首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
SUMMARY 1. The impact of the introduced omnivorous signal crayfish (Pacifastacus leniusculus) on trout fry, macroinvertebrates and algae was evaluated in a brown water stream in southern Sweden using in situ enclosures. We also examined the gut content of all surviving crayfish in the enclosures. Two crayfish densities in addition to a control without crayfish were used in replicate enclosures (1.26 m2) in a 1‐month experiment. Additionally, 20 trout fry (Salmo trutta) were stocked in each enclosure to assess the effects of crayfish on trout survival and growth. 2. Detritus was the most common food item in crayfish guts. Animal fragments were also frequent while algae and macrophytes were scarcer. Crayfish exuviae were found in crayfish guts, but the frequency of cannibalism was low. 3. Trout survival in enclosures was positively related to water velocity but was unaffected by crayfish. 4. Total invertebrate biomass and taxon richness were lower in crayfish treatments. The biomass of all predatory invertebrate taxa was reduced but only three of six non‐predatory taxa were reduced in the crayfish treatments. 5. Epiphytic algal biomass (measured as chlorophyll a, on plastic strips) was not related to crayfish density, whereas the biomass of epilithic algae (measured as chlorophyll a) was enhanced by high water velocity and high crayfish density. The latter was possibly mediated via improved light and nutrient conditions, as active crayfish re‐suspend and/or remove detritus and senescent algal cells during periods of low water velocity. 6. We conclude that the introduced signal crayfish may affect stream communities directly and indirectly. Invaded communities will have reduced macroinvertebrate taxon richness and the signal crayfish will replace vulnerable invertebrate predators such as leeches. In streams that transport large amounts of sediment or organic matter, a high density of crayfish is likely to enhance benthic algal production through physical activity rather than via trophic effects.  相似文献   

2.
Aim Early assessment of the impact of invasive alien species is crucial to set up timely management, but often the impact is evident when it is too late for action. We evaluated relationships between the alien crayfish, Procambarus clarkii, the distribution of native amphibians, and the abundance of their larvae. We assessed whether considering measures of reproductive success provide a more prompt measure of impact than considering just species distribution. Location One hundred and twenty‐five wetlands in Northern Italy, in an area recently invaded by P. clarkii. Methods We surveyed wetlands to assess the presence of breeding activity of amphibians and the distribution of P. clarkii. We measured the abundance of amphibian larvae before metamorphosis through pipe sampling. We built models analysing the relationships between amphibian and crayfish distribution, while taking into account spatial autocorrelation and environmental features. Analyses were performed at both the species level (generalized linear models and spatial eigenvector mapping) and community level (constrained redundancy analysis). Results In terms of breeding site distribution, only two amphibians (Lissotriton vulgaris and Hyla intermedia) were negatively associated with P. clarkii, while the relationships between other the species and P. clarkii were positive or not significant. However, larval abundance for all amphibian species was negatively associated with the alien crayfish. Analyses performed at community and single species levels yielded consistent results. Main conclusions Procambarus clarkii impacts amphibians through different processes. Newts probably avoid invaded wetlands for breeding. Other species attempt breeding in wetlands with crayfish, but suffer very low success. Considering distribution data alone would not provide a correct picture of the impact of this alien species; measures of reproductive success may allow a more accurate assessment of the impact.  相似文献   

3.
Temporary ponds, acknowledged for their conservation value, are colonized by the invasive crayfish Procambarus clarkii. We have tested the consequences of this colonization for the ecosystem under two contrasted scenarios: one single individual arrival or three individuals arrival. We recreated the temporary pond ecosystem in 1 m2 tanks to investigate the impact of the two crayfish densities. We studied the macrophyte community composition and abundance, chlorophyll a and total suspended solids concentrations, and the diversity and functional composition of micro-crustacean and macro-invertebrate communities. We observed a reduction of macrophyte biomass in experimental crayfish mesocosms in comparison with control tanks, nearly 80 and 40% less in 3 and 1 crayfish/m2 tanks, respectively. The macrophyte community shifted, followed by a filamentous algae development, an increase of bare sediment and turbidity in crayfish tanks. The macro-invertebrate community suffered a richness loss of 28 and 22%, in 3 and 1 crayfish/m2 tanks, respectively. Functionally, macro-invertebrate diversity reduction most strongly affected the grazer, detritivore and predator trophic groups. Microcrustaceans seemed not to be affected by the introduction of the crayfish. The introduction of the crayfish greatly altered the ecosystem structure and subsequently the ecosystem functioning.  相似文献   

