuroscience, 28 , 2005, 141). A possible interaction between NCAM and EGFR in mammalian cells has not been investigated. The present study demonstrates for the first time a functional interaction between NCAM and EGFR in mammalian cells and investigates the molecular mechanisms underlying this interaction. First, NCAM and EGFR are shown to play opposite roles in neurite outgrowth regulation in cerebellar granular neurons. The data presented indicate that negative regulation of EGFR is one of the mechanisms underlying the neuritogenic effect of NCAM. Second, it is demonstrated that expression of the NCAM-180 isoform induces EGFR down-regulation in transfected cells and promotes EGFR down-regulation induced by EGF stimulation. It is demonstrated that the mechanism underlying this NCAM-180-induced EGFR down-regulation involves increased EGFR ubiquitination and lysosomal EGFR degradation. Furthermore, NCAM-180-mediated EGFR down-regulation requires NCAM homophilic binding and interactions of the cytoplasmic domain of NCAM-180 with intracellular interaction partners, but does not require NCAM-mediated fibroblast growth factor receptor activation.  相似文献   

5.
Behavioral sensitization to psychostimulants such as amphetamine (AMPH) is associated with synaptic modifications that are thought to underlie learning and memory. Because AMPH enhances extracellular dopamine in the striatum where dopamine and glutamate signaling are essential for learning, one might expect that the molecular and morphological changes that occur in the striatum in response to AMPH, including changes in synaptic plasticity, would affect learning. To ascertain whether AMPH sensitization affects learning, we tested wild-type mice and mice lacking NMDA receptor signaling in striatal medium spiny neurons in several different learning tests (motor learning, Pavlovian association, U-maze escape test with strategy shifting) with or without prior sensitization to AMPH. Prior sensitization had minimal effect on learning in any of these paradigms in wild-type mice and failed to restore learning in mutant mice, despite the fact that the mutant mice became sensitized by the AMPH treatment. We conclude that the changes in synaptic plasticity and many other signaling events that occur in response to AMPH sensitization are dissociable from those involved in learning the tasks used in our experiments.  相似文献   

6.
Brain-type creatine kinases B-CK (cytosolic) and UbCKmit (mitochondrial) are considered important for the maintenance and distribution of cellular energy in the central nervous system. Previously, we have demonstrated an abnormal behavioral phenotype in mice lacking the B-CK creatine kinase isoform, regarding exploration, habituation, seizure susceptibility and spatial learning. The phenotype in these mice was associated with histological adaptations in the hippocampal mossy fiber field size. Here, mice lacking the ubiquitous mitochondrial creatine kinase isoform (UbCKmit-/- mice) showed, when subjected to a similar battery of behavioral tasks, diminished open field habituation and slower spatial learning acquisition in the Morris water maze task, but normal sensory or motor functions. A reduced acoustic startle response, higher threshold, and lack of prepulse inhibition were observed in UbCKmit-/- mice, suggesting that the unconditioned reflexive responsiveness is not optimal. Our findings suggest a role for mitochondrial CK-mediated high-energy phosphoryl transfer in synaptic signalling in the acoustic signal response network and hippocampal-dependent learning circuitry of brain. Finally, we demonstrate that UbCKmit has a widespread occurrence in the cell soma of neuronal nuclei along the rostro-caudal axis of the brain, i.e. cortex, midbrain, hindbrain, cerebellum and brainstem, similar to the occurrence of B-CK. This may explain the similarity of phenotypes in mice lacking B-CK or UbCKmit. We predict that the remaining functional intactness of the cytosolic B-CK reaction and perhaps the compensatory role of other phosphoryl transfer systems are sufficient to sustain the energy requirements for basic sensory, motor and physiological activities in UbCKmit-/- mice.  相似文献   

7.
Habituation is a fundamental form of behavioral plasticity that permits organisms to ignore inconsequential stimuli. Here we describe the habituation of a locomotor response to ethanol and other odorants in Drosophila, measured by an automated high-throughput locomotor tracking system. Flies exhibit an immediate and transient startle response upon exposure to a novel odor. Surgical removal of the antennae, the fly's major olfactory organs, abolishes this startle response. With repeated discrete exposures to ethanol vapor, the startle response habituates. Habituation is reversible by a mechanical stimulus and is not due to the accumulation of ethanol in the organism, nor to non-specific mechanisms. Ablation or inactivation of the mushroom bodies, central brain structures involved in olfactory and courtship conditioning, results in decreased olfactory habituation. In addition, olfactory habituation to ethanol generalizes to odorants that activate separate olfactory receptors. Finally, habituation is impaired in rutabaga, an adenylyl cyclase mutant isolated based on a defect in olfactory associative learning. These data demonstrate that olfactory habituation operates, at least in part, through central mechanisms. This novel model of olfactory habituation in freely moving Drosophila provides a scalable method for studying the molecular and neural bases of this simple and ubiquitous form of learning.  相似文献   

