首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Lipid bilayers of dimyristoyl phosphatidylcholine (DMPC) containing opioid peptide dynorphin A(1-17) are found to be spontaneously aligned to the applied magnetic field near at the phase transition temperature between the gel and liquid crystalline states (T(m)=24 degrees C), as examined by 31P NMR spectroscopy. The specific interaction between the peptide and lipid bilayer leading to this property was also examined by optical microscopy, light scattering, and potassium ion-selective electrode, together with a comparative study on dynorphin A(1-13). A substantial change in the light scattering intensity was noted for DMPC containing dynorphin A(1-17) near at T(m) but not for the system containing A(1-13). Besides, reversible change in morphology of bilayer, from small lipid particles to large vesicles, was observed by optical microscope at T(m). These results indicate that lysis and fusion of the lipid bilayers are induced by the presence of dynorphin A(1-17). It turned out that the bilayers are spontaneously aligned to the magnetic field above T(m) in parallel with the bilayer surface, because a single 31P NMR signal appeared at the perpendicular position of the 31P chemical shift tensor. In contrast, no such magnetic ordering was noted for DMPC bilayers containing dynorphin A(1-13). It was proved that DMPC bilayer in the presence of dynorphin A(1-17) forms vesicles above T(m), because leakage of potassium ion from the lipid bilayers was observed by potassium ion-selective electrode after adding Triton X-100. It is concluded that DMPC bilayer consists of elongated vesicles with the long axis parallel to the magnetic field, together with the data of microscopic observation of cylindrical shape of the vesicles. Further, the long axis is found to be at least five times longer than the short axis of the elongated vesicles in view of simulated 31P NMR lineshape.  相似文献   

2.
Small fast-tumbling bicelles are ideal for studies of membrane interactions at molecular level; they allow analysis of lipid properties using solution-state NMR. In the present study we used 31P NMR relaxation to obtain detailed information on lipid head-group dynamics. We explored the effect of two topologically different membrane-interacting peptides on bicelles containing either dimyristoylphosphocholine (DMPC), or a mixture of DMPC and dimyristoylphosphoglycerol (DMPG), and dihexanoylphosphocholine (DHPC). KALP21 is a model transmembrane peptide, designed to span a DMPC bilayer and dynorphin B is a membrane surface active neuropeptide. KALP21 causes significant increase in bicelle size, as evidenced by both dynamic light scattering and 31P T2 relaxation measurements. The effect of dynorphin B on bicelle size is more modest, although significant effects on T2 relaxation are observed at higher temperatures. A comparison of 31P T1 values for the lipids with and without the peptides showed that dynorphin B has a greater effect on lipid head-group dynamics than KALP21, especially at elevated temperatures. From the field-dependence of T1 relaxation data, a correlation time describing the overall lipid motion was derived. Results indicate that the positively charged dynorphin B decreases the mobility of the lipid molecules  – in particular for the negatively charged DMPG – while KALP21 has a more modest influence. Our results demonstrate that while a transmembrane peptide has severe effects on overall bilayer properties, the surface bound peptide has a more dramatic effect in reducing lipid head-group mobility. These observations may be of general importance for understanding peptide–membrane interactions.  相似文献   

3.
Equinatoxin II (EqtII) is a pore-forming protein from Actinia equina that lyses red blood cell and model membranes. Lysis is dependent on the presence of sphingomyelin (SM) and is greatest for vesicles composed of equimolar SM and phosphatidylcholine (PC). Since SM and cholesterol (Chol) interact strongly, forming domains or “rafts” in PC membranes, 31P and 2H solid-state NMR were used to investigate changes in the lipid order and bilayer morphology of multilamellar vesicles comprised of different ratios of dimyristoylphosphatidylcholine (DMPC), SM and Chol following addition of EqtII. The toxin affects the phase transition temperature of the lipid acyl chains, causes formation of small vesicle type structures with increasing temperature, and changes the T2 relaxation time of the phospholipid headgroup, with a tendency to order the liquid disordered phases and disorder the more ordered lipid phases. The solid-state NMR results indicate that Chol stabilizes the DMPC bilayer in the presence of EqtII but leads to greater disruption when SM is in the bilayer. This supports the proposal that EqtII is more lytic when both SM and Chol are present as a consequence of the formation of domain boundaries between liquid ordered and disordered phases in lipid bilayers leading to membrane disruption.  相似文献   