4.
Red swamp crayfish (Procambarus clarkii) and signal crayfish (Pacifastacus leniusculus) are two invasive freshwater species with a worldwide distribution. The objective of this work was to investigate how the two species move and use space in an area of recent coexistence. Simultaneously, we test the use of new tools and indices to describe their movement patterns. To accomplish this we performed a radio-tracking program within a river-type habitat during two different periods (September/October 2010 and June/July 2013). We used spatial analysis tools to map crayfish radio-location data with and without accounting for the curvature of the river. To assess the consistency of the direction of movement and of the distances traveled by crayfish, two indices were developed. To assess the habitat preferences of each species we applied Ivlev's Electivity Index and the Standardized Forage Ratio. Movement of P. clarkii and P. leniusculus differed. The average detected movement was 8.8 m day−1 for P. clarkii and 17.5 m day−1 for P. leniusculus. However, crayfish behavior ranged from almost complete immobility – sometimes during several days – to large movements, in half a day, up to a maximum of 255 m for P. clarkii and 461 m for P. leniusculus. The proportion of upstream or downstream movements was independent of the species and both species displayed no preference for either direction. The indices of consistency of movement showed a large interindividual variation. Species and period (2010 or 2013) affected the mean daily distance traveled, maximum observed distance from location of release and percentage of observations under vegetation cover. The Ivlev's Electivity Index and the Standardized Forage Ratio presented similar results. P. clarkii showed a preference for pool areas with riparian vegetation cover while P. leniusculus preferred riffle and pool areas with riparian vegetation cover. Our work provided new and valuable data for modeling the active dispersal of these two problematic invaders in a context of coexistence.  相似文献   

5.
The red swamp crayfish, Procambarus clarkii, is a paradigmatic invader of freshwater systems. Several attempts have been made to mitigate its multiple impacts but none was successful. Among the different methods proposed, the use of the European eel (Anguilla anguilla) as an indigenous predator is promising but the available information about its predatory ability on crayfish is to date scanty. To fill this gap in knowledge, we ran three experiments in wetlands and irrigation ditches in Italy. The first experiment, in the laboratory, was aimed at quantifying the extent of predation by eels on crayfish, the second, in enclosures, the size classes of crayfish mainly preyed and the possible effect of the eels on P. clarkii behaviour, and the third, in the field, its ability to effectively reduce crayfish populations. Results showed that eels prey on small-sized or soft crayfish, attacking them from the back; an indirect effect was to reduce crayfish trophic activity, which in turn might increases crayfish mortality due to starvation and decreases impact on the community. However, as shown in the field, the use of eels should be appropriately calibrated to the context of application. Taken together, our results show that eels might be used as a complement to the traditional trapping method. However, additional studies are necessary to understand the adequate number of eels to be introduced and to develop appropriate methods for quantifying such effects.  相似文献   

6.
1. In many freshwater systems, competition for shelter plays an important role in determining the persistence of both native and alien species. The red swamp crayfish, Procambarus clarkii, is currently invading the native habitat of the signal crayfish, Pacifastacus leniusculus, in southern Oregon, and interspecific competition for shelter may be driving the species replacement in this region. 2. We designed a 2 × 3 factorial mesocosm experiment, with shelter density and species combination as factors, to investigate shelter occupancy and resource competition. Contrary to our predictions, the two crayfish species are equal competitors for shelter. Further, the invasive P. clarkii modified its shelter occupancy behaviour in the presence of the native P. leniusculus and has broader microhabitat preferences. 3. Specifically, we found that P. clarkii alters shelter occupancy and space use patterns when the two species occurred together, such that shelter use was identical between P. clarkii and P. leniusculus in mixed‐species treatments. In such treatments, both species increased their use of shelters when shelter density increased. When P. clarkii was alone, however, individuals did not alter shelter use as a function of shelter density, whereas P. leniusculus exhibited similar density‐dependent behaviour in both mixed‐ and single‐species treatments. 4. In a complementary field survey, we employed an ‘epicentre‐based’ design to sample two field sites. We observed patterns of microhabitat use and breadth for each species similar to those in our mesocosm experiment: the invasive P. clarkii was more abundant across different habitats and used a broader range of microhabitats than the native P. leniusculus. As such, we found that P. clarkii was more abundant across both field sites than the P. leniusculus, occupying microhabitats within and beyond the preferred range of P. leniusculus. Both field sites were affected by urban development and agriculture. 5. The use of microhabitats by both species was similar in the laboratory and the field. This study confirms that P. clarkii individuals can, and do, successfully occupy microhabitats preferred by P. leniusculus in the Willamette Valley. The results from our study may be relevant to other freshwater systems inhabited by P. clarkii and contribute to the understanding of ‘niche opportunity’, a concept which defines the environmental conditions that promote biological invasions.  相似文献   

