首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用AGI-30生物采样器收集鸡舍空气样本,同时采集鸡舍中饲料、积尘、土壤和饮用水在内的环境基质样品。采用形态学方法对分离获得的镰孢菌菌株进行鉴定,利用tri5-PCR技术对镰孢菌菌株中产单端孢霉烯族毒素的菌株进行检测,目的是探明鸡舍环境中镰孢菌种类的分布特征和产毒菌株。结果表明,从采集的50份样品中分离获得139个镰孢菌菌株,鸡舍空气和基质中的优势菌株均为Fusarium verticillioides;在各基质中,土壤中镰孢菌总浓度最高,为4×102–1.35×104CFU/g,其次为饲料和饮用水;采用tri5-PCR技术筛选到42株tri5阳性镰孢菌菌株,其中以F. graminearum所占比例最高。研究明确鸡舍中镰孢菌种类及其分布特征对鸡只疾病控制及保障人类和动物的健康具有重要意义。  相似文献   

2.
【目的】从青海大骨节病区小麦麦穗中分离的内生真菌中筛选产T-2毒素的菌株,并研究影响其合成该毒素的条件。【方法】采用种子胚芽抑制试验和抑菌试验从分离所得的菌株中筛选产毒菌株;利用薄层层析和高效液相检测待测菌株产物,复筛出产T-2毒素的菌株。通过显微形态学观察及ITS序列分析对筛选出的菌株5-5m-1进行鉴定。应用单因素筛选方案研究固体培养时间、温度以及液体培养转速、初始p H等对其产T-2毒素的影响,并采用正交试验进一步优化。【结果】菌株5-5m-1的显微形态与梨孢镰孢菌(Fusarium poae)相似;ITS序列分析显示,该菌株与F.poae的相似度也较高。其产T-2毒素的最佳条件为:玉米固体培养基、日温25°C/夜温15°C、光暗交替。【结论】5-5m-1菌株为梨孢镰孢菌,培养条件对其产T-2毒素能力有很大影响。实验结果将为进一步研究T-2毒素产生的机制和防止真菌毒素污染提供参考。  相似文献   

3.
自然环境中T-2毒素降解菌的筛选与鉴定   总被引:2,自引:0,他引:2  
[目的]在自然环境中筛选和鉴定能够降解T-2毒素的菌株.[方法]取对虾养殖池水样、养殖池沉泥样品和对虾混合饲料中分离到的镰孢菌,于GYM产毒培养基中培养14 d后引入自然条件下气载细菌,继续培养至28 d,采用LC-MS/MS检测其中T-2毒素含量.然后结合稀释涂布、平板划线、革兰氏染色、镜检,从镰孢菌产毒培养液中毒素含量明显降低的菌悬液中筛选出T-2毒素降解菌,用16S rRNA分析方法对其进行系统发育分析及菌种鉴定,并验证两菌株的降毒能力与不同基质中二者的联合降毒能力.[结果]以从对虾养殖环境中分离到的5株镰孢菌作为试验菌种,在其产毒培养过程中分离到2株T-2毒素降解菌,16S rRNA鉴定结果分别为弯曲假单胞菌和尼泊尔葡萄球菌,对T-2毒素的降解率分别为90.9%和85.5%,但两者降毒能力并无显著差异(P>0.05);其联合作用也有较好降毒效果,与两菌株单独作用无显著差异(P>0.05),不同基质对其联合降毒作用影响不大(P>0.05).[结论]新的T-2毒素降解菌的发现为进一步探明T-2毒素降解基因和开发T-2毒素生物降解酶提供了研究基础.  相似文献   

4.
利用红外光谱,核磁共振光谱结合免疫亲和柱的方法解析梨孢镰孢菌代谢产物成分,为真菌代谢产物的分析提供新的信息.将F.Poae菌株在GYM培养基上25℃条件下培养12 h后转至8℃培养12h,交替进行4周,将其代谢产物分离纯化、结晶,80℃干燥后用红外光谱议分析产物结构,然后利用免疫亲和柱特异性,比较产物经T-2免疫亲和柱纯化前后的1H核磁谱图.由红外谱图可判断目标组分存在与单端孢霉烯族毒素相同的特征官能团,初步判定产物为单端孢霉烯族毒素.通过1H核磁谱图比较T-2免疫亲和柱纯化前后物质结构一致.梨孢镰孢菌代谢产物成分为T-2毒素.红外-核磁共振光谱结合免疫亲和柱的方法解析梨孢镰孢菌代谢产物的方法在国内外尚未见报道.  相似文献   

