首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
Electrical stimulation of the vagal trunk with 10 Hz in frequency, 3 ms in duration and 15 volt in intensity for 10 s in cats produced an excitatory response of the stomach and the response was composed of two phases, an initial rapid excitation during stimulation period and the late multi-peak response after stimulation period. The initial response was inhibited by the administrations of hexamethonium (10 mg/kg, i.v.) and atropine (100 micrograms/kg, i.v.). The late response was not inhibited by hexamethonium but was inhibited by atropine (100 micrograms/kg, i.v.). The hexamethonium-sensitive initial excitation was not affected by the administration of morphine and gamma-aminobutyric acid (GABA). On the other hand, the hexamethonium-resistant late response was attenuated by the treatment with morphine (1 to 10 mg/kg, i.v.) and GABA (100 to 500 micrograms/kg, i.v.). Such inhibitory actions of morphine and GABA on the late response were antagonized by picrotoxin. From these results, it was concluded that morphine might inhibit specifically the hexamethonium-resistant late excitatory response of the stomach without affecting the hexamethonium-sensitive initial excitatory response and the inhibitory effect of morphine on the late response of stomach might be due to action of GABA released from the intramural neurons of gastric walls in cats.  相似文献   

2.
The effects of beta-alanine on the electrically evoked vagal efferent (hexamethonium-sensitive initial excitatory response) and afferent (hexamethonium-resistant delayed excitatory response) responses of the cat stomach were studied. beta-alanine (30 to 300 micrograms/kg, i.v.) dose-dependently inhibited both the efferent and afferent response. The IC50 values of beta-alanine on the efferent and afferent response were 296 +/- 65 micrograms/kg and 128 +/- 35 microgram/kg, respectively. Maximal inhibitory effects of beta-alanine (300 micrograms/kg, i.v.) appeared about 1 hr after the injection. Glycine and taurine (100 to 10,000 micrograms/kg) did not affect these responses. Treatment with hexamethonium (10 mg/kg, i.v.) prevented the efferent response, but augmented the afferent response. The treatment with hexamethonium abolished the inhibitory effect of beta-alanine on the afferent response. Both picrotoxin (100 and 500 micrograms/kg, i.v.) and bicuculline (2000 micrograms/kg, i.v.) antagonized the inhibitory effects of beta-alanine on the vagal efferent and afferent responses of the stomach. The present experiments clearly demonstrated that beta-alanine inhibited both the vagal efferent and afferent excitatory responses of stomach to electrical stimulation of vagal trunk in cats.  相似文献   

3.
Intracellular recordings were made from identified neurones in the suboesophageal ganglionic mass of the snail, Helix aspersa. Avermectin, MK 936, 0.01-1.0 microM, induced an outward current in certain neurones. The size of this current varied from one cell type to another. This direct effect of Avermectin occurred irrespective of whether the neurones were sensitive to GABA or not and was generally irreversible. Avermectin, 0.1 microM, reduced the chloride mediated inhibitory GABA response and potentiated the largely sodium mediated excitatory GABA response. Avermectin, 0.1 microM, reduced the chloride mediated acetylcholine inhibitory response and potentiated the sodium mediated excitatory acetylcholine response. In neurones which showed a biphasic response to acetylcholine, Avermectin enhanced the excitatory and depressed the inhibitory component. It is concluded that Avermectin can interact with chloride ionophores to induce an outward current and can reduce chloride mediated responses associated with acetylcholine and GABA.  相似文献   

4.
γ-Aminobutyric acid (GABA), a known inhibitory neurotransmitter in mammals, can elicit two different types of excitatory response in the nervous system of the marine mollusc, Aplysia. These responses are depolarizing when GABA is applied ionophoretically, and result from either an increase in membrane conductance to Na+ or a decrease in conductance to K+. In addition, GABA on other neurons causes an inhibitory response similar to that commonly found in other preparations. Although not all neurons have GABA receptors, identified single cells consistently have the same type of response. These observations suggest the possibility that GABA may function in at least some preparations as an excitatory neurotransmitter in addition to its documented inhibitory function.  相似文献   

5.
The role of copper on the CA1 piramidal neurons and their sinaptic connections to the Schaffer's collateral was investigated using the field excitatory post-sinaptic potential (fEPSP). The same fEPSP was used to study copper effects on Long-term potentiation (LTP). We have found that copper 10 microM has an inhibitory action on the fEPSP. Similar effects were demonstrated with 10 microM of GABA. Moreover, copper showed a strong inhibitory action on the consolidated LTP. However, copper washout left a significant and persistent excitatory response. In our opinion, copper shows a dual sinaptic effect depending on the sinaptic experience.  相似文献   