7.
The non-indigenous red swamp crayfish (Procambarus clarkii) has been shown to be a threat for amphibian conservation. Many amphibian species breed in temporary ponds to diminish predation risk as such ecosystems are free of large predators. However P. clarkii, occurring as an invasive species in the Camargue delta, can readily disperse on the ground and thus colonize isolated ponds. We studied the current impact of the exotic crayfish on the reproductive success of the Mediterranean tree frog (Hyla meridionalis). In a mesocosm experiment, we tested the effect of two crayfish densities (1 and 3 crayfish/m2) on tadpole abundance. We also tested in a field experiment, within a temporary pond, the crayfish’s predation on the tree frog’s eggs. Finally, we developed site occupancy models using data from 20 ponds to assess the effect of crayfish abundance on tadpole abundance. Neither the experiments, nor the site occupancy models showed a negative impact of the current crayfish abundance on the tree frog populations breeding in ponds. We found that recorded crayfish densities were lower than in other areas where crayfish has impacted amphibian populations, but we hypothesize that current crayfish abundance in the area may increase in the future, thus impacting tree frog populations.  相似文献   

8.
To investigate the effects of Procambarus clarkii on macroinvertebrate diversity, we conducted a mesocosm experiment simulating small pools in rice field pads after the rice season. We hypothesized that crayfish predation would negatively impact macroinvertebrate diversity, and the magnitude of this impact should vary with the size of P. clarkii. We conducted a short-term mesocosm experiment to determine macroinvertebrate diversity in the presence of three size classes and in the absence of crayfish, as well as the diet composition of crayfish from the three size classes. At the end of the experiments, the diet of crayfish was composed of the most available taxa (Culicidae, Chironomus, Tanytarsini and Orthocladinae). These results also show evidence that, in confined areas, crayfish are important predators of major rice pests such as rice Chironominae larvae. Macroinvertebrate diversity was negatively affected by crayfish presence, but the effect was inversely proportional to crayfish size. The highest diversity index was obtained in the absence of P. clarkii, and juvenile crayfish significantly reduced macroinvertebrate diversity. Thus, the impact of P. clarkii on aquatic macroinvertebrates is size dependent and may be relevant in small pools formed in rice field pads from early autumn to late winter. Overall, our findings suggest that the negative effects of P. clarkii on macroinvertebrate diversity may be particularly strong in local natural assemblages confined to puddles of water or small ponds in wetland areas.  相似文献   

9.
10.

The North American crayfish Procambarus clarkii is considered among the most invasive freshwater species. However, burrowing behaviour and the possible impact of P. clarkii on levees have not yet been studied in depth. To assess shape, volume and structure of its burrows and the associated behaviour, experiments were conducted introducing two size-matched adult crayfish into an artificial setup and video-recording their behaviour for 96 h. At the end of each replicate, casts of excavated burrows made with polyethylene foam were retrieved. Crayfish (n?=?40) dug 17 burrows, six of which having an enlarged terminal chamber. The average excavated levee volume of burrows was 1.9% (0.00528 m3; 5.0256 l)?±?0.86% of the total volume with a maximum of 4% (0.0109 m3; 10.9 l) and the chambers (mean volume of 0.9?±?0.6 dm3) contributed to up to 50% of the excavated volume. No significant difference between sexes was found for any observed behaviour. Our study also demonstrated how P. clarkii female and male behaviours are similar for burrowing activity. As a result, we quantify the potential pressure exerted by the red swamp crayfish on levees and lastly highlight the observation of cooperating burrowing behaviour of male and female individuals in this species.