5.
陈利锋  Thomas  M  HOHN 《菌物学报》2001,20(3):330-336
为研究禾谷镰孢菌Fusarium graminearum Schw.单端孢霉烯族毒素生物合成基因(产毒基因)在寄主体内的表达,作者构建了带报告基因GUS((-葡糖苷酸酶基因)的质粒pGUSTRI6P5,并通过对野生型菌株的转化获得禾谷镰孢高产毒菌株。该质粒含有由TRI5(禾谷镰孢单端孢霉二烯合酶基因)启动子(TRI5 Prom)驱动的GUS基因编码区、潮霉素B抗性基因和拟枝孢镰孢F. sporotrichioides的产毒调控基因TRI6(FSTRI6)。用pGUSTRI6P5转化野生型菌株GZ3639后,在含潮霉素 B的培养基上选取抗性菌落,单孢分离获单孢菌株(转化子)。在GYEP(葡萄糖-酵母粉-蛋白胨)液体培养基上,转化子B4-1和B16-1的GUS比活力强,15-AcDON(15-乙酰脱氧雪腐镰刀菌烯醇)产量高,且两者呈正相关(相关系数(r)分别为0.9839和0.9523)。B4-1和B16-1两个转化子可作为研究禾谷镰孢与其寄主相互作用的工具菌株。  相似文献   

6.
禾谷镰孢菌高产毒菌株的构建   总被引:5,自引:0,他引:5  
为研究禾谷镰孢菌Fusarium graminearum Schw.单端孢霉烯族毒素生物合成基因(产毒基因)在寄主体内的表达,作者构建了带报告基因GUS(β-葡糖苷酸酶基因)的质粒pGUSTRI6P5,并通过对野生型菌株的转化获得禾谷镰孢高产毒菌株,该质粒含有由TRI5(禾谷镰隐单端孢霉的二烯合酶基因)启动子(TRI5 Prom)驱动的GUS基因编码区、潮霉素B抗性基因和拟枝孢镰孢F.sporotrichioides的产毒调控基因TRI6(FSTR16)。用pGUSTRI6P5转化野生型菌株GZ3639后,在含潮霉素B的培养基上选取抗性菌落。单孢分离获单孢菌株(转化子)。在GYEP(葡萄糖-酵母粉-蛋白胨)液体培养基上,转化子B4-1和B16-1的GUS比活力强,15-AcDON(15-乙酰脱氧雪腐镰鼠菌烯醇)产量高,且两者呈正相关(相关系数(r)分别为0.9839和0.9523)。B41-1和B16-1两个转化子可作为研究禾谷镰孢与其寄主相互作用的工具菌株。  相似文献   

7.
利用Fusarium poae制备T-2毒素的培养条件和提取方法   总被引:1,自引:0,他引:1  
比较2种不同优化方法对分离纯化梨孢镰孢菌(Fusarium poae)产生的T-2毒素的效果,并得到高纯度的T-2毒素,解决国内T-2毒素产业化问题.在优化Fusarium poae产毒培养条件的基础上,对Burmeister的提取方法和Gregory培养基进一步优化以最大限度地提高T-2毒素的产率,从而得到高纯度并且...  相似文献   

8.
封闭环境气载镰孢菌及其T-2毒素发生规律的研究进展   总被引:1,自引:0,他引:1  
本文阐述了普遍存在的镰孢菌可增强封闭式环境中群体对疾病的易感性,并通过其次生代谢产物(如T-2毒素)对人和动物造成严重危害及预防和控制气载镰孢菌及T-2毒素危害的相关问题,包括气载真菌和毒素采集、毒素痕量富集技术、不同环境中的镰孢菌变化规律与产毒基因研究现状。提出研究封闭式环境中气载镰孢菌及T-2毒素发生规律研究的必要性。  相似文献   