4.
We have previously shown that leucine to lysine substitution(s) in neutral synthetic crown ether containing 14-mer peptide affect the peptide structure and its ability to permeabilize bilayers. Depending on the substitution position, the peptides adopt mainly either a α-helical structure able to permeabilize dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) vesicles (nonselective peptides) or an intermolecular β-sheet structure only able to permeabilize DMPG vesicles (selective peptides). In this study, we have used a combination of solid-state NMR and Fourier transform infrared spectroscopy to investigate the effects of nonselective α-helical and selective intermolecular β-sheet peptides on both types of bilayers. 31P NMR results indicate that both types of peptides interact with the headgroups of DMPC and DMPG bilayers. 2H NMR and Fourier transform infrared results reveal an ordering of the hydrophobic core of bilayers when leakage is noted, i.e., for DMPG vesicles in the presence of both types of peptides and DMPC vesicles in the presence of nonselective peptides. However, selective peptides have no significant effect on the ordering of DMPC acyl chains. The ability of these 14-mer peptides to permeabilize lipid vesicles therefore appears to be related to their ability to increase the order of the bilayer hydrophobic core.  相似文献   

5.
Summary Polyethylene glycol, a known cell fusogen, is found to induce the formation of structural defects in egg phosphatidylcholine multilamellar vesicles, as shown by freeze-fracture microscopy.31P NMR spectra of these vesicles reveal the existence of a nonbilayer (isotropic) phase. The observed disruption in the bilayers is believed to be associated with an intermediate stage of membrane fusion.Abbreviations PEG Polyethylene glycol - IMP Intramembranous particle - PC Phosphatidylcholine - PS Phosphatidylserine - SUV Small unilamellar vesicles - MLV Multilamellar vesicles - DPPC Dipalmitoyl phosphatidylcholine - DSC Differential scanning calorimetry - DMPC Dimyristoylphosphatidylcholine - T c Phase transition temperature  相似文献   

6.
For the first time, the chain melting transition from the gel phase to the liquid crystalline phase of a single DPPC bilayer on a solid, spherical support (silica beads) is observed by differential scanning calorimetry (DSC). This transition is remarkably cooperative, exhibits a transition temperature Tm which is 2°C lower than usually found for DPPC multilamellar vesicles and its excess enthalpy is about 25% less than in DPPC multilayers. 31P- and 2H-NMR data as well as FT-IR data provide evidence that despite the highly asymmetric characteristic of the model system, the whole single bilayer undergoes the transition at Tm, i.e., there is no decoupling of the two monolayer leaflets at the main phase transition. Furthermore, our results show that the formation of the ripple (Pβ') phase is inhibited in single bilayers on a solid support. This result confirms a conclusion which we reached previously on the basis of neutron scattering data obtained on planar supported bilayers. The most likely reason for this inhibition as well as for the above mentioned thermodynamic differences between multilamellar vesicles and supported membranes is a significantly higher lateral stress in the latter. Moreover, the exchange of lipids between two populations of spherical supported vesicles (DMPC and chain perdeuterated DMPC) is studied by DSC. It is shown that this exchange process is symmetric and its half-time is a factor of 3-4 higher than observed for small sonicated DMPC vesicles.  相似文献   