6.
Responses of neurons in the antennal lobe (AL) of the moth Manduca sexta to stimulation of the ipsilateral antenna by odors consist of excitatory and inhibitory synaptic potentials. Stimulation of primary afferent fibers by electrical shock of the antennal nerve causes a characteristic IPSP-EPSP synaptic response in AL projection neurons. The IPSP in projection neurons reverses below the resting potential, is sensitive to changes in external and internal chloride concentration, and thus is apparently mediated by an increase in chloride conductance. The IPSP is reversibly blocked by 100 microM picrotoxin or bicuculline. Many AL neurons respond to application of GABA with a strong hyperpolarization and an inhibition of spontaneous spiking activity. GABA responses are associated with an increase in neuronal input conductance and a reversal potential below the resting potential. Application of GABA blocks inhibitory synaptic inputs and reduces or blocks excitatory inputs. EPSPs can be protected from depression by application of GABA. Muscimol, a GABA analog that mimics GABA responses at GABAA receptors but not at GABAB receptors in the vertebrate CNS, inhibits many AL neurons in the moth.  相似文献   

7.
Electroacupuncture (EA) causes prolonged suppression of reflex elevations in blood pressure for 1-2 h in anesthetized preparations. A long-loop pathway involving the arcuate nucleus (ARC), ventrolateral periaqueductal gray, and rostral ventrolateral medulla (rVLM) is involved in sympathoinhibitory cardiovascular EA effects. However, the mechanisms and locations of the prolonged EA inhibition are unknown. We hypothesized that this effect is mediated through a long-loop pathway involving opioid, nociceptin, and gamma-aminobutyric acid (GABA) receptor activation in the rVLM. In anesthetized, ventilated cats application of bradykinin to the gallbladder every 10 min induced consistent reflex increases in blood pressure. Bilateral EA stimulation at the cardiovascular acupoints P5-6 overlying the median nerves reduced the reflex responses for at least 80 min. Bilateral blockade with kynurenic acid in the ARC 60 min after onset of EA inhibition reversed the cardiovascular response, suggesting a role for the ARC in the long-loop pathway during the prolonged inhibitory response. Unilateral microinjection with either an opioid or a GABA(A) antagonist in rVLM 50-60 min after the beginning of the EA response reversed EA inhibition of the cardiovascular excitatory reflex. Gabazine also reversed EA inhibition of cardiovascular premotor sympathetic rVLM neurons. Conversely, microinjection of a nociceptin/orphanin FQ peptide antagonist did not affect the prolonged inhibitory effect. Thus the ARC, an important component in the long-loop pathway in the EA cardiovascular response, is required for prolonged suppression of reflex cardiovascular excitatory responses by EA. Furthermore, in the rVLM, opioids and GABA, but not nociceptin, participate in the long-term EA-related inhibition of sympathoexcitatory cardiovascular responses.  相似文献   

8.
Although many general anesthetics have been found to produce anesthetic and analgesic effects by augmenting GABA(A) receptor (GABA(A)R) function, the role of the glycine receptor (GlyR) in this process is not fully understood at the neuronal level in the spinal cord. We investigated the effects of a barbiturate general anesthetic, pentobarbital (PB), on the glycinergic miniature inhibitory postsynaptic currents (mIPSCs) and the responses to exogenously applied glycine, or taurine, a low affinity GlyR agonist, by using the whole-cell patch-clamp technique in the rat spinal dorsal horn neurons isolated using a novel mechanical method. Bath application of 30 microm PB significantly prolonged the decay time constant of the spontaneous glycinergic mIPSC without changing its amplitude and frequency. Co-application of 0.3 mm PB reduced the peak amplitude, affected the macroscopic desensitization and deactivation of the response to externally applied Gly in a concentration-dependent manner. In addition, the recovery of Gly response from desensitization was also prolonged by PB. However, PB did not change the desensitization and deactivation kinetics of the taurine-induced response. The GABA(A)R antagonist bicuculline (10 microm) did not affect the effect of PB on the Gly response. Thus, PB prolonged the spinal glycinergic mIPSCs by slowing desensitization and deactivation of GlyR. Two other structurally different intravenous anesthetics, i.e. propofol (10 microm) and etomidate (3 microm), prolonged the duration of the glycinergic mIPSC in the rat spinal dorsal horn neurons. In conclusion, on GlyR-Cl(-) channel complexes there may exist action site(s) of intravenous general anesthetics. GlyR and glycinergic neurotransmission may play an important role in the modulation of general anesthesia in the mammalian spinal cord.  相似文献   