9.
从致牛烂蹄病的稻草中分离的弯角镰孢菌菌株(Fusarium camptoceras)于1988年和1991年分两批接种玉米中,培养物用乙腈:水(3:1,v/v)提取,正已烷脱脂,Florisil色谱柱净化,经净化的提取液经电子捕获气相色谱(GC-ECD)、薄层色谱(TLC)分析和气相色谱-质谱联用(GC-MS)鉴定,证实了弯角镰孢菌可同时产生多种单端孢霉烯族化合物。弯角镰孢菌能同时产生这些代谢物,在国内外未见报道。  相似文献   

10.
【目的】从野生蛇足石杉(Huperzia serrata)中分离筛选产石杉碱甲的内生真菌。【方法】采用薄层层析及高效液相色谱法对内生真菌代谢产物进行测定和分析以期分离获得产石杉碱甲菌株,运用形态及ITS序列分析方法对产石杉碱甲菌株进行鉴定,并利用连续传代方法考察菌株遗传稳定性。【结果】经筛选获得一株产石杉碱甲内生真菌NSH-5,经形态学鉴定及ITS序列分析鉴定为轮枝镰孢菌(Fusarium verticillioides),其石杉碱甲产量为11.76 mg/100 m L,菌株经20次连续传代后遗传稳定。【结论】NSH-5菌株为一株具有产石杉碱甲能力的轮枝镰孢菌,该菌株的发现为生物合成石杉碱甲提供了新的菌种资源。  相似文献   

11.
Mycotoxin contamination associated with head blight of wheat and other grains caused by Fusarium culmorum and F. graminearum is a chronic threat to crop, human, and animal health throughout the world. One of the most important toxins in terms of human exposure is deoxynivalenol (DON) (formerly called vomitoxin), an inhibitor of protein synthesis with a broad spectrum of toxigenicity against animals. Certain Fusarium toxins have additional antimicrobial activity, and the phytotoxin fusaric acid has recently been shown to modulate fungus-bacterium interactions that affect plant health (Duffy and Défago, Phytopathology 87:1250-1257, 1997). The potential impact of DON on Fusarium competition with other microorganisms has not been described previously. Any competitive advantage conferred by DON would complicate efforts to control Fusarium during its saprophytic growth on crop residues that are left after harvest and constitute the primary inoculum reservoir for outbreaks in subsequent plantings. We examined the effect of the DON mycotoxin on ecological interactions between pathogenic Fusarium and Trichoderma atroviride strain P1, a competitor fungus with biocontrol activity against a wide range of plant diseases. Expression of the Trichoderma chitinase genes, ech42 and nag1, which contribute to biocontrol activity, was monitored in vitro and on crop residues of two maize cultivars by using goxA reporter gene fusions. We found that DON-producing F. culmorum and F. graminearum strains repressed expression of nag1-gox. DON-negative wild-type Fusarium strains and a DON-negative mutant with an insertional disruption in the tricothecene biosynthetic gene, tri5, had no effect on antagonist gene expression. The role of DON as the principal repressor above other pathogen factors was confirmed. Exposure of Trichoderma to synthetic DON or to a non-DON-producing Fusarium mutant resulted in the same level of nag1-gox repression as the level observed with DON-producing FUSARIUM: DON repression was specific for nag1-gox and had no effect, either positive or negative, on expression of another key chitinase gene, ech42. This is the first demonstration that a target pathogen down-regulates genes in a fungal biocontrol agent, and our results provide evidence that mycotoxins have a novel ecological function as factors in Fusarium competitiveness.  相似文献   

