首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bis-peptide nucleic acid (PNA)-anthraquinone imide (AQI) conjugate has been synthesized and shown to form strand invasion complexes with a duplex DNA target. The two arms of the bis-PNA each consist of five consecutive thymine residues and are linked by a flexible, hydrophilic spacer. Probing with potassium permanganate reveals that the bis-PNA complexes to duplex DNA at A5.T5sites with local displacement of the T5DNA strand. The 5 bp sequence targeted by the PNA is the shortest strand invasion complex reported to date. Irradiation of the strand invasion complex results in asymmetric cleavage of the displaced strand, with more efficient cleavage at the 3'-end of the loop. This result indicates that the bis-PNA binds to the DNA such that the C-terminal T5sequence forms the strand invasion complex, leaving the N-terminal T5sequence to bind by triplex formation, thereby placing the AQI closer to the 3'-end of the displaced strand, consistent with the observed photocleavage pattern. The ability of the PNA to directly report its binding site by photoinduced cleavage could have significant utility in mapping the secondary and tertiary structure of nucleic acids.  相似文献   

2.
3.
Rh(DIP)3(3+): a shape-selective metal complex which targets cruciforms.   总被引:2,自引:2,他引:0  
The coordination complex tris(4,7-diphenylphenanthroline)rhodium(III), Rh(DIP)3(3+), binds to and, upon photoactivation, cleaves both DNA strands near the base of a DNA cruciform. Sites of photoinduced double-stranded DNA cleavage by the rhodium complex map to regions containing cruciforms on closed circular pBR322, pColE1 and phi X174 (replicative form) DNAs. Neither cleavage nor binding by the metal complex, assayed using S1 nuclease, is found on the linear plasmid which lacks the extruded cruciform. High resolution mapping experiments reveal that Rh(DIP)3(3+) cleaves at a specific AT-rich site neighboring the stem of the minor cruciform on pBR322. The primary site of cleavage is found at position 3238 on the 3'-strand and 3250 on the 5'-strand and is remarkably specific. The pattern of cleavage, to one side only of the cruciform stem, indicates an asymmetry in the cruciform structure recognized by the complex. These results suggest that Rh(DIP)3(3+) may provide a useful reagent to probe cruciform sites. In addition, the high degree of specificity found in targeting the cruciform structure with this simple metal complex underscores the utility of shape-selection for the recognition of specific sites on a DNA strand.  相似文献   

4.
5.
Specificity of the S1 nuclease from Aspergillus oryzae.   总被引:19,自引:0,他引:19  
Conditions are described for digesting single-stranded DNA by S1 nuclease without introducing breaks in double-stranded DNA. The enzyme is inhibited by low concentrations of various compounds of phosphate. Under certain conditions S1 nuclease cleaves the strand opposite a nick in bacteriophage T5 DNA; under other conditions, the enzyme cleaves a loop in one strand of heteroduplex lambdaDNA while leaving the opposite strand intact. S1 nuclease makes many single strand breaks in ultraviolet-irradiated duplex lambdaDNA. Superhelical DNA of phiX174 (Form I) is converted first to a relaxed circular molecule (Form II), and then to a linear molecule (Form III) by cleavage at one site per molecule. Since the cleavage occurs at many sites in the population of molecules, the partially single-stranded regions in phiX174 superhelical DNA are not determined by specific nucleotide sequences.  相似文献   

6.
Negatively superhelical pNS1 DNA with a molecular weight of 2.55 MDa (4 kbp) was found to contain 13 specific, unbasepaired sites that are sensitive to a single-strand-specific S1 nuclease cleavage. The S1-cleavage occurred once at these sites. In the absence of added Mg2+, the topoisomerase I purified from Haemophilus gallinarum formed a complex with the superhelical pNS1 DNA which has a hidden strand cleavage. Extensive proteinase K digestion of the complex led to cleavage of the DNA chain. Then the proteinase K-cleaved product was digested with S1, which can cut the opposite strand at the preexisting strand cleavage to generate unit-length linear DNA. Restriction endonuclease analysis of the linear DNA shows that the topoisomerase-induced cleavage occurred once at ten specific sites on the DNA. The topoisomerase caused mainly single-strand cleavage at these sites, but infrequently also caused double-strand cleavage at the same sites. Of interest is the fact that these sites considerably coincide with the S1-cleavable, unbasepaired sites.  相似文献   