9.
A mechanism underlying the effects of neuromodulators on long-term changes in the efficacy of excitatory and inhibitory inputs to dopaminergic and inhibitory cells of the substantia nigra and ventral tegmental area is suggested. According to this mechanism, activation of Gi/0 protein-coupled dopamine D2 autoreceptors and opioid kappa (mu) receptors on dopaminergic (inhibitory) cells promotes the LTD of excitatory inputs to these cells and decrease in their activity. Activation of Gq/11 protein-coupled alpha1 adrenoreceptors, muscarinic M1, neurokinin NK3 (alpha1, M3, NK1, serotonin 5-HT2) receptors on dopaminergic (inhibitory) cells as well as activation of Gs protein-coupled D1 receptors on inhibitory cells promotes the LTP of excitatory inputs to these cells and increase in their activity. Augmenting (lowering) GABA release can be provided by activation of presynaptic D1 and M3 receptors (mu, 5-HT1, and adenosine A1) receptors. Increase (decrease) in GABA concentration due to modulation of inhibitory cell activity and/or GABA release will promote the induction of LTD (LTP) of excitatory inputs to target dopamine cells. The model agree with known experimental data describing the involvement of neuromodulators in modification of dopamine cell activity and dopamine release. The suggested model can be useful in understanding the operation of neuronal networks, which include the basal ganglia.  相似文献   

10.
To investigate GABA(B) receptors along vagal afferent pathways, we recorded from vagal afferents, medullary neurons, and vagal efferents in ferrets. Baclofen (7-14 micromol/kg i.v.) reduced gastric tension receptor and nucleus tractus solitarii neuronal responses to gastric distension but not gastroduodenal mucosal receptor responses to cholecystokinin (CCK). GABA(B) antagonists CGP-35348 or CGP-62349 reversed effects of baclofen. Vagal efferents showed excitatory and inhibitory responses to distension and CCK. Baclofen (3 nmol i.c.v. or 7-14 micromol/kg i.v.) reduced both distension response types but reduced only inhibitory responses to CCK. CGP-35348 (100 nmol i.c.v. or 100 micromol/kg i.v.) reversed baclofen's effect on distension responses, but inhibitory responses to CCK remained attenuated. They were, however, reversed by CGP-62349 (0.4 nmol i.c.v.). In conclusion, GABA(B) receptors inhibit mechanosensitivity, not chemosensitivity, of vagal afferents peripherally. Mechanosensory input to brain stem neurons is also reduced centrally by GABA(B) receptors, but excitatory chemosensory input is unaffected. Inhibitory mechano- and chemosensory inputs to brain stem neurons (via inhibitory interneurons) are both reduced, but the pathway taken by chemosensory input involves GABA(B) receptors that are insensitive to CGP-35348.  相似文献   

11.
t-[35S]Butylbicyclophosphorothionate [( 35S]TBPS) has been shown to bind to the GABAA receptor complex. The binding is modulated allosterically by drugs that interact at components of the receptor complex. The present studies were designed to evaluate the influence of ionic environment and state of equilibrium on the allosteric modification of [35S]TBPS binding. In both I- and Cl- under nonequilibrium conditions, diazepam, gamma-aminobutyric acid (GABA), and pentobarbital (PB) stimulate and methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) inhibits [35S]TBPS binding. In addition, there is an inhibitory component to the effect of GABA and PB at higher drug concentrations. These effects are blocked by the appropriate antagonists for each drug. In Cl-, the stimulation of [35S]TBPS binding by drugs disappears at equilibrium, whereas the inhibition by GABA and PB persists. The inhibitory effect of DMCM in Cl- also disappears at equilibrium. When assayed in I- at equilibrium, however, DMCM stimulates [35S]TBPS binding. In addition, bicuculline, which is without effect under nonequilibrium conditions in either Cl- or I-, stimulates [35S]TBPS binding in I- at equilibrium. The persistent effects of DMCM, bicuculline, and GABA in I- are accompanied by alterations in the affinity of [35S]TBPS for its receptor. In addition, the stimulation of [35S]TBPS binding by GABA is associated with a decreased number of [35S]TBPS binding sites. These data demonstrate that receptor complex interactions with anions influence the responsiveness to drug binding.  相似文献   