7.
A 21-residue peptide segment, LL7-27 (RKSKEKIGKEFKRIVQRIKDF), corresponding to residues 7-27 of the only human cathelicidin antimicrobial peptide, LL37, is shown to exhibit potent activity against microbes (particularly Gram-positive bacteria) but not against erythrocytes. The structure, membrane orientation, and target membrane selectivity of LL7-27 are characterized by differential scanning calorimetry, fluorescence, circular dichroism, and NMR experiments. An anilinonaphthalene-8-sulfonic acid uptake assay reveals two distinct modes of Escherichia coli outer membrane perturbation elicited by LL37 and LL7-27. The circular dichroism results show that conformational transitions are mediated by lipid-specific interactions in the case of LL7-27, unlike LL37. It folds into an α-helical conformation upon binding to anionic (but not zwitterionic) vesicles, and also does not induce dye leakage from zwitterionic lipid vesicles. Differential scanning calorimetry thermograms show that LL7-27 is completely integrated with DMPC/DMPG (3:1) liposomes, but induces peptide-rich and peptide-poor domains in DMPC liposomes. 15N NMR experiments on mechanically aligned lipid bilayers suggest that, like the full-length peptide LL37, the peptide LL7-27 is oriented close to the bilayer surface, indicating a carpet-type mechanism of action for the peptide. 31P NMR spectra obtained from POPC/POPG (3:1) bilayers containing LL7-27 show substantial disruption of the lipid bilayer structure and agree with the peptide's ability to induce dye leakage from POPC/POPG (3:1) vesicles. Cholesterol is shown to suppress peptide-induced disorder in the lipid bilayer structure. These results explain the susceptibility of bacteria and the resistance of erythrocytes to LL7-27, and may have implications for the design of membrane-selective therapeutic agents.  相似文献   

8.
Spider venom contains a number of small peptides that can control the gating properties of a wide range of ion channels with high affinity and specificity. These ion channels are responsible for coordination and control of many bodily functions such as transducing signals into sensory functions, smooth muscle contractions as well as serving as sensors in volume regulation. Hence, these peptides have been the topic of many research efforts in hopes that they can be used as biomedical therapeutics. Several peptides are known to control the gating properties of ion channels by involving the lipid membrane. GsMTx4, originally isolated from the Chilean Rose tarantula (Grammostola rosea), is known to selectively inhibit mechanosensitive ion channels by partitioning into the lipid bilayer. To further understand this indirect gating mechanism, we investigated the interactions between native GsAF2, VsTx1 and a synthetic form of GsMTx4 with model DMPC lipid bilayers using 31P solid-state NMR, 13C CP-MAS NMR, NS-TEM and cryo-TEM. The results reveal that these inhibitor cystine knot peptides perforate the DMPC lipid vesicles similarly with some subtle differences and ultimately create small spherical vesicles and anisotropic cylindrical and discoidal vesicles at concentrations near 1.0–1.5?mol% peptide. The anisotropic components align with their long axes along the NMR static B0 magnetic field, a property that should be useful in future NMR structural investigations of these systems. These findings move us forward in our understanding of how these peptides bind and interact with the lipid bilayer.  相似文献   

9.
Membranes made from certain ternary mixtures of lipids can display coexisting liquid phases. In giant unilamellar vesicles, these phases appear as liquid domains which diffuse and coalesce after the vesicle is cooled below its miscibility transition temperature (Tm). Converting vesicles to supported lipid bilayers alters the mobility of the lipids and domains in the bilayer. At the same time, the miscibility transition temperature of the lipid mixture is altered. Here we compare Tm in vesicles and in supported bilayers formed by rupturing the same vesicles onto glass. We determine transition temperatures using fluorescence microscopy, and identify an increase in Tm when it is measured in identical membranes in solution and on a glass surface. We systematically alter the lipid composition of our membranes in order to observe the correlation between membrane composition and variation in Tm.  相似文献   