7.
Cleavage of single-stranded DNA by plasmid pT181-encoded RepC protein.   总被引:14,自引:1,他引:13       下载免费PDF全文
RepC protein encoded by plasmid pT181 has single-stranded endonuclease and topoisomerase-like activities. These activities may be involved in the initiation (and termination) of pT181 replication by a rolling circle mechanism. RepC protein cleaves the bottom strand of DNA within the origin of replication at a single, specific site when the DNA is in the supercoiled or linear (double or single-stranded) form. We have found that RepC protein will also cleave single-stranded DNA at sites other than the origin of replication. We have mapped the secondary cleavage sites on pT181 DNA. When the DNA is in the supercoiled, or linear, double-stranded form, only the primary site within the origin is cleaved. However, when the DNA is present in the single-stranded form, several strong and weak cleavage sites are observed. The DNA sequence at these cleavage sites shows a strong similarity with the primary cleavage site. The presence of Escherichia coli SSB protein inhibited cleavage at all of the secondary nick sites while the primary nick site remained susceptible to cleavage.  相似文献   

8.
9.
Sites for restriction endonuclease cleavage in double helical DNA are blocked from cleavage when the photoaffinity drug trimethylpsoralen is photobound at or near the site. In general, Hind III sites are about 15 fold more sensitive to inactivation than the other restriction sites which were tested, although sensitivity of different Hind III sites seems to vary somewhat depending on base sequences adjacent to the site. Hind III sites can be inactivated in two ways; one which completely blocks action of the specific restriction endonuclease and one permitting the introduction of a swivel which relaxes DNA supercoiling without producing a double strand break. Nucleosomes and perhaps other protein-DNA complexes can protect the underlying DNA sequence from trimethylpsoralen photobinding and thus protect restriction sites from inactivation. This property can be exploited to determine if specific sites are accessible to the psoralon probe in vivo and thus to establish if specific nucleotide sequences are nucleosome associated. Using this procedure evidence is obtained that nucleosomes on SV40 DNA in living infected cells are either distributed randomly or at many discrete alternate sites that approach a random distribution.  相似文献   

10.
A unique reaction for type II DNA topoisomerase is its cleavage of a pair of DNA strands in concert. We show however, that in a reaction mixture containing a molar excess of EDTA over Mg2+, or when Mg2+ is substituted by Ca2+, Mn2+, or Co2+, the enzyme cleaves only one rather than both strands. These results suggest that the divalent cations may play an important role in coordinating the two subunits of DNA topoisomerase II during the strand cleavage reaction. The single strand and the double strand cleavage reactions are similar in the following aspects: both require the addition of a protein denaturant, can be reversed by low temperature or high salt, and a topoisomerase II molecule is attached covalently to the 5' phosphoryl end of each broken DNA strand. Furthermore, the single strand cleavage sites share a similar sequence preference with double strand cleavage sites. There is, however, a strand bias for the single strand cleavage reaction. We show also that under single strand cleavage conditions, topoisomerase II still possesses a low level of double strand passage activity: it can introduce topological knots into both covalently closed or nicked DNA rings, and change the linking number of a plasmid DNA by steps of two. The implication of this observation on the sequential cleavage of the two strands of the DNA duplex during the normal DNA double strand passage process catalyzed by type II DNA topoisomerases is discussed.  相似文献   

11.
Peptide nucleic acid (PNA) binding-mediated gene regulation   总被引:2,自引:0,他引:2  
Wang G  Xu XS 《Cell research》2004,14(2):111-116
  相似文献   

12.
We report on the peptide nucleic acid (PNA)-directed design of a DNA-nicking system that enables selective and quantitative cleavage of one strand of duplex DNA at a designated site, thus mimicking natural nickases and significantly extending their potential. This system exploits the ability of pyrimidine PNAs to serve as openers for specific DNA sites by invading the DNA duplex and exposing one DNA strand for oligonucleotide hybridization. The resultant secondary duplex can act as a substrate for a restriction enzyme, which ultimately creates a nick in the parent DNA. We demonstrate that several restriction enzymes of different types could be successfully used in the PNA-assisted system we developed. Importantly, the enzyme cleavage efficiency is basically not impaired on such artificially generated substrates, compared with the efficiency on regular DNA duplexes. Our design originates a vast class of semisynthetic rare-cleaving DNA nickases, which are essentially absent at present. In addition, we show that the site-specific PNA-assisted nicking of duplex DNA can be engaged in a rolling-circle DNA amplification (RCA) reaction. This new RCA format demonstrates the practical potential of the novel biomolecular tool we propose for DNA technology and DNA diagnostics.  相似文献   