12.
Trichothecenes are mycotoxins produced by Trichoderma, Fusarium, and at least four other genera in the fungal order Hypocreales. Fusarium has a trichothecene biosynthetic gene (TRI) cluster that encodes transport and regulatory proteins as well as most enzymes required for the formation of the mycotoxins. However, little is known about trichothecene biosynthesis in the other genera. Here, we identify and characterize TRI gene orthologues (tri) in Trichoderma arundinaceum and Trichoderma brevicompactum. Our results indicate that both Trichoderma species have a tri cluster that consists of orthologues of seven genes present in the Fusarium TRI cluster. Organization of genes in the cluster is the same in the two Trichoderma species but differs from the organization in Fusarium. Sequence and functional analysis revealed that the gene (tri5) responsible for the first committed step in trichothecene biosynthesis is located outside the cluster in both Trichoderma species rather than inside the cluster as it is in Fusarium. Heterologous expression analysis revealed that two T. arundinaceum cluster genes (tri4 and tri11) differ in function from their Fusarium orthologues. The Tatri4-encoded enzyme catalyzes only three of the four oxygenation reactions catalyzed by the orthologous enzyme in Fusarium. The Tatri11-encoded enzyme catalyzes a completely different reaction (trichothecene C-4 hydroxylation) than the Fusarium orthologue (trichothecene C-15 hydroxylation). The results of this study indicate that although some characteristics of the tri/TRI cluster have been conserved during evolution of Trichoderma and Fusarium, the cluster has undergone marked changes, including gene loss and/or gain, gene rearrangement, and divergence of gene function.  相似文献   

13.
The trichodiene synthase (tri5) gene of Fusarium venenatum was cloned from a genomic library. Vectors were created in which the tri5 coding sequence was replaced with the Neurospora crassa nitrate reductase (nit3) gene and with the Aspergillus nidulans acetamidase (amdS) gene flanked by direct repeats. The first vector was utilized to transform a nitrate reductase (niaD) mutant of F. venenatum to prototrophy, and the second vector was utilized to confer acetamide utilization to the wild-type strain. Several of the transformants lost the capacity to produce the trichothecene diacetoxyscirpenol and were shown by hybridization analysis to have gene replacements at the tri5 locus. The nit3 gene was removed by retransformation with a tri5 deletion fragment and selection on chlorate. The amdS gene was shown to excise spontaneously via the flanking direct repeats when spores were plated onto fluoroacetamide.  相似文献   

14.
Fusarium species can produce mycotoxins, which can contaminate cereal-based food producing adverse effects for human and animal health. In recent years, the importance of Fusarium poae has increased within the Fusarium head blight complex. Fusarium poae is known to produce trichothecenes, especially nivalenol, a potent mycotoxin able to cause a variety of toxic effects. In this study, a specific primer pair was designed based on the tri7 gene to detect potential nivalenol-producing F.?poae isolates. A total of 125 F.?poae, four F.?cerealis, two F.?culmorum, one F.?langsethiae, one F.?sporotrichioides and seven F.?graminearum, plus F.?austroamericanum, F.?meridionale, F.?graminearum sensu stricto and F.?cortaderiae from the NRRL collection were analysed, and only F.?poae isolates gave a positive result for the presence of a 296-bp partial tri7 DNA fragment. Moreover, the primer set was tested from cereal seed samples where F.?poae and other Fusarium species with a negative result for the specific reaction ( F.?graminearum, F.?oxysporum, F.?chlamydosporum, F.?sporotrichioides, F.?equiseti and F.?acuminatum) were isolated, and the expected fragment was amplified. We developed a rapid and reliable PCR assay to detect potential nivalenol-producing F.?poae isolates.  相似文献   

15.
Isolates of the type-A trichothecene producing Fusarium sporotrichioides and Fusarium langsethiae were grouped and differentiated in a phylogenetic tree using ITS sequence dissimilarity. An attempt was made to develop a PCR-based assay for the detection and differentiation of Fusarium sporotrichiodes from other Fusarium species using the 5'-region of the tri5 gene as a template. However, this assay was unable to differentiate, to a satisfactory level, between isolates of Fusarium sporotrichioides and Fusarium langsethiae, providing further genetic evidence for their close genetic relationship. A robust and repeatable PCR-assay was developed for the detection and differentiation of both species based on sequence determined from differentially amplified RAPD-PCR products. These assays were able to detect both species in samples of grain taken from the field.  相似文献   