8.
GAP-43 regulates NCAM-180-mediated neurite outgrowth   总被引:6,自引:0,他引:6  
The neural cell adhesion molecule (NCAM), and the growth-associated protein (GAP-43), play pivotal roles in neuronal development and plasticity and possess interdependent functions. However, the mechanisms underlying the functional association of GAP-43 and NCAM have not been elucidated. In this study we show that (over)expression of GAP-43 in PC12E2 cells and hippocampal neurons strongly potentiates neurite extension, both in the absence and in the presence of homophilic NCAM binding. This potentiation is crucially dependent on the membrane association of GAP-43. We demonstrate that phosphorylation of GAP-43 by protein kinase C (PKC) as well as by casein kinase II (CKII) is important for the NCAM-induced neurite outgrowth. Moreover, our results indicate that in the presence of GAP-43, NCAM-induced neurite outgrowth requires functional association of NCAM-180/spectrin/GAP-43, whereas in the absence of GAP-43, the NCAM-140/non-receptor tyrosine kinase (Fyn)-associated signaling pathway is pivotal. Thus, expression of GAP-43 presumably acts as a functional switch for NCAM-180-induced signaling. This suggests that under physiological conditions, spatial and/or temporal changes of the localization of GAP-43 and NCAM on the cell membrane may determine the predominant signaling mechanism triggered by homophilic NCAM binding: NCAM-180/spectrin-mediated modulation of the actin cytoskeleton, NCAM-140-mediated activation of Fyn, or both.  相似文献   

9.
10.
Influence of neurotoxic fragment of beta-amyloid peptide (25-35) on Helix lucorum behavioral plasticity (sensitization and food-aversion learning) was investigated. After beta-amyloid peptide (25-35) injection a significant reduction of behavioral long-term sensitization was observed. It was found, that beta-amyloid peptide (25-35) may interfere with associative learning and memory. Our results clearly demonstrate that beta-amyloid peptide (25-35) may play a significant role in behavioral plasticity by chronically eliminating certain underlying forms of synaptic plasticity.  相似文献   

11.
The present study developed a new protocol to assess shock sensitivity in rats. Male Wistar rats were subjected to footshock stimuli ranging from 0 to 1.6 mA (0.1 s) in a startle apparatus and startle responses elicited by shocks were measured. Acoustic stimuli (95, 105, or 115 dB) were dispersed within the shock series serving as a control measurement of motor performance. Results indicated that the magnitude of shock startle responses significantly increased with the shock intensity in a linear trend. Morphine (8.0 mg/kg) and buspirone (1.0, 2.5, or 5.0 mg/kg), both of which possessing analgesic effects, depressed shock startle but had no such effect on acoustic startle. The effect of morphine was readily reversed by pretreatment of naloxone (1.0 mg/kg). To investigate the neural basis underlying this response, radio-frequency lesions of various structures implicated in processing of nociceptive or aversive information were undertaken. Lesions of the ventroposterior thalamic nucleus, insular cortex, or amygdala decreased startle reactivity to electric shocks but not to acoustic stimuli. Lesions of the anterior cingulate gyrus or medial prefrontal cortex, while altered the reactivity to acoustic stimuli, had no effect on the shock-elicited startle. These results suggested that the amplitude of startle in response to electric shocks provide a quantitative measurement of shock sensitivity within an extended range of stimulus intensities. Performing this response may engage the the central nociceptive pathway.  相似文献   

12.
Neural recognition molecules such as the neural cell adhesion molecule (NCAM) have been implicated in synaptic plasticity, including long-term potentiation (LTP), sensitization, and learning and memory. The major isoform of NCAM carrying the longest cytoplasmic domain of all NCAM isoforms (NCAM180) is predominantly localized in postsynaptic membranes and postsynaptic densities of hippocampal neurons, with only a proportion of synapses carrying detectable levels of NCAM180. To investigate whether this differential expression of NCAM180 may correlate with distinct states of synaptic activity, LTP was induced by high-frequency stimulation of the perforant path and the percentage of NCAM180 immunopositive spine synapses determined in the outer third of the dentate molecular layer of the dentate gyrus by immunoelectron microscopy. Twenty-four hours following induction of LTP by high-frequency stimulation, the percentage of spine synapses expressing NCAM180 increases from 37% (passive control) to 70%. This increase was inhibited by the noncompetitive N-methyl-D -aspartate receptor antagonist MK801. Following repeated LTP induction at 10 consecutive days with one tetanization each day, 60% of all spine synapses were NCAM180 immunoreactive. Compared to passive control animals, the percentage of NCAM180 expressing synapses in low-frequency stimulated animals decreased from 37% to 28%. Spine synapses in the inner part of the dentate molecular layer not contacted by the afferents of the perforant path did not change the percentage of NCAM180-expressing synapses. The results obtained by the postembedding immunogold staining technique confirmed the difference in NCAM180 expression of spine synapses between passive control and potentiated animals. These observations suggest a role for NCAM180 in synaptic remodeling accompanying LTP. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 359–372, 1998  相似文献   