12.
γ-aminobutyric acid (GABA) is the inhibitory transmitter compound at the lobster neuromuscular junction. This paper presents a comparison of the enzymes of GABA metabolism in single identified inhibitory and excitatory axons from lobster walking legs. Inhibitory axons contain more than 100 times as much glutamic decarboxylase activity as do excitatory axons. GABA-glutamic transaminase is found in both excitatory and inhibitory axons, but about 50% more enzyme is present in inhibitory axons. The kinetic and electrophoretic behavior of the transaminase activity in excitatory and inhibitory axons is similar. Succinic semialdehyde dehydrogenase is found in both axon types, as is an unknown enzyme which converts a contaminant in radioactive glutamic acid to GABA. In lobster inhibitory neurons, therefore, the ability to accumulate GABA ultimately rests on the ability of the neuron to accumulate the enzyme glutamic decarboxylase.  相似文献   

13.
An optimally functional brain requires both excitatory and inhibitory inputs that are regulated and balanced. A perturbation in the excitatory/inhibitory balance—as is the case in some neurological disorders/diseases (e.g. traumatic brain injury Alzheimer’s disease, stroke, epilepsy and substance abuse) and disorders of development (e.g. schizophrenia, Rhett syndrome and autism spectrum disorder)—leads to dysfunctional signaling, which can result in impaired cognitive and motor function, if not frank neuronal injury. At the cellular level, transmission of glutamate and GABA, the principle excitatory and inhibitory neurotransmitters in the central nervous system control excitatory/inhibitory balance. Herein, we review the synthesis, release, and signaling of GABA and glutamate followed by a focused discussion on the importance of their transport systems to the maintenance of excitatory/inhibitory balance.  相似文献   

14.
Summary The effect of GABA (-aminobutyric acid) on three muscles innervated by the common inhibitory axon in the walking leg of the crabOcypode cursor, was studied. The muscles differ in the percentage of fibres responding to GABA by membrane resistance decrease, and in the magnitude of the response (Table 1). In addition to the postsynaptic effect (on muscle fibre membrane) of GABA, a presynaptic effect (on excitatory terminals) was observed in one muscle, resulting in more effective inhibition of excitatory potentials. The presynaptic effect sustained as long as GABA was present, while the postsynaptic effect underwent desensitization (Fig. 2). The data demonstrate differential inhibition of distinct functional units innervated by a common axon. The channeling of inhibitory information results from spatial organization of innervation, differing in location (pre-or postsynaptic) and density.This investigation was supported by grant AZ11 1955 for Stiftung Volkswagenwerk.  相似文献   

15.
Immunohistochemical methods were used to label singly and/or in combination glutamic acid decarboxylase (GAD, the sole synthesizing enzyme for the inhibitory neurotransmitter γ-aminobutyric acid) and phosphate-activated glutaminase (GLN, a synthesizing enzyme for glutamate) in neurons of lateral reticular nucleus (LRN) of thalamus of adult cats. (1) GAD- and GLN-immunoreactivity (IR) exhibited matching regional patterns of organization within LRN. (2) GAD- and GLN-IR co-localized within most if not all LRN neuronal cell bodies as shown by light microscopy. (3) GAD- and GLN-IR had distinct subcellular localizations in LRN neurons as shown by correlative light/electron microscopy. LRN neurons are important conceptual models where strongly inhibitory cells receive predominant excitatory glutamatergic afferents (from neocortex). Consistent with known actions of intermediary astrocytes, LRN neurons demonstrate GLN enrichment synergistically coupled with glutamatergic innervation to supplement the glutamate pool for GABA synthesis (via GAD) and for metabolic utilization (via the GABA shunt/tricarboxylic acid cycle) but not, apparently, for excitatory neurotransmission. Special issue dedicated to John P. Blass.  相似文献   

16.
Previous studies have reported inconsistent effects of dietary restriction (DR) on cortical inhibition. To clarify this issue, we examined the response properties of neurons in the primary visual cortex (V1) of DR and control groups of cats using in vivo extracellular single-unit recording techniques, and assessed the synthesis of inhibitory neurotransmitter GABA in the V1 of cats from both groups using immunohistochemical and Western blot techniques. Our results showed that the response of V1 neurons to visual stimuli was significantly modified by DR, as indicated by an enhanced selectivity for stimulus orientations and motion directions, decreased visually-evoked response, lowered spontaneous activity and increased signal-to-noise ratio in DR cats relative to control cats. Further, it was shown that, accompanied with these changes of neuronal responsiveness, GABA immunoreactivity and the expression of a key GABA-synthesizing enzyme GAD67 in the V1 were significantly increased by DR. These results demonstrate that DR may retard brain aging by increasing the intracortical inhibition effect and improve the function of visual cortical neurons in visual information processing. This DR-induced elevation of cortical inhibition may favor the brain in modulating energy expenditure based on food availability.  相似文献   