16.
The gene Tri12 encodes a predicted major facilitator superfamily protein suggested to play a role in export of trichothecene mycotoxins produced by Fusarium spp. It is unclear, however, how the Tri12 protein (Tri12p) may influence trichothecene sensitivity and virulence of the wheat pathogen Fusarium graminearum. In this study, we establish a role for Tri12 in toxin accumulation and sensitivity as well as in pathogenicity toward wheat. Tri12 deletion mutants (tri12) are reduced in virulence and result in decreased trichothecene accumulation when inoculated on wheat compared with the wild-type strain or an ectopic mutant. Reduced radial growth of tri12 mutants on trichothecene biosynthesis induction medium was observed relative to the wild type and the ectopic strains. Diminished trichothecene accumulation was observed in liquid medium cultures inoculated with tri12 mutants. Wild-type fungal cells grown under conditions that induce trichothecene biosynthesis develop distinct subapical swelling and form large vacuoles. A strain expressing Tri12p linked to green fluorescent protein shows localization of the protein consistent with the plasma membrane. Our results indicate Tri12 plays a role in self-protection and influences toxin production and virulence of the fungus in planta.  相似文献   

17.
Thirty deoxynivalenol-producing F. culmorum strains, isolated from wheat grains, were incubated in vitro and analyzed for trichothecene production. Seventeen strains produced more than 1 ppm of deoxynivalenol and acetyldeoxynivalenol and were considered high-deoxynivalenol-producing strains, whereas 13 F. culmorum strains produced less than 0.07 ppm of trichothecenes and were considered low-deoxynivalenol-producing strains. For all strains, a 550-base portion of the trichodiene synthase gene (tri5) was amplified and sequenced. According to the tri5 data, the F. culmorum strains tested clustered into two groups that correlated with in vitro deoxynivalenol production. For three high-producing and three low-producing F. culmorum strains, the tri5-tri6 intergenic region was then sequenced, which confirmed the two separate clusters within the F. culmorum strains. According to the tri5-tri6 sequence data, specific PCR primers were designed to allow differentiation of high-producing from low-producing F. culmorum strains.  相似文献   

18.
Trichoderma brevicompactum produces trichodermin, a simple trichothecene-type toxin that shares the first steps of the sesquiterpene biosynthetic pathway with other phytotoxic trichothecenes from Fusarium spp. Trichodiene synthase catalyses the conversion of farnesyl pyrophosphate to trichodiene and it is encoded by the tri5 gene that was cloned and analysed functionally by homologous overexpression in T. brevicompactum. tri5 expression was up-regulated in media with glucose, H(2)O(2) or glycerol. tri5 repression was observed in cultures supplemented with the antioxidants ferulic acid and tyrosol. Acetone extracts of tri5-overexpressing transformants displayed higher antifungal activity than those from the wild-type. Chromatographic and spectroscopic analyses revealed that tri5 overexpression led to an increased production of trichodermin and tyrosol. Agar diffusion assays with these two purified metabolites from the tri5-overexpressing transformant T. brevicompactum Tb41tri5 showed that only trichodermin had antifungal activity against Saccharomyces cerevisiae, Kluyveromyces marxianus, Candida albicans, Candida glabrata, Candida tropicalis and Aspergillus fumigatus, in most cases such activity being higher than that observed for amphotericin B and hygromycin. Our results point to the significant role of tri5 in the production of trichodermin and in the antifungal activity of T. brevicompactum.  相似文献   

19.
Trichoderma species produce trichothecenes, most notably trichodermin and harzianum A (HA), by a biosynthetic pathway in which several of the involved proteins have significant differences in functionality compared to their Fusarium orthologues. In addition, the genes encoding these proteins show a genomic organization differing from that of the Fusarium tri clusters. Here we describe the isolation of Trichoderma arundinaceum IBT 40837 transformants which have a disrupted or silenced tri4 gene, a gene encoding a cytochrome P450 monooxygenase that oxygenates trichodiene to give rise to isotrichodiol, and the effect of tri4 gene disruption and silencing on the expression of other tri genes. Our results indicate that the tri4 gene disruption resulted in a reduced antifungal activity against Botrytis cinerea and Rhizoctonia solani and also in a reduced ability to induce the expression of tomato plant defense-related genes belonging to the salicylic acid (SA) and jasmonate (JA) pathways against B. cinerea, in comparison to the wild-type strain, indicating that HA plays an important function in the sensitization of Trichoderma-pretreated plants against this fungal pathogen. Additionally, the effect of the interaction of T. arundinaceum with B. cinerea or R. solani and with tomato seedlings on the expressions of the tri genes was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号