10.
The interaction of the synthetic antimicrobial peptide P5 (KWKKLLKKPLLKKLLKKL-NH2) with model phospholipid membranes was studied using solid-state NMR and circular dichroism (CD) spectroscopy. P5 peptide had little secondary structure in buffer, but addition of large unilamellar vesicles (LUV) composed of dimyristoylphosphatidylcholine (DMPC) increased the β-sheet content to ~20%. Addition of negatively charged LUV, DMPC–dimyristoylphosphatidylglycerol (DMPG) 2:1, led to a substantial (~40%) increase of the α-helical conformation. The peptide structure did not change significantly above and below the phospholipid phase transition temperature. P5 peptide interacted differently with DMPC bilayers with deuterated acyl chains (d54-DMPC) and mixed d54-DMPC–DMPG bilayers, used to mimic eukaryotic and prokaryotic membranes, respectively. In DMPC vesicles, P5 peptide had no significant interaction apart from slightly perturbing the upper region of the lipid acyl chain with minimum effect at the terminal methyl groups. By contrast, in the DMPC–DMPG vesicles the peptide increased disorder throughout the entire acyl chain of DMPC in the mixed bilayer. P5 promoted disordering of the headgroup of neutral membranes, observed by 31P NMR. However, no perturbations in the T 1 relaxation nor the T 2- values were observed at 30°C, although a slight change in the dynamics of the headgroup at 20°C was noticeable compared with peptide-free vesicles. However, the P5 peptide caused similar perturbations of the headgroup of negatively charged vesicles at both temperatures. These data correlate with the non-haemolytic activity of the P5 peptide against red blood cells (neutral membranes) while inhibiting bacterial growth (negatively charged membranes).  相似文献   

11.
The pulsed field gradient (pfg)-NMR method for measurements of translational diffusion of molecules in macroscopically aligned lipid bilayers is described. This technique is proposed to have an appreciable potential for investigations in the field of lipid and membrane biology. Transport of molecules in the plane of the bilayer can be successfully studied, as well as lateral phase separation of lipids and their dynamics within the bilayer organizations. Lateral diffusion coefficients depend on lipid packing and acyl chain ordering and investigations of order parameters of perdeuterated acyl chains, using 2H NMR quadrupole splittings, are useful complements. In this review we summarize some of our recent achievements obtained on lipid membranes. In particular, bilayers exhibiting two-phase coexistence of liquid disordered (ld) and liquid ordered (lo) phases are considered in detail. Methods for obtaining good oriented lipid bilayers, necessary for the pfg-NMR method to be efficiently used, are also briefly described. Among our major results, besides determinations of ld and lo phases, belongs the finding that the lateral diffusion is the same for all components, independent of the molecular structure (including cholesterol (CHOL)), if they reside in the same domain or phase in the membrane. Furthermore, quite unexpectedly CHOL seems to partition into the ldand lo phases to roughly the same extent, indicating that CHOL has no strong preference for any of these phases, i.e. CHOL seems to have similar interactions with all of the lipids. We propose that the lateral phase separation in bilayers containing one high-Tm and one low-Tm lipid together with CHOL is driven by the increasing difficulty of incorporating an unsaturated or prenyl lipid into the highly ordered bilayer formed by a saturated lipid and CHOL, i.e. the phase transition is entropy driven to keep the disorder of the hydrocarbon chains of the unsaturated lipid.  相似文献   

12.
The occurrence of late-onset Alzheimer's disease has been related to the lipid homeostasis. We tested whether the membrane lipid environment affects the dynamics and cleavability of a model peptide corresponding to the amino acid sequence 684-726 of the amyloid precursor protein APP reconstituted in liposomes. Solid-state NMR with 2H-Ala713, which is located within the putative transmembrane domain, suggested that the peptide observes less rotational motion in egg phosphatidylcholine (PhC) membranes than in dimyristoyl-phosphatidylcholine (DMPC) bilayers above the main phase transition temperature Tc. The residue 15N-Ala692, which is in the vicinity of the α-cleavage site, i.e., Lys687, showed less motion after reconstitution in distearoyl-phosphatidylcholine liposomes <Tc than in PhC, DMPC, or sphingomyelin vesicles. In all tested liposomal systems the α-cleavage site was accessible for hydrolysis by trypsin. However, the catalytic rate constant was higher in the PhC and DMPC than in the sphingomyelin and distearoyl-phosphatidylcholine systems. In conclusion, the dynamics of APP(684-726) on the transmembrane level as well as the motion of the α-cleavage site and its hydrolysis by a model enzyme are dependent on the bilayer characteristics. This could be relevant for the processing of APP in vivo.  相似文献   

