首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peptide-mediated interference with influenza A virus polymerase   总被引:4,自引:0,他引:4       下载免费PDF全文
The assembly of the polymerase complex of influenza A virus from the three viral polymerase subunits PB1, PB2, and PA is required for viral RNA synthesis. We show that peptides which specifically bind to the protein-protein interaction domains in the subunits responsible for complex formation interfere with polymerase complex assembly and inhibit viral replication. Specifically, we provide evidence that a 25-amino-acid peptide corresponding to the PA-binding domain of PB1 blocks the polymerase activity of influenza A virus and inhibits viral spread. Targeting polymerase subunit interactions therefore provides a novel strategy to develop antiviral compounds against influenza A virus or other viruses.  相似文献   

2.
3.
To develop a novel attenuation strategy applicable to all influenza A viruses, we targeted the highly conserved protein-protein interaction of the viral polymerase subunits PA and PB1. We postulated that impaired binding between PA and PB1 would negatively affect trimeric polymerase complex formation, leading to reduced viral replication efficiency in vivo. As proof of concept, we introduced single or multiple amino acid substitutions into the protein-protein-binding domains of either PB1 or PA, or both, to decrease binding affinity and polymerase activity substantially. As expected, upon generation of recombinant influenza A viruses (SC35M strain) containing these mutations, many pseudo-revertants appeared that partially restored PA-PB1 binding and polymerase activity. These polymerase assembly mutants displayed drastic attenuation in cell culture and mice. The attenuation of the polymerase assembly mutants was maintained in IFNα/β receptor knock-out mice. As exemplified using a H5N1 polymerase assembly mutant, this attenuation strategy can be also applied to other highly pathogenic influenza A virus strains. Thus, we provide proof of principle that targeted mutation of the highly conserved interaction domains of PA and PB1 represents a novel strategy to attenuate influenza A viruses.  相似文献   

4.
Influenza virus polymerase complex is a heterotrimer consisting of polymerase basic protein 1 (PB1), polymerase basic protein 2 (PB2), and polymerase acidic protein (PA). Of these, only PB1, which has been implicated in RNA chain elongation, possesses the four conserved motifs (motifs I, II, III, and IV) and the four invariant amino acids (one in each motif) found among all viral RNA-dependent RNA or RNA-dependent DNA polymerases. We have modified an assay system developed by Huang et al. (T.-J. Huang, P. Palese, and M. Krystal, J. Virol. 64:5669-5673, 1990) to reconstitute the functional polymerase activity in vivo. Using this assay, we have examined the requirement of each of these motifs of PB1 in polymerase activity. We find that each of these invariant amino acids is critical for PB1 activity and that mutation in any one of these residues renders the protein nonfunctional. We also find that in motif III, which contains the SSDD sequence, the signature sequence of influenza virus RNA polymerase, SDD is essentially invariant and cannot accommodate sequences found in other RNA viral polymerases. However, conserved changes in the flanking sequences of SDD can be partially tolerated. These results provide the experimental evidence that influenza virus PB1 possesses a similar polymerase module as has been proposed for other RNA viruses and that the core SDD sequence of influenza virus PB1 represents a sequence variant of the GDN in negative-stranded nonsegmented RNA viruses, GDD in positive-stranded RNA virus and double-stranded RNA viruses, or MDD in retroviruses.  相似文献   

5.
The 11th influenza A virus protein PB1-F2 was previously shown to enhance apoptosis in response to cytotoxic stimuli. The 87 amino acid protein that is encoded by an alternative reading frame of the PB1 polymerase gene was described to localize to mitochondria consistent with its proapoptotic function. However, PB1-F2 is also found diffusely distributed in the cytoplasm and in the nucleus suggesting additional functions of the protein. Here we show that PB1-F2 colocalizes and directly interacts with the viral PB1 polymerase protein. Lack of PB1-F2 during infection resulted in an altered localization of PB1 and decreased viral polymerase activity. Consequently, mutant viruses devoid of a functional PB1-F2 reading frame exhibited a small plaque phenotype. Thus, we have identified a novel function of PB1-F2 as an indirect regulator of the influenza virus polymerase activity via its interaction with PB1.  相似文献   