13.
14.
The synthesis and DNA binding properties of bis-PNA (peptide nucleic acid) are reported. Two PNA segments each of seven nucleobases in length were connected in a continuous synthesis via a flexible linker composed of three 8-amino-3,6-dioxaoctanoic acid units. The sequence of the first strand was TCTCTTT (C- to N-terminal), while the second strand was TTTCTCT or TTTJTJT, where J is pseudoisocytosine. These bis-PNAs form triple-stranded complexes of somewhat higher thermal stability than monomeric PNA with complementary oligonucleotides and the thermal melting transition shows very little hysteresis. When the J base is placed in the strand parallel to the DNA complement ('Hoogsteen strand'), the DNA binding was pH independent. The bis-PNAs were also superior to monomeric PNAs for targeting double-stranded DNA by strand invasion.  相似文献   

15.
F Razvi  G Gargiulo  A Worcel 《Gene》1983,23(2):175-183
Ligation of a 5'-labeled DNA restriction fragment results in a circular DNA molecule carrying the two 32Ps at the reformed restriction site. Double digestions of the circular DNA with the original enzyme and a second restriction enzyme cleavage near the labeled site allows direct chemical sequencing of one 5'-labeled DNA strand. Similar double digestions, using an isoschizomer that cleaves differently at the 32P-labeled site, allows direct sequencing of the now 3'-labeled complementary DNA strand. It is possible to directly sequence both strands of cloned DNA inserts by using the above protocol and a multiple cloning site vector that provides the necessary restriction sites. The simultaneous and parallel visualization of both DNA strands eliminates sequence ambiguities. In addition, the labeled circular molecules are particularly useful for single-hit DNA cleavage studies and DNA footprint analysis. As an example, we show here an analysis of the micrococcal nuclease-induced breaks on the two strands of the somatic 5S RNA gene of Xenopus borealis, which suggests that the enzyme may recognize and cleave small AT-containing palindromes along the DNA helix.  相似文献   

16.
The anticancer drug, bleomycin, causes both single and double strand scission of duplex DNA in vitro, with double strand scission occurring in excess of that expected from the random accumulation of single strand nicks. The mechanism of the preferential double strand scission of DNA by bleomycin has been investigated through the synthesis of a series of double hairpin and linear oligonucleotides designed to contain a single nick-like structure at a defined site to serve as models of bleomycin-damaged duplex DNA. The 3' and/or 5' hydroxyls flanking the nick have been phosphorylated to model the increased negative charge at a bleomycin-generated nick. The ability of bleomycin to cleave the intact strand opposite the nick was then determined by autoradiography. The results demonstrate that phosphorylation at either the 3' or 5' hydroxyl, and especially when both sites are phosphorylated, strongly enhances selective cleavage by bleomycin of the opposite strand. These experiments indicate that bleomycin-mediated double strand scission is a form of self-potentiation in which the high affinity of bleomycin for the initially generated nicked sites leads to a greatly enhanced probability of scission of the strand opposite those sites.  相似文献   