  相似文献   

11.
SUMMARY. 1. The impact of crayfish predation on the abundance of macroinvertebrates was examined under semi-natural conditions. Female (Experiment 1) or male (Experiment 2) crayfish (Orconectes virilis) were held for 5 weeks in twelve small pools (4.67 m2 surface area) at biomasses of 0. 5, 10 or 18 g m?2 (live weight). The pools were stocked with known densities of macroinvertebrates. 2. Crayfish significantly affected the abundance of macroinvertebrates in the pools. Differences in the effects of crayfish on macroinvertebrates were related to crayfish sex, the presence of age-0 crayfish, and the species of macroinvertebrate. 3. The abundance of snails (Stagnicola elodes and Physa gyrina) was greatly reduced, in comparison with controls, by biomass of female crayfish ≥10 g m?2 and by biomasses of male crayfish ≥5 g m?2. The total density of non-molluscan invertebrates was inversely correlated with the biomass of female crayfish but the total biomass of non-molluscan invertebrates did not differ between treatments. This is consistent with our observation that small invertebrates (<2 mg wet weight) were less numerous, and large amphipods (32–64 mg) were more numerous, in pools stocked with female crayfish. In contrast, male crayfish had little apparent effect on the abundance of non-molluscan invertebrates. 4. Age-0 crayfish hatched at the end of Experiment 1 and were present in each pool at the start of Experiment 2. Surprisingly, male crayfish preyed little on age-0 crayfish. At the end of Experiment 2, the densities of age-0 crayfish varied between six and 116 individuals m?2 and there was a strong inverse correlation between the mean biomass and density of age-0 crayfish recovered from the pools. This suggests age-0 crayfish were food limited in the pools and may explain the dominance of oligochaetes (which largely escape predation by burrowing) in the invertebrate community at the end of Experiment 2. 5. These results indicate that even relatively low densities of crayfish could greatly affect the abundance of macroinvertebrates in lakes. The introduction of crayfish into lakes (most lakes in Alberta currently have no crayfish) could substantially affect abundance and species composition of the macroinvertebrate community and, ultimately, the fish populations.  相似文献   

12.
13.
Bag-type enclosures (75 m3) with bottom sheets and tube-type enclosures (105 m3) open to the bottom sediment were stocked with exotic whitefish (Coregonus lavaretus maraena) to study their predation effects on the plankton community. The fish fed mainly on adult chironomids during the period of their emergence (earlier part of the experimental period). Thereafter, the food preference was shifted to larvae of chironomids and crustacean zooplankters. The predation effects on the plankton community were not evident in the bag-type enclosures where zooplankton densities were consistently low. The fish reduced the crustacean populations composed ofBosmina fatalis, B. longirostris andCyclops vicinus in the tube-type enclosures where the prey density was high (above ca. 50 individuals 1−1). The results suggested that the intensity of predation depended on the prey density. Rotifers increased in the fish enclosure, probably becauseCoregonus reduced the predation pressure byCyclops vicinus on rotifers and allowed the latter to increase. In the fish enclosures, no marked changes in species composition were observed. Zooplankton predated by the fish seemed to be distributed near the walls of the enclosures. Problems of enclosure experiments for examining the effects of fish predation on pelagic zooplankton communities are discussed.  相似文献   

14.
Submerged macrophytes enhance water transparency and aquatic biodiversity in shallow water ecosystems. Therefore, the return of submerged macrophytes is the target of many lake restoration projects. However, at present, north-western European aquatic ecosystems are increasingly invaded by omnivorous exotic crayfish. We hypothesize that invasive crayfish pose a novel constraint on the regeneration of submerged macrophytes in restored lakes and may jeopardize restoration efforts. We experimentally investigated whether the invasive crayfish (Procambarus clarkii Girard) affects submerged macrophyte development in a Dutch peat lake where these crayfish are expanding rapidly. Seemingly favourable abiotic conditions for macrophyte growth existed in two 0.5 ha lake enclosures, which provided shelter and reduced turbidity, and in one lake enclosure iron was added to reduce internal nutrient loading, but macrophytes did not emerge. We transplanted three submerged macrophyte species in a full factorial exclosure experiment, where we separated the effect of crayfish from large vertebrates using different mesh sizes combined with a caging treatment stocked with crayfish only. The three transplanted macrophytes grew rapidly when protected from grazing in both lake enclosures, demonstrating that abiotic conditions for growth were suitable. Crayfish strongly reduced biomass and survival of all three macrophyte species while waterfowl and fish had no additive effects. Gut contents showed that crayfish were mostly carnivorous, but also consumed macrophytes. We show that P. clarkii strongly inhibit macrophyte development once favourable abiotic conditions for macrophyte growth are restored. Therefore, expansion of invasive crayfish poses a novel threat to the restoration of shallow water bodies in north-western Europe. Prevention of introduction and spread of crayfish is urgent, as management of invasive crayfish populations is very difficult.  相似文献   

15.
The responses of invasive and native species of crayfish to conspecific and heterospecific alarm odors were recorded in the laboratory. Individuals of the North American invasive Procambarus clarkii responded just as strongly to odors from crushed Austropotomobius pallipes as they did to crushed conspecifics. The North American invasive Orconectes limosus also responded as strongly to P. clarkii odor as to conspecific odor. The native Italian species A. pallipes responded more strongly to conspecific alarm than to heterospecific alarm from P. clarkii. The pattern of invasive species of crayfish using a broader range of danger signals than displaced native species appears to be robust.  相似文献   