6.
The biosynthesis, nuclear transport, and formation of a complex among the influenza polymerase proteins were studied in influenza virus-infected MDBK cells by using monospecific antisera. To obtain these monospecific antisera, portions of cloned cDNAs encoding the individual polymerase proteins (PB1, PB2, or PA) of A/WSN/33 influenza virus were expressed as fusion proteins in Escherichia coli, and the purified fusion proteins were injected into rabbits. Studies using indirect immunofluorescence showed that early in the infectious cycle (4 h postinfection) of influenza virus, PB1 and PB2 are present mainly in the nucleus, whereas PA is predominantly present in the cytoplasm of the virus-infected cells. Later, at 6 to 8 h postinfection, all three polymerase proteins are apparent both in the cytoplasm as well as the nucleus. Radiolabeling and immunoprecipitation analyses showed that the three polymerase proteins remain physically associated as a complex in either the presence or the absence of ribonucleoproteins. In the cytoplasm, the majority of the polymerase proteins remain unassociated, whereas in the nucleus they are present as a complex of three polymerase proteins. To determine whether a polymerase protein is transported into the nucleus individually, PB1 was expressed from the cloned cDNA by using the simian virus 40 late promoter expression vector. PB1 alone, in the absence of the other polymerase proteins or the nucleoprotein, accumulates in the nucleus. This suggests that the formation of a complex with other viral protein(s) is not required for either nuclear transport or nuclear accumulation of PB1 protein and that the PB1 protein may contain an intrinsic signal(s) for nuclear transport.  相似文献   

7.
8.
The genome of influenza A virus is organized into eight ribonucleoprotein complexes (RNPs), each containing one RNA polymerase complex. This RNA polymerase has also been found non-associated to RNPs and is possibly involved in distinct functions in the infection cycle. We have expressed the virus RNA polymerase complex by co-tranfection of the PB1, PB2 and PA genes in mammalian cells and the heterotrimer was purified by the TAP tag procedure. Its 3D structure was determined by electron microscopy and single-particle image processing. The model obtained resembles the structure previously reported for the polymerase complex associated to viral RNPs but appears to be in a more open conformation. Detailed model comparison indicated that specific areas of the complex show important conformational changes as compared to the structure for the RNP-associated polymerase, particularly in regions known to interact with the adjacent NP monomers in the RNP. Also, the PB2 subunit seems to undergo a substantial displacement as a result of the association of the polymerase to RNPs. The structural model presented suggests that a core conformation of the polymerase in solution exists but the interaction with other partners, such as proteins or RNA, will trigger distinct conformational changes to activate new functional properties.  相似文献   

9.
Polymerase basic protein 2 (PB2), a component of the influenza virus polymerase complex, when expressed alone from cloned cDNA in the absence of other influenza virus proteins, is transported into the nucleus. In this study, we have examined the nuclear translocation signal of PB2 by making deletions and mutations in the PB2 sequence. Our studies showed that two distant regions in the polypeptide sequence were involved in the nuclear translocation of PB2. In one region, four basic residues (K-736 R K R) played a critical role in the nuclear translocation of PB2, since the deletion or mutation of these residues rendered the protein totally cytoplasmic. However, seven residues (M K R K R N S) of this region, including the four basic residues, failed to translocate a cytoplasmic reporter protein into the nucleus, suggesting that these sequences were necessary but not sufficient for nuclear translocation. Deletion of another region (amino acids 449 to 495) resulted in a mutant protein which was cytoplasmic with a perinuclear distribution. This novel phenotype suggests that a perinuclear binding step was involved prior to translocation of PB2 across the nuclear pore and that a signal might be involved in perinuclear binding. Possible involvement of these two signal sequences in the nuclear localization of PB2 is discussed.  相似文献   

10.
11.
Rescue of influenza C virus from recombinant DNA   总被引:1,自引:0,他引:1  
The rescue of influenza viruses by reverse genetics has been described only for the influenza A and B viruses. Based on a similar approach, we developed a reverse-genetics system that allows the production of influenza C viruses entirely from cloned cDNA. The complete sequences of the 3' and 5' noncoding regions of type C influenza virus C/Johannesburg/1/66 necessary for the cloning of the cDNA were determined for the seven genomic segments. Human embryonic kidney cells (293T) were transfected simultaneously with seven plasmids that direct the synthesis of each of the seven viral RNA segments of the C/JHB/1/66 virus under the control of the human RNA polymerase I promoter and with four plasmids encoding the viral nucleoprotein and the PB2, PB1, and P3 proteins of the viral polymerase complex. This strategy yielded between 10(3) and 10(4) PFU of virus per ml of supernatant at 8 to 10 days posttransfection. Additional viruses with substitutions introduced in the hemagglutinin-esterase-fusion protein were successfully produced by this method, and their growth phenotype was evaluated. This efficient system, which does not require helper virus infection, should be useful in viral mutagenesis studies and for generation of expression vectors from type C influenza virus.  相似文献   