17.
Vaccinia DNA topoisomerase IB (TopIB) relaxes supercoils by forming and resealing a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate. Here we gained new insights to the TopIB mechanism through "chemical mutagenesis." Meta-substituted analogs of Tyr(274) were introduced by in vitro translation in the presence of a chemically misacylated tRNA. We report that a meta-OH reduced the rate of DNA cleavage 130-fold without affecting the rate of religation. By contrast, meta-OCH(3) and NO(2) groups elicited only a 6-fold decrement in cleavage rate. We propose that the meta-OH uniquely suppresses deprotonation of the para-OH nucleophile during the cleavage step. Assembly of the vaccinia TopIB active site is triggered by protein contacts with a specific DNA sequence 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p downward arrowN (where downward arrow denotes the cleavage site). A signature alpha-helix of the poxvirus TopIB ((132)GKMKYLKENETVG(144)) engages the target site in the major groove and thereby recruits catalytic residue Arg(130) to the active site. The effects of 11 missense mutations at Tyr(136) highlight the importance of van der Waals interactions with the 3'-G(+4)pG(+3)p dinucleotide of the nonscissile strand for DNA cleavage and supercoil relaxation. Asn(140) and Thr(142) donate hydrogen bonds to the pro-(S(p))-oxygen of the G(+3)pA(+2) phosphodiester of the nonscissile strand. Lys(133) and Lys(135) interact with purine nucleobases in the major groove. Whereas none of these side chains is essential per se, an N140A/T142A double mutation reduces the rate of supercoil relaxation and DNA cleavage by 120- and 30-fold, respectively, and a K133A/K135A double mutation slows relaxation and cleavage by 120- and 35-fold, respectively. These results underscore functional redundancy at the TopIB-DNA interface.  相似文献   

18.
The effects of a wide range of DNA binding drugs on peptide nucleic acid (PNA) binding to double-stranded DNA by strand displacement have been investigated using a gel retardation assay. The bis-PNA [H-(Lys)-TTJTTJTTTT-(eg)(3)-TTTTCTTCTT-Lys-NH(2)] was used together with a 248 bp DNA fragment containing an appropriate target for the PNA. Most of the ligands that were studied, including DNA minor groove binders as well as intercalators and bis-intercalators, either have no effect or strongly inhibit PNA binding to DNA. By contrast, quinoxaline antibiotics facilitate PNA-DNA complex formation. The "PNA-helper" effect of echinomycin was studied in more detail using time and temperature dependence experiments to elucidate the mechanism. PNA binding to DNA follows pseudo-first-order kinetics, but the initial rate of binding is accelerated more than 10-fold in the presence of 10 microM echinomycin. The activation energy for PNA binding to dsDNA is lowered 2-fold by the antibiotic (45 vs 90 kJ/mol in the control). The reasons why quinoxalines promote the binding of PNA to DNA are not entirely clear but may well include distortions (opening) of the double helix that facilitate PNA invasion. This study establishes that the efficacy of DNA-targeted PNA antigene molecules could potentially be enhanced by judiciously adding certain DNA-interactive ligands.  相似文献   

19.
Lee HJ  Lee YL  Ji JJ  Lim HM 《Molecules and cells》2003,16(3):377-384
The biochemical reaction of a site-specific recombinase such as Hin invertase or gammadelta resolvase starts with binding of the recombinase to its recombination site and cleavage of the DNA in the center of the site. This is followed by strand exchange and finally ligation of the ends of the recombined strands. Previous biochemical studies have shown that Hin invertase and gammadelta resolvase cannot proceed beyond DNA cleavage in the absence of Mg++ ion, indicating that these recombinases require Mg++ ion in the strand exchange process. We have observed that the intercalating agent, ethidium bromide (2 microM), does not interfere with DNA cleavage, but slows strand exchange in a concentration-dependent manner. Levels of Mg++ ion below 5 mM also slow strand exchange substantially. We infer that random intercalation of ethidium bromide inhibits unwinding of the double helix at the recombination site in the negatively supercoiled DNA and propose that Mg+ may be required for Hin to deform the secondary structure of B-DNA prior to strand exchange.  相似文献   

20.
Upon binding of a decamer bis-PNA (H-Lys-TTCCTCTCTT-(eg1)(3)-TTCTCTCCTT-LysNH(2)) to a complementary target in a double-stranded DNA fragment, three distinct complexes were detected by gel mobility shift analysis. Using in situ chemical probing techniques (KMnO(4) and DMS) it was found that all three complexes represent bona fide sequence-specific PNA binding to the designated target, but the complexes were structurally different. One complex that preferentially formed at higher PNA concentrations contains two bis-PNA molecules per DNA target, whereas the other two complexes are genuine triplex invasion clamped structures. However, these two latter complexes differ by the path relative to the DNA target of the flexible ethylene-glycol linker connecting the two PNA oligomers that comprise a bis-PNA. We distinguish between one in which the linker wraps around the non-target DNA strand, thus making this strand part of the triplex invasion complex and another complex that encompass the target strand only. The implications of these results are discussed in terms of DNA targeting by synthetic ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号