13.
We have used the gill- and siphon-withdrawal reflex of Aplysia californica to determine the morphological basis of the prolonged changes in synaptic effectiveness that underlie long-term habituation and sensitization. We have found that clear structural changes accompany behavioral modification and have demonstrated that these can be detected at the level of identified sensory neuron synapses, a critical site of plasticity for the short-term forms of both types of learning. These alterations occur at two different levels of synaptic organization and include (1) changes in focal regions of synaptic membrane specialization--the number, size and vesicle complement of sensory neuron active zones are larger in sensitized animals and smaller in habituated animals compared with controls--and (2) a parallel but more dramatic and global trend involving modulation of the total number of presynaptic varicosities per sensory neuron. Quantitative analysis of the time course over which these structural alterations occur during sensitization has further demonstrated that changes in the number of varicosities and active zones persist in parallel with the behavioral retention of the memory. This increase in the number of sensory neuron synapses during long-term sensitization in Aplysia is similar to changes in the number of synapses in the mammalian brain following various forms of environmental manipulations and learning (Greenough, 1984). Therefore learning may involve a form of neuronal growth across a broad segment of the animal kingdom, thereby suggesting a role for structural synaptic plasticity during long-term behavioral modifications.  相似文献   

14.
Phosphorylation of neural proteins in response to a diverse array of external stimuli is one of the main mechanisms underlying dynamic changes in neural circuitry. The NR2B subunit of the NMDA receptor is tyrosine-phosphorylated in the brain, with Tyr-1472 its major phosphorylation site. Here, we generate mice with a knockin mutation of the Tyr-1472 site to phenylalanine (Y1472F) and show that Tyr-1472 phosphorylation is essential for fear learning and amygdaloid synaptic plasticity. The knockin mice show impaired fear-related learning and reduced amygdaloid long-term potentiation. NMDA receptor-mediated CaMKII signaling is impaired in YF/YF mice. Electron microscopic analyses reveal that the Y1472F mutant of the NR2B subunit shows improper localization at synapses in the amygdala. We thus identify Tyr-1472 phosphorylation as a key mediator of fear learning and amygdaloid synaptic plasticity.  相似文献   

15.
Heart rate (HR), freezing score, and motor component were estimated during acoustic startle (ASR) habituation (two sessions with 24-hour interval, 10 trials in a session). It was shown that rats previously exposed to the experimental context (once for 5 min 24 h before training) demonstrated HR decrease in response to the first stimulus and tachycardia in response to the 4th-10th stimuli during the first session. The interstimulus HR declined from the 4th to the 6th trials. The same profile of cardiovascular response was observed in this group at the beginning of the second session with the following (to the 7th trial) habituation of tachycardia. These rats didn't demonstrate the intertrial HR decrease during the second session. Nonadapted rats responded by bradycardia to the 1st and 2nd trials of the first session. The response didn't change for tachycardia with continuation of stimuli presentation. Tachycardia appeared only in response to the 7th-10th trials of the second session and didn't habituate. The intertrial HR level decreased in this group only during the second session. The results are discussed in terms of contextual latent inhibition of the cardiac acoustic startle response.  相似文献   

16.
The role of acetylcholine and specific nicotinic receptors in sensorimotor gating and higher cognitive function has been controversial. Here, we used a commercially available mouse with a null mutation in the Chrna7tm1Bay gene [α7‐nicotinic acetylcholine receptor (nAChR) knockout (KO) mouse] in order to assess the role of the α7‐nAChR in sensorimotor gating and spatial learning. We examined prepulse inhibition (PPI) of startle and nicotine‐induced enhancement of PPI. We also tested short‐ and long‐term habituation of the startle response as well as of locomotor behaviour in order to differentiate the role of this receptor in the habituation of evoked behaviour (startle) vs. motivated behaviour (locomotion). To address higher cognition, mice were also tested in a spatial learning task. Our results showed a mild but consistent PPI deficit in α7‐nAChR KO mice. Furthermore, they did not show nicotine‐induced enhancement of startle or PPI. Short‐ and long‐term habituation was normal in KO mice for both types of behaviours, evoked or motivated, and they also showed normal learning and memory in the Barnes maze. Thorough analysis of the behavioural data indicated a slightly higher degree of anxiety in α7‐nAChR KO mice; however, this could only be partially confirmed in an elevated plus maze test. In summary, our data suggest that α7‐nAChRs play a minor role in PPI, but seem to mediate nicotine‐induced PPI enhancement. We found no evidence to suggest that they are important for habituation or spatial learning .  相似文献   