12.
Assembly of the heterotrimeric influenza virus polymerase complex from the individual subunits PB1, PA, and PB2 is a prerequisite for viral replication. The conserved protein-protein interaction sites have been suggested as potential drug targets. To characterize the PB1-PB2 interface, we fused the PB1-binding domain of PB2 to green fluorescent protein (PB2(1-37)-GFP) and determined its competitive inhibitory effect on the polymerase activity of influenza A virus strains. Coexpression of PB2(1-37)-GFP in a polymerase reconstitution system led to substantial inhibition of the polymerase of A/WSN/33 (H1N1). Surprisingly, polymerases of other strains, including A/SC35M (H7N7), A/Puerto Rico/8/34 (H1N1), A/Hamburg/4/2009 (H1N1), and A/Thailand/1(KAN-1)/2004 (H5N1), showed various degrees of resistance. Individual exchange of polymerase subunits and the nucleoprotein between the sensitive WSN polymerase and the insensitive SC35M polymerase mapped the resistance to both PB1 and PA of SC35M polymerase. While PB2(1-37)-GFP bound equally well to the PB1 subunits of both virus strains, PB1-PA dimers of SC35M polymerase showed impaired binding compared to PB1-PA dimers of WSN polymerase. The use of PA(SC35M/WSN) chimeras revealed that the reduced affinity of the SC35M PB1-PA dimer was mediated by the N-terminal 277 amino acids of PA. Based on these observations, we speculate that the PB1-PA dimer formation of resistant polymerases shields the PB2(1-37) binding site, whereas sensitive polymerases allow this interaction, suggesting different assembly strategies of the trimeric polymerase complex between different influenza A virus strains.  相似文献   

13.
The murine Mx1 protein is an interferon-inducible protein which confers selective resistance to influenza virus infection both in vitro and in vivo. The precise mechanism by which the murine Mx1 specifically inhibits replication of influenza virus is not known. Previously, sensitive replication systems for influenza virus ribonucleoprotein, in which a synthetic influenza virus-like ribonucleoprotein is replicated and transcribed by influenza virus proteins provided in trans, have been developed. With these systems, the antiviral activity of the murine Mx1 protein was examined. It was found that continued expression of influenza polymerase polypeptides via vaccinia virus vectors can titrate out the inhibitory action of the murine Mx1 protein. This titration of inhibitory activity also occurs when the viral PB2 protein alone is overexpressed, suggesting that an antiviral target for the murine Mx1 polypeptide is the viral PB2 protein.  相似文献   

14.
A collection of influenza virus PB2 mutant genes was prepared, including N-terminal deletions, C-terminal deletions, and single-amino-acid insertions. These mutant genes, driven by a T7 promoter, were expressed by transfection into COS-1 cells infected with a vaccinia virus encoding T7 RNA polymerase. Mutant proteins accumulated to levels similar to that of wild-type PB2. Immunofluorescence analyses showed that the C-terminal region of the protein is essential for nuclear transport and that internal sequences affect nuclear localization, confirming previous results (J. Mukaijawa and D. P. Nayak, J. Virol. 65:245-253, 1991). The biological activity of these mutants was tested by determining their capacity to (i) reconstitute RNA polymerase activity in vivo by cotransfection with proteins NP, PB1, and PA and a virion-like RNA encoding the cat gene into vaccinia virus T7-infected COS-1 cells and (ii) complete with the wild-type PB2 activity. In addition, when tested at different temperatures in vivo, two mutant PB2 proteins showed a temperature-sensitive phenotype. The lack of interference shown by some N-terminal deletion mutants and the complete interference obtained with a C-terminal deletion mutant encoding only 124 amino acids indicated that this protein domain is responsible for interaction with another component of the polymerase, probably PB1. To further characterize the mutants, their ability to induce in vitro synthesis of viral cRNA or mRNA was tested by using ApG or beta-globin mRNA as a primer. One of the mutants, 1299, containing an isoleucine insertion at position 299, was able to induce cRNA and mRNA synthesis in ApG-primed reactions but required a higher beta-globin mRNA concentration than wild-type PB2 for detection of in vitro synthesis. This result suggested that mutant I299 has diminished cap-binding activity.  相似文献   