13.
Prior studies suggest that the hydrophobic surfactant proteins, SP-B and SP-C, promote adsorption of the lipids in pulmonary surfactant to an air-water interface by stabilizing a negatively curved rate-limiting structure that is intermediate between bilayer vesicles and the surface film. This model predicts that other peptides capable of stabilizing negative curvature should also promote lipid adsorption. Previous reports have shown that under appropriate conditions, gramicidin-A (GrA) induces dioleoyl phosphatidylcholine (DOPC), but not dimyristoyl phosphatidylcholine (DMPC), to form the negatively curved hexagonal-II (HII) phase. The studies reported here determined if GrA would produce the same effects on adsorption of DMPC and DOPC that the hydrophobic surfactant proteins have on the surfactant lipids. Small angle X-ray scattering and 31P-nuclear magnetic resonance confirmed that at the particular conditions used to study adsorption, GrA induced DOPC to form the HII phase, but DMPC remained lamellar. Measurements of surface tension showed that GrA in vesicles produced a general increase in the rate of adsorption for both phospholipids. When restricted to the interface, however, in preexisting films, GrA with DOPC, but not with DMPC, replicated the ability of the surfactant proteins to promote adsorption of vesicles containing only the lipids. The correlation between the structural and functional effects of GrA with the two phospholipids, and the similar effects on adsorption of GrA with DOPC and the hydrophobic surfactant proteins with the surfactant lipids fit with the model in which SP-B and SP-C facilitate adsorption by stabilizing a rate-limiting intermediate with negative curvature.  相似文献   

14.
Interaction of the pentene antibiotic filipin with dimyristoylphosphatidylcholine (DMPC) membranes has been monitored by 2H-NMR, circular dichroism (CD), electronic absorption and fluorescence in the temperature range 10° to 60°C. Interaction appears to depend on whether filipin is added before or after membrane formation and also upon the temperature of the system.When filipin is added to preformed DMPC large unilamellar vesicles (LUV), the association constants, as determined by electronic absorption are 39×103 M -1, 15×103 M -1 and 0.6×103 M -1 at 15°, 30° and 50°C, respectively. Under identical conditions, CD spectra of bound filipin exhibit features characteristic of an aggregation over the whole temperature range.When filipin is incorporated in membranes during their preparation, the 2H-NMR spectra of deuterated DMPC indicate that the drug has a slight disordering effect on the lipid matrix below the temperature, T c ,of the gel-to-fluid phase transition and above T c +11°C. Between these two temperature boundaries the system consists of two lipid regions of very different dynamic properties. One of the regions, which is attributed to a filipin-lipid complex, has the properties of gel-like lipids whereas the other has those of fluid-like lipids. The latter domain is however more ordered than the pure lipid at corresponding temperatures. CD spectra under the same conditions are found to be identical to spectra when the drug is added to preformed membranes, only in the region T c to T c +11°C.Filipin induced carboxyfluorescein release from DMPC-LUV is found to be complete when the filipin-to-lipid ratio is near 1, for temperatures below T c +11°C.Results are compared to previous data on amphotericin B and provide evidence that the gel-like structure of phospholipid and membrane permeation may be induced by filipin even in the absence of cholesterol.Abbreviations NMR nuclear magnetic resonance - CD circular dichroism - DMPC dimyristoylphosphatidylcholine - EPA egg phosphatidic acid - LUV large unilamelar vesicles - SPC soybean phosphatidylcholine - DMSO dimethylsulfoxide - CF carboxyfluorescein  相似文献   