17.
Highly stereotyped patterns of neuronal connections are laid down during the development of the nervous system via a range of activity independent and activity dependent mechanisms. Whereas the coarse hard-wiring of the nervous system appears to rely on molecular recognition events between the neuron, its pathway, and its target, the establishment of precisely patterned functional circuits is thought to be driven by neuronal activity. In this review we discuss the role that the neuronal cell adhesion molecule (NCAM) plays in morphological plasticity. Recent studies on NCAM and its probable species homologue in Aplysia (apCAM) suggests that an individual CAM can function to both promote synaptic plasticity and maintain the structure of the synapse. In the adult brain, changes between stability and plasticity are likely to underlie dynamic morphological changes in synaptic structures associated with learning and memory. In this review we use NCAM as an example to illustrate mechanisms that can change the function of an individual CAM from a molecule that promotes plasticity to one that does not. We also discuss evidence that NCAM promotes plasticity by activating a conventional signal transduction cascade, rather than by modulating adhesion perse. Finally, we consider the evidence that supports a role for NCAM in learning and memory. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Deletion of the ryanodine receptor type 3 (RyR3) results in specific changes in hippocampal synaptic plasticity, without affecting hippocampal morphology, basal synaptic transmission or presynaptic function. Robust long-term potentiation (LTP) induced by repeated, strong tetanization in the CA1 region and in the dentate gyrus was unaltered in hippocampal slices in vitro, whereas weak forms of plasticity generated by either a single weak tetanization or depotentiation of a robust LTP were impaired. These distinct physiological deficits were paralleled by a reduced flexibility in re-learning a new target in the water-maze. In contrast, learning performance in the acquisition phase and during probe trial did not differ between the mutants and their wild-type littermates. In the open-field, RyR3(-/-) mice displayed a normal exploration and habituation, but had an increased speed of locomotion and a mild tendency to circular running. The observed physiological and behavioral effects implicate RyR3-mediated Ca(2+) release in the intracellular processes underlying spatial learning and hippocampal synaptic plasticity.  相似文献   

19.
Abstract: Previously, we have shown that oligodendrocyte adhesion molecules are related to the 120,000–Mr neural cell adhesion molecule (NCAM-120). In this report, we present further evidence that the oligodendrocyte adhesion molecule is NCAM-120. Studies on the expression of NCAM-120 and other molecular forms of NCAM in vivo in rat brain, in vitro in primary mixed cultures, and in cultures enriched for oligodendrocytes are described. Western blot analysis of rat brain using anti-NCAM showed that NCAM-120 first appears at postnatal day 7 and increases in quantity thereafter, coincident with the development of oligodendrocytes in vivo and comparable to the expression of myelin basic protein. Purified oligodendrocytes from 4-week-old rat brains expressed only NCAM-120. Quantitation of various forms of NCAMs in rat brain showed marked age-related differences in the expression of three molecular forms of NCAM. Immunofluorescence analysis showed that oligodendrocytes, at all ages tested, expressed NCAM, but in older oligodendrocytes, the intensity of staining was less. Western blot analysis of oligodendrocyte-enriched cultures showed that from day 1 after isolation (12 days of age) through day 7 after isolation (18 days of age) only NCAM-120 is seen. A possible role for NCAM in myelination and remyelination is discussed.  相似文献   

20.
Genetic evidence indicates that cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) are critical for activity-dependent synapse formation at the neuromuscular junction in Drosophila and have also been implicated in synaptic remodelling during learning in Aplysia (see [1] for review). In mammals, a widely adopted model for the process of learning at the cellular level is long-term potentiation (LTP) in the hippocampal formation. Studies in vitro have shown that antibodies to the IgCAMs L1 and NCAM reduce LTP in CA1 neurons of rat hippocampus, suggesting a role for these molecules in the modulation of synaptic efficacy, perhaps by regulating synaptic remodelling [2]. A role for NCAM in LTP has been confirmed in mice lacking NCAM [3] (but see [4]), but similar studies have not been reported for L1. Here we examine LTP in the hippocampus of mice lacking L1 [5,6], using different experimental protocols in three different laboratories. In tests of LTP in vitro and in vivo we found no significant differences between mutant animals and controls. Thus, contrary to expectation, our data suggest that L1 function is not necessary for the establishment or maintenance of LTP in the hippocampus. Impaired performance in spatial learning exhibited by L1 mutants may therefore not be due to hippocampal dysfunction [6].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号