15.
16.
M L Li  B C Ramirez    R M Krug 《The EMBO journal》1998,17(19):5844-5852
The capped RNA primers required for the initiation of influenza virus mRNA synthesis are produced by the viral polymerase itself, which consists of three proteins PB1, PB2 and PA. Production of primers is activated only when the 5'- and 3'-terminal sequences of virion RNA (vRNA) bind sequentially to the polymerase, indicating that vRNA molecules function not only as templates for mRNA synthesis but also as essential cofactors which activate catalytic functions. Using thio U-substituted RNA and UV crosslinking, we demonstrate that the 5' and 3' sequences of vRNA bind to different amino acid sequences in the same protein subunit, the PB1 protein. Mutagenesis experiments proved that these two amino acid sequences constitute the functional RNA-binding sites. The 5' sequence of vRNA binds to an amino acid sequence centered around two arginine residues at positions 571 and 572, causing an allosteric alteration which activates two new functions of the polymerase complex. In addition to the PB2 protein subunit acquiring the ability to bind 5'-capped ends of RNAs, the PB1 protein itself acquires the ability to bind the 3' sequence of vRNA, via a ribonucleoprotein 1 (RNP1)-like motif, amino acids 249-256, which contains two phenylalanine residues required for binding. Binding to this site induces a second allosteric alteration which results in the activation of the endonuclease that produces the capped RNA primers needed for mRNA synthesis. Hence, the PB1 protein plays a central role in the catalytic activity of the viral polymerase, not only in the catalysis of RNA-chain elongation but also in the activation of the enzyme activities that produce capped RNA primers.  相似文献   

17.
S González  J Ortín 《The EMBO journal》1999,18(13):3767-3775
The influenza virus RNA polymerase is a heterotrimer comprising the PB1, PB2 and PA subunits. PB1 is the core of the complex and accounts for the polymerase activity. We have studied the interaction of PB1 with model cRNA template by in vitro binding and Northwestern analyses. The binding to model cRNA was specific and showed an apparent Kd of approximately 7x10(-8) M. In contrast to the interaction with vRNA, PB1 was able to bind equally the 5' and 3' arm of the cRNA panhandle. The N-terminal 139 amino acids of PB1 and sequences between positions 267 and 493 proved positive for binding to cRNA, whereas the interaction with vRNA template previously was mapped to the N- and C-terminal regions. Competition experiments using the 5' and 3' arms of either the vRNA or cRNA panhandle indicated that the N-terminal binding site is shared by both templates. The data indicate that the PB1 RNA-binding sites are constituted by: (i) residues located at the N-terminus (probably common for vRNA and cRNA binding) and, either (ii) residues from the central part of PB1 (for cRNA) or (iii) residues from the C-terminal region of PB1 (for vRNA), and suggest that PB1 undergoes a conformational change upon binding to cRNA versus vRNA templates.  相似文献   

18.
19.
The 2009 pandemic influenza virus (pH1N1) is a swine-origin reassortant containing human, avian, and swine influenza genes. We have previously shown that the polymerase complex of the pH1N1 strain A/California/04/2009 (Cal) is highly active in mammalian 293T cells, despite the avian origin of both its PA and PB2. In this study, we analyzed the polymerase residues that are responsible for high pH1N1 polymerase activity in the mammalian host. Characterization of polymerase complexes containing various combinations of Cal and avian influenza virus A/chicken/Nanchang/3-120/01 (H3N2) (Nan) by reporter gene assay indicates that Cal PA, but not PB2, is a major contributing factor to high Cal polymerase activity in 293T cells. In particular, Cal PA significantly activates the otherwise inactive Nan polymerase at 37 and 39°C but not at the lower temperature of 34°C. Further analysis using site-directed mutagenesis showed that the Cal PA residues 85I, 186S, and 336M contribute to enhanced activity of the Cal polymerase. Recombinant A/WSN/33 (H1N1) (WSN) viruses containing Nan NP and polymerase (PA, PB1, PB2) genes with individual mutations in PA at residues 85, 186, and 336 produced higher levels of viral protein than the virus containing wild-type (WT) Nan PA. Interestingly, compared to the WT, the virus containing the 85I mutation grew faster in human A549 cells and the 336M mutation most significantly enhanced pathogenicity in a mouse model, among the three PA mutations tested. Our results suggest that multiple mutations in PA, which were rarely present in previous influenza isolates, are involved in mammalian adaptation and pathogenicity of the 2009 pH1N1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号