16.
This study describes the effects of the American red swamp crayfish, Procambarus clarkii Girard, on water quality and sediment characteristics in the Spanish floodplain wetland, Las Tablas de Daimiel National Park. Our short term enclosure study during a summer drawdown revealed that crayfish acted as a nutrient pump that transformed and translocated sediment bound nutrients to the water column. Water quality impoverishment was mainly due to the increase of dissolved inorganic nutrients (soluble reactive phosphorus and ammonia), and a significant increase of total suspended solids occurred likely as a result of crayfish associated bioturbation. At the same time, crayfish reduced the content of organic matter in the sediment and we observed a slight increase of total sediment phosphorus and nitrogen content as a result of crayfish benthic activity. P. clarkii effects, in terms of internal nutrient loading (229.91 mg TP m–2 d–1), were shown to be important on a local scale, indicating the significance of internal nutrient supply to water column primary producers particularly under low external supply (summer). Extrapolations to the whole ecosystem, however, revealed a negligible crayfish contribution (0.06%) to total internal nutrient loading (0.035 mg TP m–2 d–1). Hence, crayfish spatial heterogeneity patterns are important in global and local matter fluxes and nutrient cycles in wetlands.  相似文献   

17.
18.
Based on a review and our own data, we present an overview of the ecological impacts on the trophic web of Mediterranean wetlands by an introduced Decapod Crustacean, the red swamp crayfish (Procambarus clarkii). P. clarkii lacks efficient dispersal mechanisms but is very well adapted to the ecological conditions of Mediterranean wetlands (fluctuating hydroperiods with regular intervals of drought). As an opportunistic, omnivorous species, which adapts its ecology and life history characteristics, such as timing and size at reproduction to changing environmental conditions, it became readily established in most of the Mediterranean wetland environments. High reproductive output, short development time and a flexible feeding strategy are responsible for its success as an invader. Like most crayfish, it occupies a keystone position in the trophic web of the invaded system and interacts strongly with various trophic levels. It efficiently grazes on macrophytes and is one of the main factors, besides the impact of flamingos, cattle and introduced fish, of the change of many water bodies from a macrophyte dominated, clear water equilibrium to a phytoplankton driven turbid water balance. Juveniles feed on protein rich animal food with the corresponding impact on the macroinvertebrate community in competition with other crayfish or fish species. At the same time, it serves as a prey for mammals, birds and fish. Due to its predatory and grazing activity, it efficiently canalises energy pathways reducing food web complexity and structure. Feeding also on detritus it opens, especially in marshlands, the detritic food chain to higher trophic levels which results in an increase of crayfish predators. As a vector of diseases, it has a severe impact on the preservation and reintroduction of native crayfish. P. clarkii accumulates heavy metals and other pollutants in its organs and body tissues and transmits them to higher trophic levels. Due to the long history of its presence, the complex interactions it established within the invaded ecosystems and the socio-economic benefits it provides to humans, prevention and control seem the most promising management measures to reduce the negative impact of this crayfish species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
1. The red‐swamp crayfish (Procambarus clarkii) is an invasive species and an important pest of wet‐seeded rice fields (Oryza sativa) in California (U.S.A.) and in Portugal. Our work quantifies rice consumption and non‐consumptive destruction and identifies the types of direct damage inflicted by crayfish. 2. The following fractions were quantified in the presence and absence of crayfish and at 3 and 6 days of rice development: (1) non‐germinated seeds, (2) damaged seeds, (3) seeds not recovered, (4) intact rooted seedlings, (5) rooted damaged seedlings, (6) uprooted intact seedlings, (7) uprooted damaged seedlings. 3. Coarse particulate organic matter (CPOM) fragments produced during the feeding process were <2% of the material removed by crayfish. 4. Damage occurred with or without uprooting of the plants, but the incidence of uprooting without consumption was low (1.4%). 5. Consumption of recently developed parts of the rice plant was the main cause of damage and the observed effect was stronger on 6‐day‐old than on 3‐day‐old seedlings. Seedlings were more affected by crayfish than were seeds. 6. Crayfish affected the majority of seeds and seedlings available although consumption was low: 0.015 g dry weight (DW) rice g?1 wet weight (WW) crayfish per 12 h at 3 days and 0.063 g DW rice g?1 WW crayfish per 12 h at 6 days. 7. Our results are important for the mitigation of crayfish related problems in rice fields and for understanding the mechanisms of crayfish‐macrophyte interactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号