15.
The magnetic field dependence of the 31P spin-lattice relaxation rate, R1, of phospholipids can be used to differentiate motions for these molecules in a variety of unilamellar vesicles. In particular, internal motion with a 5- to 10-ns correlation time has been attributed to diffusion-in-a-cone of the phosphodiester region, analogous to motion of a cylinder in a liquid hydrocarbon. We use the temperature dependence of 31P R1 at low field (0.03-0.08 T), which reflects this correlation time, to explore the energy barriers associated with this motion. Most phospholipids exhibit a similar energy barrier of 13.2 ± 1.9 kJ/mol at temperatures above that associated with their gel-to-liquid-crystalline transition (Tm); at temperatures below Tm, this barrier increases dramatically to 68.5 ± 7.3 kJ/mol. This temperature dependence is broadly interpreted as arising from diffusive motion of the lipid axis in a spatially rough potential energy landscape. The inclusion of cholesterol in these vesicles has only moderate effects for phospholipids at temperatures above their Tm, but significantly reduces the energy barrier (to 17 ± 4 kJ/mol) at temperatures below the Tm of the pure lipid. Very-low-field R1 data indicate that cholesterol inclusion alters the averaged disposition of the phosphorus-to-glycerol-proton vector (both its average length and its average angle with respect to the membrane normal) that determines the 31P relaxation.  相似文献   

16.
13C NMR spectra routinely performed on oriented lipid bilayers display linewidth of 1–2 ppm, although T2 measurements indicate that 0.1–0.2 ppm could be obtained. We have prepared a DMPC – 13C4-cholesterol (7/3) sample, and oriented the lipid bilayers between glass plates so that the bilayer normal makes an angle of 90° (or of the magic angle) with B0. We have measured T2s, CSAs, and linewidths for the choline 13C--methyl, the cholesterol-C4 carbons and the lipid head group phosphorus, at both angles and 313 K. The magnetic field distribution within the sample was calculated using the surface current formalism. The line shapes were simulated as a function of B0 field inhomogeneities and sample mosaic spread. Both effects contribute to the experimental linewidth. Using three signals of different CSA, we have quantified both contributions and measured the mosaic spread accurately. Direct shimming on a sample signal is essential to obtain sharp resonances and 13C labelled choline methyl resonance of DMPC is a good candidate for this task. After optimisation of the important parameters (shimming on the choline resonance, mosaic spread of ±0.30° ), 13C linewidth of 0.2–0.3 ppm have been obtained. This newly achieved resolution on bilayers oriented at 90°, has allowed to perform two 2D experiments, with a good sensitivity: 2D PELF (correlation of carbon chemical shifts and C-H dipolar couplings) and 2D D-resolved experiment (correlation of carbon chemical shifts and C-C dipolar couplings). A C-C dipolar coupling of 35 ± 2 Hz between the choline methyl carbons was determined.  相似文献   

17.
We report a combined dynamic light scattering (DLS) and neutron spin-echo (NSE) study on the local bilayer undulation dynamics of phospholipid vesicles composed of 1,2-dimyristoyl-glycero-3-phosphatidylcholine (DMPC) under the influence of temperature and the additives cholesterol and trehalose. The additives affect vesicle size and self-diffusion. Mechanical properties of the membrane and corresponding bilayer undulations are tuned by changing lipid headgroup or acyl chain properties through temperature or composition. On the local length scale, changes at the lipid headgroup influence the bilayer bending rigidity κ less than changes at the lipid acyl chain: We observe a bilayer softening around the main phase transition temperature Tm of the single lipid system, and stiffening when more cholesterol is added, in concordance with literature. Surprisingly, no effect on the mechanical properties of the vesicles is observed upon the addition of trehalose.  相似文献   