17.
Esophageal distension and transient lower esophageal sphincter (LES) relaxation (TLESR) are accompanied by simultaneous relaxation of the LES and inhibition of crural diaphragm. Recent studies indicate that baclofen decreases the frequency of TLESR; however, its effect on the crural diaphragm is not known. We evaluated the effects of baclofen on LES relaxation and crural diaphragm inhibition induced by gastric distension and esophageal distension in cats. Five adult cats underwent surgical implantation of wire electrodes into the crural and costal diaphragm for measurement of their EMG activity, respectively. One week after the surgery, animals were lightly sedated and recordings were performed using a manometry catheter equipped with a 2.5-cm balloon. The effects of baclofen (10 micromol/kg iv) on the graded esophageal distension and gastric distension-induced LES and crural diaphragm responses were studied. Distension of the esophagus and stomach induces relaxation of the LES and inhibition of the crural diaphragm, simultaneously. Baclofen blocks both the esophageal and the gastric distension-induced relaxation of the LES and inhibition of the crural diaphragm. The magnitude of response to baclofen was significantly larger for the crural diaphragm inhibition than for the LES relaxation. Baclofen, a GABA(B) receptor agonist, blocks the reflex inhibitory pathway to the LES and crural diaphragm. The reflex inhibitory pathway to the crural diaphragm is more sensitive to blockade by baclofen than the reflex LES inhibitory pathway.  相似文献   

18.
Function of GABAergic and glutamatergic neurons in the stomach   总被引:1,自引:1,他引:0  
-Aminobutyric acid (GABA) and L-glutamic acid (L-Glu) are transmitters of GABAergic and glutamatergic neurons in the enteric interneurons, targeting excitatory or inhibitory GABA receptors or glutamate receptors that modulate gastric motility and mucosal function. GABAergic and glutamatergic neuron immunoreactivity have been found in cholinergic enteric neurons in the stomach. GABA and L-Glu may also subserve hormonal and paracrine signaling. Disruption in gastrointestinal function following perturbation of enteric GABA receptors and glutamate receptors presents potential new target sites for drug development.  相似文献   

19.
J Nakamura  M Sasa  S Takaori 《Life sciences》1989,45(11):971-978
Electrophysiological studies were performed to determine whether or not ethanol potentiates the inhibitory effects of gamma-aminobutyric acid (GABA) on medial vestibular nucleus (MVN) neurons responding to horizontal sinusoidal rotation using alpha-chloralose anesthetized cats. The MVN neurons were classified into types I, II, III and IV neurons according to the responses to the horizontal rotation of the animal placed on the turntable in directions ipsilateral and contralateral to the recording site. In addition, the effects of ethanol and GABA on type I neurons were also examined. Micro-osmotic application of ethanol up to 100 nA did not affect the spontaneous firing or the rotation-induced increase in firing of type I neurons. However, the inhibitory effects of GABA up to 50 nA on the rotation-induced increase in firing were potentiated during simultaneous application of ethanol up to 100 nA. This potentiated inhibition was blocked by iontophoretic application of bicuculline (25-150 nA) and picrotoxin (45-150 nA). These results suggest that ethanol potentiates the inhibitory effects of GABA on MVN type I neurons by acting on the GABA receptor and/or receptor-coupled chloride ion channel.  相似文献   

20.
Gulledge AT  Stuart GJ 《Neuron》2003,37(2):299-309
Little is known about how GABAergic inputs interact with excitatory inputs under conditions that maintain physiological concentrations of intracellular anions. Using extracellular and gramicidin perforated-patch recording, we show that somatic and dendritic GABA responses in mature cortical pyramidal neurons are depolarizing from rest and can facilitate action potential generation when combined with proximal excitatory input. Dendritic GABA responses were excitatory regardless of timing, whereas somatic GABA responses were inhibitory when coincident with excitatory input but excitatory at earlier times. These excitatory actions of GABA occur even though the GABA reversal potential is below action potential threshold and largely uniform across the somato-dendritic axis, and arise when GABAergic inputs are temporally or spatially isolated from concurrent excitation. Our findings demonstrate that under certain circumstances GABA will have an excitatory role in synaptic integration in the cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号