18.
The sn-1 and sn-3 isomers of dioleoylglycerophosphocholine form vesicles of the same size as the racemic lipid. Identical permeability coefficients were found for the diffusion of glucose and chloride across bilayer membranes of vesicles consisting of these lipids. Vesicles made of mixtures of enantiomeric or racemic dioleoyllecithin with 30 mol% cholesterol have identical radii. Cholesterol reduces the permeability of bilayers for glucose and chloride irrespective of the steric configuration of the constituent phospholipid. Increasing concentrations of cholesterol (17, 33 and 50 mol%, respectively) broaden the (CH2)n signal in the 1H-NMR-spectra (90 MHz) of unilamellar vesicles containing sn-1, sn-3 or rac alkyloleoylglycerophosphocholine to the same extent. These results indicate that the steric configuration of phospholipids has no gross effect on the arrangement of phospholipids and cholesterol in bilayer membranes.  相似文献   

19.
The interaction of the surfactant octyl glucoside (OG) with dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), distearoylphosphatidylcholine (DSPC), and soy bean phosphatidylcholine (soy bean PC) was studied using high-sensitivity titration calorimetry. We determined the partition coefficient of OG between water and lipid bilayers and the transfer enthalpy of the surfactant by addition of lipid vesicles to OG monomers or vice versa. Comparison with the micellization enthalpy of the surfactant gives information on differences in the hydrophobic environment of OG in a liquid-crystalline bilayer or a micelle. The average partition coefficient P in mole fraction units for xe≈0.12–0.2 decreases slightly from 4152 at 27°C to 3479 at 70°C for DMPC and from 4260 to 3879 for soy bean PC, respectively. The transfer enthalpy ΔHT of OG into lipid vesicles is positive at 27°C and negative at 70°C. Its temperature dependence is larger for the incorporation of OG into DMPC than into soy bean PC vesicles. It is concluded that OG in DMPC vesicles is better shielded from water than in soy bean PC vesicles or in micelles. Titration calorimetry was also used to determine the phase boundaries of the coexistence region of mixed vesicles and mixed micelles in the systems OG/DMPC, OG/DPPC, OG/DSPC, and OG/soy bean PC vesicles at 70°C in the liquid-crystalline phase. DMPC and soy bean PC solubilization was also studied at 27°C to investigate the effect of temperature. The effective surfactant to lipid ratios at saturation, Resat, for all PCs studied are in the range between 1.33–1.72 and the ratios at complete solubilization, Resol, are between 1.79–3.06. At 70°C, the Resat values decrease with increasing chain length of the saturated PC. The ratios depend also slightly on temperature and the degree of unsaturation of the fatty acyl chains. For the OG/soy bean PC system, the coexistence range for mixed vesicles and mixed micelles is larger than for the corresponding PCs with saturated chains.  相似文献   

20.
The effects of amphotericin B upon the organization and dynamics of multibilayer membranes of dimyristoylphosphatidylcholine (DMPC) were investigated by means of 2H-NMR. At high amphotericin B concentrations (30 mol% with respect to the lipid) and at temperatures above 25°C, DMPC experiences two different environments which are in slow exchange on the 2H-NMR time scale. In one of these, the lipid is immobilized by the antibiotic, in a molar ratio of approximately 1:1, whereas the lipid unsequestered by amphotericin B is more ordered than in its pure state. This ordering effect is perceived at relatively low antibiotic doses (4%). The local lipid order, and the relative percentage, of sequestered DMPC, are temperature-independent (up to 65°C), whereas the ordering of the unsequestered lipid domain is not. The perturbation induced by amphotericin B is manifest similarly at the edges as well as in the center of the bilayer. Antibiotic addition leads to large decreases in the transverse relaxation time, T2, of the labelled lipid, but not in the spin-lattice relaxation time, T1. This indicates an increased density of slow motional modes and little change in rapid motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号